
International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.43, September 2024

Selection Improvements on the Parallel Iterative
Improvement Algorithm for Stable Matching

Scott Wynn
Department of Computer Science and Engineering

University of Washington, Seattle, WA 98185, USA

Alec Kyritsis
Department of Computer Science

Middlebury College, Middlebury, VT 05753, USA

Stephora Alberi
Department of Computer Science

Salisbury University, Salisbury, MD 21801, USA

Enyue Lu
Department of Computer Science

Salisbury University, Salisbury, MD 21801, USA

ABSTRACT
Sequential algorithms for the Stable Matching Problem are of-
ten too slow in the context of some large scale real-time ap-
plications like switch scheduling. Parallel architectures can of-
fer a notable decrease in runtime complexity. This paper pro-
poses a stable matching algorithm that runs in O(nlog(n))
time using n2 processors. The proposed algorithm is struc-
turally based on the Parallel Iterative Improvement (PII) algo-
rithm, where we suggest alternative selection methods for pairs,
called Right-Minimum and Dynamic Selection, as well as a
faster preprocessing step, called Quick Initialization. The pro-
posed algorithm improves the convergence rate from 90% in the
original PII algorithm to 100% in the proposed algorithm over
more than 3.6 million trials and significantly improves runtime.

General Terms
Stable Matching, Parallel Computing, High Performance Computing, Al-
gorithms

Keywords
Stable Matching, Parallel Algorithms, Parallel Iterative Improve-
ment Algorithm, Matching Algorithms, Preference Matrices,
Blocking Pairs, Right-Minimum Selection, Dynamic Selection

1. INTRODUCTION
Originally developed to model the college admissions process, the
Stable Matching Problem [6] has spawned numerous applications
in the social, physical and computational sciences [1, 4, 5, 8, 14].
One such application, switch scheduling in large data centers, is
of particular interest due to the exponential increase in network
throughput over the recent decade [18].

In the context of these large scale implementations, the clas-
sic Gale-Shapley algorithm from [6] can be too slow, requiring
O(n2) runtime to complete. Parallel and Distributed architectures

can greatly decrease the computational complexity of solving the
Stable Matching Problem [3, 7, 16]. Without considering some of
the practical constraints on parallel architecture, [3] showed that
a sublinear algorithm for stable matching is possible. This paper
studies an augmented version of the Parallel Iterative Improvement
(PII) algorithm proposed in [12], which improves on previous
ideas in [17] and preliminary work in [10] and offers significant
runtime improvement while requiring only O(n2) processors,
making the parallel architecture required for the algorithm much
more feasible for large scale applications.

In its initial implementation, the PII algorithm finds a stable
matching within 5n iterations and a total of O(n log(n)) run-
time in approximately 90% of cases when tested on input size
of n = {10, 20, ..., 100}. In the remaining 10% of cases, the
algorithm cycles indefinitely, repeatedly returning to a previous
iteration. This paper shows that applying new iteration methods
can significantly improve runtime and convergence rate of the PII
algorithm.

1.1 Preliminaries
Denote the sets of n men and n women by M = {m1,m2, ...,mn}
and W = {w1, w2, ..., wn} respectively. Let P be the n × n
matrix, or preference matrix, with each row i corresponding to
the ith element of M and each column j corresponding to the jth
element of W , as used in [12]. Hence, pi,j ∈ P represents the
respective rankings of man i with woman j. For a given pairing
pi,j , denote the preference ranking of man i for woman j and the
preference ranking of woman j for man i by L(pi,j) and R(pi,j)
respectively. Denote these quantities the left value and right value
of pi,j respectively. Then, man i prefers woman m to woman j if
L(pi,m) < L(pi,j), and similarly woman j prefers man l to man i
if R(pl,j) < R(pi,j).

Let µ be a one-to-one mapping between M and W . Then, µ
is called a matching and pi,j is considered to be matched under
µ if and only if µ(i) = j and µ(j) = i. For convenience, this

49



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.43, September 2024

paper will often say pi,j ∈ µ. For a given matching µ, if man i
and women j prefer each other to their current partners, then pi,j
is a blocking pair and the current pairs are called unstable pairs.
Formally, in a preference matrix P , a pair pi,j is a blocking pair
with respect to a matching µ and unstable pairs pi,l, pm,j ∈ µ
if and only if L(pi,j) < L(pi,l) and R(pi,j) < R(pm,j). If a
matching µ on preference matrix P contains any unstable pairs, µ
is classified as an unstable matching.

Finally, let µ1, µ2, ..., µn denote a set of matchings on preference
matrix P . Suppose µk is an unstable matching with blocking pair
pi,j . Then µk+1 satisfies pi,j if and only if pi,j ∈ µk+1. In the
following sections it will be useful to track general sequences of
blocking pairs.

1.2 Parallel Architecture
This paper assumes n2 processors (PE’s) with hypercube or multi-
ple broadcast bus architecture. This enables row and column broad-
casts and find minimum operations to be completed with at most
O(log(n)) complexity, as outlined in [12]. It may be useful to con-
sider the PE’s arranged on an n × n mesh A such that PEi,j cor-
responds to pair pi,j in preference matrix P .

1.3 Statement of Results
This paper’s main contribution to the problem lies in the pre-
sentation and analysis of two new pair selection methods for the
iteration step of the PII algorithm that significantly improve the
convergence rate.

Method 1: The first proposed method is Right-Minimum Se-
lection, which forces termination of the algorithm by only
choosing blocking pairs in which one side’s preferences improve.

Method 2: The second proposed method is Dynamic Selec-
tion, which optimally chooses the subsequent matching by
considering all previously selected blocking pairs as a strong
combination.

This paper also proposes a novel initialization method, which runs
in O(n) time and improves the proposed algorithm’s convergence
speed.

The resulting new variant of the PII algorithm converges faster and
more often than previous iterations of the PII algorithm (showing
100% convergence over more than 3.6 million trials across
different n values), and the convergence rate scales significantly
better with higher values of n.

1.4 Overview
The rest of the paper will proceed as follows. Section 2 will discuss
related work, including a brief overview of the PII Algorithm and
previous work based on the PII Algorithm. Section 3 presents the
proposed new selection methods, Right-Minimum and Dynamic
Selection, as well as the new preprocessing method, Quick Initial-
ization. Section 4 presents the proposed modification of the original
PII algorithm using the new methods. Section 5 analyzes the re-
sults of the proposed methods and modified algorithm, and Section
6 outlines future work.

2. PREVIOUS WORK
2.1 Iterative Stable Matching Algorithms
When observed in real life through social networks, matchings at-
tempt to converge toward stability through pairing together block-
ing pairs. Roth and Vande Vate have shown that swapping along
blocking pairs at random from any initial matching will almost
surely result in a stable matching eventually [13]. However, it has
also been shown that iterative methods for swapping along specific
blocking pairs each iteration may result in indefinite cycling, re-
sulting in a failure to ever converge to stability [9].

2.2 The PII Algorithm
The PII Algorithm presented in [12] is one such iterative algorithm,
which uses parallel architecture to improve convergence runtime.
The algorithm begins with a randomly generated matching µ0.
The algorithm then executes the following steps each iteration,
terminating when a stable matching is achieved:

1) Find all blocking pairs

2) In each row of M with a blocking pair, select the one
with the lowest left value as an NM1-generating pair

3) In each column of M with an NM1-generating pair, select
the one with the lowest right value as an NM1 pair

4) Remove all pairs in the current matching in the same row
or column as an NM1 pair, and add all NM1 pairs to the matching

5) Fill in any open columns and rows with pairs as described
in [12].

The PII algorithm requires n2 parallel processors, and each
iteration will complete in O(log(n)) complexity. Lu empirically
observed that the convergence rate of the PII algorithm on ran-
domly generated preference matrices steadily decreases from 99%
at n = 10 to 86% at n = 100. In cases where the PII algorithm
did not converge, it continued cycling indefinitely.

2.3 The PII-SC Algorithm
White proposed the Smart Initialization and Cycle Detection
methods to improve the convergence of the PII Algorithm in [17].

In Smart Initialization, each man mi in M proposes to his
top choice woman. If multiple men propose to the same women,
she is matched with the man she most prefers. Those men left
unmatched then propose to their next choice woman, excluding any
women matched in a previous round, and a similar process ensues.
This occurs until all men have been matched with a woman, and
runs with O(n log(n)) complexity in parallel as described in [17].

White observed that the majority of cycles were formed by a
single NM1 pair was alternating between pairs in two distinct sub
stable matchings each iteration. A stable matching could then be
constructed by including every other NM1 pair in a cycle and the
set of pairs that remained in the matching throughout the cycle.
Some more prominent edge cases for detecting cycles were also
added to the cycle detection method proposed in [17].

The PII-SC Algorithm combines the PII Algorithm with Smart

50



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.43, September 2024

Initialization and Cycle Detection, and fails to converge in approx-
imately 1 in 1 million randomly generated preference matrices
from n = 10 to n = 100, with failure to converge significantly
higher than 1 in 1 million for n = 100, suggesting some scalability
issues. Due to the existence of numerous cases where cycles
were not formed as described above, the PII-SC algorithm and
subsequent improvements have continued improving the observed
convergence by patching edge cases. As a result, the convergence
rate of the PII-SC algorithm decreases significantly on larger n, as
more frequent edge cases occur, illustrated by the results in [17].

3. SELECTION METHODS
This section contains the main contribution to the line of PII algo-
rithms: Updated selection methods.

3.1 Right-Minimum-Selection
This paper proposes a novel selection method to enhance the
algorithm’s efficiency, termed Right-Minimum-Selection. Define
Right-Minimum-Selection as follows:

DEFINITION 1 RIGHT-MINIMUM-SELECTION. Let S be a
preference matrix with n men and n women, and let µ be an
unstable matching on S. Suppose pi,j is an unstable pair on µ
with corresponding blocking pair pi,l. Then the algorithm will
consider pi,l as a potential NM1-generating pair if and only if
R(pi,j) > R(pi,l).

Informally, Right-Minimum selection will only select NM1-
generating pairs where for a given row the woman prefers her new
matching, demonstrated in figure 1.

Often, the PII algorithm was observed to keep unstable pairs in the
matching by satisfying a blocking pair that does not improve the
matching overall, leading to cycles as described in [12]. Intuitively,
Right-Minimum selection forces the algorithm to terminate by con-
tinually iterating on the matching in favor of women similar to the
process in a similar manner to the original Gale-Shapley algorithm.
It should be noted that a Left-Minimum selection defined in a simi-
lar manner would yield similar results (with random initialization).

Right-Minimum Selection leads to the following results justifying
the algorithm will terminate:

LEMMA 2 NM1-CYCLE FREENESS. Let A be an instance of
the PII algorithm. If A uses Right-Minimum-Selection over its en-
tire duration, then A is NM1-cycle free.

PROOF. Let S = {p1, p2, ..., pk} be a sequence of NM1-pairs
such that pi+1 is a blocking pair of pi. Observe that pi+1 may only
replace pi if it appears in an identical row or column. If replacement
occurs in a column, then R(pi+1) < R(pi) by the definition of a
blocking pair. If replacement occurs in a row, R(pi+1) < R(pi) by
the definition of Right-Minimum Selection. Thus, a chain of NM1
pairs R satisfying R(p1) > R(p2) > ... > R(pk) is produced. For
a cycle to occur, pk must return to a row or column of p1, violating
the monotonicity of R and the results follow.

The following result have also been proven:

LEMMA 3. Let S = {p1, p2, ..., pk} be an NM1-path taken
by the algorithm. Then each time S is traversed, it’s length de-
creases by at least two.

PROOF. Let P be an n×n preference matrix and S be an NM1
path such that S = {p1, p2, ..., pk pi ∈ S}. Assume that after
traversing P once, the algorithm arrives at vk. Observe that by def-
inition vk may not be replaced by an NM1 or NM2 pair. Since vk−1

lives in a row or column of vk, upon a second traversal of S the al-
gorithm may not arrive at vk−1 since it would have to replace vk.
Now define S ′ = S \ {vk, vk−1} and observe that S ′ is also an
NM1 path. Then, by similar logic from above, P ′ must also sat-
isfy this property. Hence, a sequence of paths P ⊃ P ′ ⊃ P ′′ ⊃ ...
can be constructed such that the cardinality of each path decreases
by at least two upon each traversal.

Combining Lemmas 2 and 3, the following theorem can be proven:

THEOREM 4 CYCLE FREENESS. Let A be an instance of the
PII algorithm. If A uses Right-Minimum Selection over its entire
duration, then A is cycle free.

PROOF. Assume the contrary. Lemma 2 implies that such a cy-
cle must be composed of both NM1 and NM2 pairs. Consider
the NM1 path S that takes the shortest iterations to traverse in the
cycle with length k. Suppose S spawns NM2 pair ui at NM1 pair
pi ∈ S. By lemma 3 and the assumption of cycling, S may be tra-
versed until vi is deleted. Then pi may not spawn ui, contradiction.

Complexity
It is straightforward to see that the additional check in each
step when choosing NM1-generating pairs can be achieved in
O(1) time, and thus the per iteration time complexity remains
O(log(n)).

Note that while Right-Minimum Selection has the strong
property that it may not cycle, in practice it does not necessarily
yield a stable matching and often is supplemented with a standard
NM1-selection method. This occurs when all blocking pairs re-
maining in a matching do not satisfy the condition to be considered
under Right-Minimum Selection.

It has been empirically determined that, if Right-Minimum
Selection terminates without successfully finding a stable match-
ing, there are very few blocking pairs remaining and continuing
with the original PII selection method often finds a stable matching.

3.2 Dynamic Selection
This paper also proposes Dynamic Selection, a novel algorithm for
cycle prevention. Unlike cycle detection, which requires original
PII method selection, Dynamic Selection is compatible with Right-
Minimum Selection. Define Dynamic Selection as follows:

DEFINITION 5 DYNAMIC SELECTION. Let S be a preference
matrix with unstable matching µk. Assume NM1 selection as pro-
posed in the original PII algorithm in [12], and let Ni be the
set of NM1 pairs in row i the algorithm chooses over matchings
µ1, µ2, ..., µk−1. Suppose pi,j is a blocking pair of µk. Then pi,j is
an NM1-generating pair if and only if L(pi,j) < min{L(p), p ∈
Ni}.

Intuitively, in an iteration where Dynamic Selection is used,
the algorithm will only select a blocking pair as a new NM1-
generating pair if its left value is less than all previously selected
NM1-generating pairs, as shown in figure 2.

51



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.43, September 2024

Fig. 1. Comparison of a single iteration of Right-Minimum Selection (from 1 to 2) and a single iteration of the original PII algorithm (from 3 to 4). Each
sub-figure (1,2,3,4) contains the entries of the preference matrix, with shapes indicating the matching at a given iteration. The restriction imposed by Right-
Minimum selection allows immediate convergence, while PII continues to allow multiple blocking pairs.

Complexity
The following provides a justification that the per iteration time
complexity remains O(log(n)) with Dynamic Selection:

Each PE in row i maintains a pointer to PEi,l corresponding
to L(pi,l) = min{L(p), p ∈ Ni}. For convenience, term this as
the minimum pointer and PEi,l as the left-minimum processor.
PEi,l points to itself. To avoid instances in which the algorithm
consecutively selects that pair with the minimum left value, and
to facilitate discovery of a greater number of NM1 pairs, the
algorithm will impose a wait time W ∈ Z+. Hence, PEi,l also
logs the last iteration at which it was compared c, and may enter
the comparison process again when k − c > W where k is the
current iteration. If this is the case, the wait condition is considered
satisfied.

Intuitively, the wait condition ensures that the algorithm will
only use dynamic selection when there are enough previously

selected pairs to make the step effective, and when the standard
iterations are taking too long to converge, suggesting the algorithm
is likely in a cycle.

It is straightforward to see that the additional variables may
be stored with O(1) space complexity. The per iteration time
complexity remains O(log(n)), as justified below:

PROOF. Assume at iteration k there is an unstable pair pi,j
in row i. Dynamic Selection may be achieved with the following
steps:

(1) If Ni = ∅ and pi,j is selected as an NM1 pair, proceed to 4.
Otherwise, continue.

(2) If the wait condition is satisfied, left-minimum processor
PEi,l enters the comparison procedure outlined in section 5.2.
Otherwise, NM1 selection proceeds as normal. Row-wise find-
minimum operations may still be achieved in O(log(n)) time.

(3) If pi,j is selected as an NM1 pair, PEi,j compares its left value
to PEi,l. This is achieved in O(1) time. If L(pi,j) ≥ L(pi,l),

52



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.43, September 2024

Fig. 2. Example of Dynamic Selection. Each sub-figure (1,2,3,4) contains the entries of the preference matrix, with shapes indicating the matching at a given
iteration. Iterations of the original PII algorithm are done for the first 2 iterations (from 1-2 and 2-3). Dynamic Selection is done for the 3rd iteration (from
3-4) leading to convergence. Note that another iteration of the original PII algorithm after the matching at 3 would return to the initial matching (1) causing a
cycle.

no change occurs. Otherwise, L(pi,j) < L(pi,l) and proceed
to 4.

(4) PEi,j sets its minimum pointer to itself, and broadcasts its po-
sition along row i. Each processor then proceeds to set its min-
imum pointer to PEi,j . This is achieved in O(log(n)) time.

Each step occurs in at most O(log(n)) time. Hence, per iteration
complexity remains O(log(n)).

It has been empirically determined that incrementing W each time
the left-minimum processor is selected as an NM1 pair yields the
best results. The algorithm will then set W to 2 when a new a left-
minimum processor is chosen.

3.3 Preprocessing
This paper also proposes new quick initialization method. Each
man mi in M sequentially proposes to his top choice woman re-
maining. When a woman receives a proposal, they are matched and
the woman is removed from the preference lists of all other men.
After all men have proposed once, all men will have been matched.
Each woman receives exactly one proposal, so proposals can be
done in O(1) runtime. In parallel with n2 processors, removing a
woman from the preference lists of other men can also be done in
O(1) runtime, allowing quick initialization to run with O(n) com-
plexity in parallel.

4. THE PII-RMD ALGORITHM
Define the PII-RMD algorithm as the PII algorithm augmented with
Right-Minimum Selection and Dynamic Selection. It has been em-
pirically determined that beginning Right-Minimum Selection after

53



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.43, September 2024

Probability of Convergence across Varying N

Fig. 3. Probability of successfully finding a stable matching within 5n iterations with 100, 000 trials for various n ranging from 10−100. All methods were
tested using random initialization, except PII-RMD (Quick) and PII-RMD (Smart) which used Quick and Smart Initialization respectively.

Probability of Convergence within Varying Numbers of Iterations

Fig. 4. Probability of successfully finding a stable matching with n = 100 with 100, 000 trials within various numbers of iterations ranging from 0.5n−5n.
All methods were tested using random initialization, except PII-RMD (Quick) and PII-RMD (Smart) which used Quick and Smart Initialization respectively.

n iterations and initially setting the wait time W of Dynamic Se-
lection to n produced the fastest convergence.

5. RESULTS
The complete PII-RMD algorithm, along with Right-Minimum
Selection, Dynamic Selection, and the original PII algorithm, have
been implemented for comparison. Each algorithm has been tested
for convergence and speed using Randomized Initialization, Quick
Initialization, and Smart Initialization.

In each trial, randomized preference lists are created, done
by generating a random permutation of n preference lists of length
n, and run each of the different algorithms with each initialization
method on the created preference matrix. In figure 3.3, the success
rate of each algorithm in finding a stable matching within 5n
iterations was computed, where n ranges from 10 to 100, running
1 million trials for each algorithm variant. In figure 4, the number
of iterations each algorithm required to find a stable matching was
computed using n = 100, varying the number of iterations from
0.5n to 5n and running 100,000 total trials for each algorithm
variant.

Right-Minimum Selection directly replaces iterations of the
original PII algorithm. From figure 3.3 (or figure 7 for visual-

ization), using Right-Minimum Selection instead of the original
PII selection improves convergence at larger n from 86% to over
99.9%. Cases where Right-Minimum Selection alone fails to find
a stable matching still terminate as shown in section 3.1, and
the final matching has always been observed to contain very few
unstable pairs.

Dynamic Selection and Cycle Detection both force pairs from a
single stable matching to be chosen when the algorithm is cycling
between pairs from multiple separate matchings. Comparing
Dynamic Selection with the Cycle Detection data in [17], both
methods perform similarly in improving algorithm convergence
rate when allowed to run the full 5n iterations, as shown in figure
6. It should be noted that Cycle Detection does very slightly
outperform Dynamic Selection at higher iterations (converging in
approximately 3 more trials per 10,000), but due to incompatibility
with Right-Minimum selection as noted in section 3.2, Dynamic
Selection is preferred for the PII-RMD algorithm. Additionally,
the cycle detection method does not begin until iteration 3n,
causing a very significant convergence runtime improvement
when using Dynamic Selection over Cycle Detection, indicating
the large difference in convergence rates at lower iterations in
figure 6. For the same reason, the PII-RMD algorithm showed a
significant improvement in convergence speed compared to the

54



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.43, September 2024

Fig. 5. Comparison of PII-SC vs PII-RMD (with Quick Initialization)
Convergence Speed. Note that this plot starts from iteration 2n instead of
0.5n for easier visualization due to the magnitude of convergence rates.

PII-SC algorithm as shown in figure 5.

Overall, the PII-RMD algorithm converged in all cases for
random, quick, and Smart initialization, with fastest convergence
when using quick initialization (see figure 4) removing the need for
an expensive O(n log(n)) runtime for preprocessing. All previous
iterations of the PII algorithm, most notably the PII-SC algorithm,
still failed to converge in select edge cases, as shown in figure 6,
which worsened with larger n.

To assess the scalability of the PII-RMD algorithm with higher
values of n, the PII-RMD algorithm has also been tested for n=100,
110, ..., 200. For each initialization method 10,000 tests were
run for each value of n, resulting in 330,000 total trials which
fully converged, suggesting the PII-RMD algorithm does not see
the same steep decline with increasing n observed in the PII-SC
algorithm even for n ≤ 100 in [17]. Furthermore, Right-Minimum
Selection was individually tested with limited trials (1000 trials
for each value of n) for n ranging from 100 to 1000, and also saw
no performance decrease at higher values of n compared to those
in figure 3.3. These results support the scalability of the PII-RMD
algorithm, achieving the original PII algorithm’s purpose of an
efficient in-practice stable matching algorithm on a reasonable
number of processors.

Overall, the PII-RMD algorithm is empirically fully conver-
gent within 5n iterations in all 3, 630, 000 trials across all tested
values of n, including testing at higher values of n compared to
previous PII algorithm iterations. The runtime required for pre-
processing and the number of iterations required for convergence
were also reduced compared to previous PII algorithm iterations.

6. CONCLUDING REMARKS AND
FUTURE WORK

The results suggest the PII-RMD algorithm is a significant im-
provement over previous PII algorithm variations in both runtime
and convergence. Empirically, the PII-RMD algorithm exhibits
complete convergence within 5n iterations, and thus has always
been observed to converge in O(n log(n)) runtime.
The ultimate goal of research in the PII algorithm is to determine
a fully convergent stable matching algorithm on n2 processors
with a theoretical worst-case runtime of O(n log(n)), to provide

Fig. 6. Comparison of Cycle Detection vs Dynamic Selection Conver-
gence Speed.

Fig. 7. Comparison of Original PII vs Right-Minimum Selection Conver-
gence Rate.

Fig. 8. Comparison of PII-SC vs PII-RMD Convergence Rate.

55



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.43, September 2024

an efficient algorithm with a low requirement on the number of
processes available for large scale applications. It remains unclear
whether PII-RMD algorithm fully converges theoretically.

Building toward proving the convergence of the PII-RMD al-
gorithm or another algorithm satisfying the same runtime and
parallel architecture constraints is a key objective of this work. In
doing so, this research also aims to better understand the properties
of instability for the stable matching problem, as very limited
research has been done in this area [2].

7. ACKNOWLEDGEMENTS
This work is proudly supported by NSF grant CNS-2149591, and
was conducted in part as part of the REU EXERCISE program at
Salisbury University.

The code for this work can be accessed on GitHub at https://
github.com/salberi1/Parallelizing_Stable_Matching

8. REFERENCES
[1] S.T. Cao, L.V. Thanh, and H.H. Viet. Finding Maximum

Weakly Stable Matchings for Hospitals/Residents with Ties
Problem via Heuristic Search. In AI 2023: Advances in
Artificial Intelligence, Lecture Notes in Computer Science.
Springer, Singapore, 2024. doi:10.1007/978-981-99-8388-
9 36.

[2] Kimmo Eriksson and Olle Häggström. Instability of match-
ings in decentralized markets with various preference struc-
tures. International Journal of Game Theory, 36(3–4):409–
420, 2008. doi:10.1007/s00182-007-0110-0.

[3] T. Feder, N. Megiddo, and S.A. Plotkin. A sublinear parallel
algorithm for stable matching. Theoretical Computer Science,
233(1–2):297–308, 2000.

[4] Enrico Maria Fenoaltea, Izat B. Baybusinov, Jianyang Zhao,
Lei Zhou, and Yi-Cheng Zhang. The stable marriage problem:
an interdisciplinary review from the physicist’s perspective.
Physics Reports, 917:1–79, 2021.

[5] Patrik Floréen, Petteri Kaski, Valentin Polishchuk, and Jukka
Suomela. Almost stable matchings by truncating the Gale–
Shapley algorithm. Algorithmica, 58:102–118, 2010.

[6] David Gale and Lloyd S. Shapley. College admissions and the
stability of marriage. The American Mathematical Monthly,
69(1):9–15, 1962.

[7] C.C. Huang, T. Kavitha, J. Mestre, and others. On the dynam-
ics of distributed computing and stable matchings. In Pro-
ceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC), pages 287–296. ACM, 2007.

[8] R.W. Irving, P. Leather, and D. Gusfield. An efficient algo-
rithm for the “stable roommates” problem. Journal of the
ACM, 34(3):532–543, 1987.

[9] D.E. Knuth. Mariages Stables. Les Presses de L’Université
de Montréal, Montréal, 1976.

[10] Alec Kyritsis, Scott Wynn, Stephora Alberi, and Enyue Lu.
Dynamic and Right-Minimum Selection for the Parallel Iter-
ative Improvement Stable Matching Algorithm. In Proceed-
ings of Symposium on Theory, Algorithmic Foundations, and
Protocol Design for Mobile Networks and Mobile Comput-
ing (ACM MOBIHOC), series REUNS workshop, pages 568–
570, October 2023. ACM. doi:10.1145/3565287.3617979.
Extended Abstract and Poster.

[11] Enyue Lu, Mei Yang, Yi Zhang, and SQ Zheng. Design and
implementation of an acyclic stable matching scheduler. In
GLOBECOM’03. IEEE Global Telecommunications Confer-
ence (IEEE Cat. No. 03CH37489), volume 7, pages 3938–
3942. IEEE, 2003.

[12] Enyue Lu and SQ Zheng. A parallel iterative improvement
stable matching algorithm. In High Performance Computing-
HiPC 2003: 10th International Conference, Hyderabad, In-
dia, December 17-20, 2003. Proceedings 10, pages 55–65.
Springer, 2003.

[13] A.E. Roth and J.H. Vande Vate. Random paths to stability in
two-sided matching. Econometrica, 58(6):1475–1480, 1990.

[14] Alvin E. Roth and Elliott Peranson. The NRMP matching al-
gorithm revisited: theory versus practice. Academic Medicine,
70(6):477–484, 1995. URL: https://journals.lww.com/
academicmedicine/abstract/1995/06000/The_NRMP_
matching_algorithm_revisited__theory.8.aspx.

[15] Youcef Saad and Martin H. Schultz. Data communication
in parallel architectures. Parallel Computing, 11(2):131–150,
1989.

[16] S. Subramanian. A parallel approach to stable marriage prob-
lem. Information Processing Letters, 41(5):227–233, 1992.

[17] Colin White. An Improved Parallel Iterative Algorithm for
Stable Matching. SuperComputing 2013, 2013. Extended
Abstract and Poster.

[18] Yuxiang Zhang, Lin Cui, and Yuan Zhang. A stable match-
ing based elephant flow scheduling algorithm in data center
networks. Computer Networks, 120:186–197, 2017.

56

https://github.com/salberi1/Parallelizing_Stable_Matching
https://github.com/salberi1/Parallelizing_Stable_Matching
https://journals.lww.com/academicmedicine/abstract/1995/06000/The_NRMP_matching_algorithm_revisited__theory.8.aspx
https://journals.lww.com/academicmedicine/abstract/1995/06000/The_NRMP_matching_algorithm_revisited__theory.8.aspx
https://journals.lww.com/academicmedicine/abstract/1995/06000/The_NRMP_matching_algorithm_revisited__theory.8.aspx

	Introduction
	Preliminaries
	Parallel Architecture
	Statement of Results
	Overview

	Previous Work
	Iterative Stable Matching Algorithms
	The PII Algorithm
	The PII-SC Algorithm

	Selection Methods
	Right-Minimum-Selection
	Dynamic Selection
	Preprocessing

	The PII-RMD Algorithm
	Results
	CONCLUDING REMARKS AND FUTURE WORK
	Acknowledgements
	References

