
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.43, September 2024

10

A New Algorithm for Lossless Data Compression based
of Time Clock Mechanism

Chandni Keshri
Department of CSE

Amity University
Greater Noida, India

Bhanu Prakash Lohani
Department of CSE

Amity University
Greater Noida, India

ABSTRACT

Data compression is pivotal for optimizing storage and

enhancing transmission efficiency in modern computing

systems. This paper introduces a novel lossless data

compression algorithm based on a time clock mechanism. The

proposed algorithm, termed Time Clock Compression (TCC),

leverages a temporal encoding strategy to minimize

redundancy by effectively capturing data patterns with high

temporal precision. The results indicate that TCC is particularly

advantageous for real-time applications and large-scale data

environments where rapid processing and efficient storage are

critical. This innovation presents a promising data

compression, offering a robust solution for various industries

reliant on efficient data management.

General Terms

Compression Ratio, Redundancy, Dictionary, Indexing,

Entropy.

Keywords

List_Unique, String_ASCII, Matrix_3x, String_Size.

INTRODUCTION
Data compression is a fundamental technology in digital

systems, enabling efficient storage and transmission of data.

Traditional lossless compression algorithms, such as Huffman

Coding and Lempel-Ziv-Welch (LZW), have been widely used

for their ability to reduce file size without any loss of

information. However, as data volumes continue to grow

exponentially, there is a need for more efficient compression

techniques that can handle large-scale data and real-time

processing requirements.

TYPES OF DATA COMPRESSION
We can categorize data compression in following way.

Lossless Compression
Lossless compression algorithms reduce file size without

losing any information, allowing the original data to be

perfectly reconstructed. Common techniques include:

• Huffman Coding: A variable-length encoding algorithm

that assigns shorter codes to more frequent symbols.

• Lempel-Ziv-Welch (LZW): Utilizes a dictionary-based

approach to replace repeated sequences with shorter codes.

• Run-Length Encoding (RLE): Compresses data by

encoding consecutive repeated characters as a single

character and count.

2.2 Lossy Compression
Lossy compression reduces file size by removing some

information, typically imperceptible to human senses. It is

widely used for multimedia applications:

• JPEG (Joint Photographic Experts Group): A method for

compressing photographic images by reducing redundant

data and allowing a trade-off between quality and file size.

• MP3 (MPEG Audio Layer III): A common audio

compression format that removes inaudible frequencies

and reduces bit rates.

• H.264: A video compression standard that achieves high

compression rates through inter-frame prediction and

motion compensation.

3. PROPOSED ALGORITHM

The proposed algorithm employs a time clock mechanism to

achieve efficient and lossless compression and analysis of

character data. The algorithm operates by segmenting the input

string into three columns, where the first column represents

hours, the second column represents minutes, and the third

column represents seconds. In a traditional clock, the

timekeeping system is divided into 60 seconds per minute, 60

minutes per hour, and 12 hours per cycle. However, in our

specialized clock system, the divisions are extended to 256

seconds per minute, 256 minutes per hour, and 256 hours per

cycle. Also a predefined index with values ranging from 0 to

255 is utilized. Each Character frequencies are counted and

higher frequencies are replaced with lower index values. Then,

each row's numeric value is calculated using a specific

mathematical formula. This method ensures efficient

compression without any data loss.

3.1 Data Compression Algorithm Design

There are several step involve to compress data, Those step are

following:

Step 1: Input Handling and Padding

a) Input Reading: Retrieve and read the binary input string

from the file.

b) Padding: Determine the length of the input binary string. If

the total number of characters is not divisible by 24 (i.e., if

there is a remainder), calculate the number of additional

characters required to make the length divisible by 24.

Append '0' at left hand side of the binary string until the

required length is achieved.

Step 2: Data Analysis and Matrix Creation

a) Segmentation: Segment the input binary string into blocks

of 8 bits each. For each 8-bit segment, convert the binary

value to its corresponding ASCII character using the ASCII

table.

b) Matrix Creation: Create a matrix structure with 3 columns

and a number of rows denoted as ‘x’. The value of ‘x’ is

determined by the length of the input string, specifically by

dividing the total number of ASCII characters by 3. Begin

filling the matrix by placing the ASCII values derived from

the input string into the matrix, starting with the first

column of the first row, moving horizontally to the second

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.43, September 2024

11

and third columns. Once the first row is filled, proceed to

the next row, continuing to place the ASCII values

sequentially from left to right, until all values from the

input string are placed into the matrix.

Step 3: Unique Character List

Generate a Table of unique characters by systematically

analyzing the ASCII string. For each unique character,

determine the column in which it resides within the constructed

matrix by starting with Column A. If the character is found in

Column A, cease further checks and proceed to the next unique

character, repeating the process. If the character is not found in

Column A, proceed to check Column B. If found in Column B,

stop further checks and move to the next unique character,

starting again from Column A. If not found in Column B, check

Column C. Record the column location of each character for

subsequent processing.

Step 4: Character Indexing & Replacing

a) Frequency Analysis: Calculate the frequency of each

character and add this information to Unique character

Table. Begin by including the frequencies from column A,

then proceed with those from column B, and finalize with

the frequencies from column C.

b) Index Assignment : Utilize a predefined index range from

0 to 255. Assign the character with the highest frequency to

the lowest index value. This assignment should be

performed sequentially based on the frequencies obtained,

starting with the characters from column A, then those from

column B, and finally from column C.

c) Matrix Substitution: Replace each character in the

previously constructed 3x matrix with its corresponding

index value as determined in the previous step. This

involves mapping each character in the matrix to the index

value it was assigned.

Step 5: Binary Encoding and Compression Simulation

a) Calculate Numeric value of each row : Compute the unique

value for each row in the matrix using the formula:

(col_a×255^ 2) + (col_b×255^ 1) + (col_c×255^ 0). In this

formula, col_a, col_b, and col_c represent the values in

each column of the row. The result of this calculation will

provide a unique numeric value for each row, based on the

weighted sum of the column values.

b) Convert Row Values to Binary: Sequentially convert each

calculated row value into binary format according to the

following conditions:

1) If the row value is less than 65,535, convert it to binary

and ensure that the resulting binary string has exactly

16 bits. If the binary representation is shorter than 16

bits, pad it with leading zeros. Prepend '00' to this 16-

bit binary string.

2) If the row value is less than 524,287, convert it to

binary and ensure that the resulting binary string has

exactly 19 bits. If the binary representation is shorter

than 19 bits, pad it with leading zeros. Prepend '01' to

this 19-bit binary string.

3) If the row value is less than 2,097,151, convert it to

binary and ensure that the resulting binary string has

exactly 21 bits. If the binary representation is shorter

than 21 bits, pad it with leading zeros. Prepend '10' to

this 21-bit binary string.

4) If the row value is greater than 2,097,151, convert it to

binary and pad the binary string to a total of 24 bits.

Prepend '11' to this 24-bit binary string.

Step 6: Compress Data output.

The compressed data string is generated by sequentially

reading each row of the binary strings generated. This process

starts from the first row and continues through to the last row

of the data set.

3.2 Data Decompression Algorithm Design

Step-1: Initial Bit Analysis

Begin by reading the first 2 bits of the compressed data string.

This initial segment will determine the length of the subsequent

data segment that needs to be processed.

a) Determine Segment Length: Based on the value of the first

2 bits, select the appropriate length for the next segment of

the binary data:

1) If the first 2 bits are "00", the following 16 bits should

be extracted.

2) If the first 2 bits are "01", extract the next 19 bits.

3) If the first 2 bits are "10", extract the next 21 bits.

4) If the first 2 bits are "11", extract the next 24 bits.

b) Extract and Convert Binary Segment:

1) Extract the designated number of bits from the

compressed data string, as determined in the previous

step.

2) Convert this extracted binary segment into its

corresponding numeric value.

Example:

For instance, if the compressed input string is

"01100010011010110100", follow these steps:

1) The first 2 bits are "01", which indicates that the following

segment length is 19 bits.

2) Extract the next 19 bits: "1100010011010110100".

3) Convert this 19-bit binary segment into a numeric value. In

this example, the binary segment "1100010011010110100"

converts to the numeric value 403,124.

Step-2: We obtain the original data by substituting the

generated value (403124) into the equation: (a⋅255⋅255) +

(b⋅255) + c = 403124.

1) After solving this equation, we find that a=6, b=50, and

c=224. These are index value.

2) Step-3: We use these index values (6, 50, and 224) to find

their corresponding values to retrieve the original string.

4. TIME COMPLEXITY
This algorithm operates with a time complexity of O(n)+ C,

where n is the size of the input data. The initialization and

divide data into 3 column steps involve linear scans of the data,

while the temporal encoding and compression steps also scale

linearly with the input size.

5. FLOWCHART
The flowchart below illustrates the operational steps of the This

Data Compression algorithm. This visual representation

outlines how leverages a clock mechanism to calculate numeric

number of each column. The flowchart details the initialization,

data analysis, divide data into 3 columns, compression phases,

demonstrating the algorithm's efficient handling of input data

while maintaining lossless compression integrity.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.43, September 2024

12

Flowchart 1: Proposed Data Compress Algorithm

6. APPLICATIONS
There are several application of this algorithm as

following:

a) Real-Time Data Compression: TCC's ability to

quickly adapt to changing data patterns makes it ideal

for real-time applications, such as live data streams

and online gaming.

b) Large-Scale Data Storage: TCC's efficient

compression ratios reduce storage requirements,

benefiting large-scale data environments like data

centers and cloud storage services.

7. CONCLUSION
This algorithm offers a lossless data compression method by

leveraging a time clock mechanism to enhance both

compression efficiency and processing speed. While it is

particularly effective for text data compression, it is versatile

and can also be applied to compress all types of data. The

experimental results demonstrate data compression result,

especially in real-time and large-scale data applications. Future

work will focus on further optimizing the algorithm and

exploring its potential in various industrial applications.

8. REFERENCES

[1] Sayood, K. (2012). Introduction to Data Compression.

Elsevier.

[2] Salomon, D., & Motta, G. (2010). Handbook of Data

Compression. Springer.

[3] Pennebaker, W. B., & Mitchell, J. L. (1993). JPEG Still

Image Data Compression Standard. Springer.

[4] Ziv, J., & Lempel, A. (1977). A Universal Algorithm for

Sequential Data Compression. IEEE Transactions on

Information Theory, 23(3), 337-343.

[5] Huffman, D. A. (1952). A Method for the Construction of

Minimum-Redundancy Codes. Proceedings of the IRE,

40(9), 1098-1101.

[6] M. A. Bassiouni, "Data Compression in Scientific and

Statistical Databases", IEEE Transactions on Software

Engineering, vol. SE-11, no. 10, pp. 1047-1058, 1985.

[7] R. Bayer and E. McCreight, "Organization and maintenance

of large ordered indexes", Acta Informat, vol. 1, pp. 173-

189, 1972.

[8] J. Goldstein, R. Ramakrishnan and U. Shaft, Compressing

Relations and Indexes, December 1997.

[9] V. Kesri, " A New Algorithm to Provide all Solutions of

SSP Problem" International Journal of Computer

Applications, vol. 178, number 5, p. 20–25, 2017.

[10] Christopher H. Messom, Gourab Sen Gupta and Serge N.

Demidenko “Hough Transform Run Length Encoding for

Real Time Image Processing” IEEE transactions on

instrumentation and measurement, vol. 56, no. 3, June

2007.

[11] Nikolay Manchev “Parallel algorithm for Run Length

Encoding”, Proceedings of third international conference

on information theory, 2006.

[12] J. Trein, A.Th.Schwarzbacher, B. Hoppe and K.-H. Noffz

“A Hardware Implementation of a Run Length Encoding

Compression Algorithm with Parallel Inputs”, ISSC 2008,

Galway, June 18-19.

9. APPENDIX-1

STEP-1: Input Reading

Input String:

0100000100100000011000110110000101110100

00100000011100100110000101101110001000000110000101

11011101100001011110010010110000100000011000110110

10000110000101110011011010010110111001100111001000

00011000010010000001110010011000010111010000101110

Padding

String_Size= 240

[Find total number of bits in Input string]

240(mod 24) = 0

[Its divisible by 24 so that padding not required]

STEP-2: Segmentation

To perform segmentation, we divide into 8 bits blocks and find

their corresponding ASCII value. It look like following:

Table 1. ASCII Value of segmented string

Binary ASCII Number ASCII Value

01000001 65 A

00100000 32 (Space)

01100011 99 c

01100001 97 a

01110100 116 t

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.43, September 2024

13

00100000 32 (Space)

01110010 114 r

01100001 97 a

01101110 110 n

00100000 32 (Space)

01100001 97 a

01110111 119 w

01100001 97 a

01111001 121 y

00101100 44 ,

00100000 32 (Space)

01100011 99 c

01101000 104 h

01100001 97 a

01110011 115 s

01101001 105 i

01101110 110 n

01100111 103 g

00100000 32 (Space)

01100001 97 a

00100000 32 (Space)

01110010 114 r

01100001 97 a

01110100 116 t

00101110 46 .

Table 2. Matrix Creation

Column A Column B Column C

A (Space) c

a t (Space)

r a n

(Space) a w

a y ,

(Space) c h

a s i

n g (Space)

a (Space) r

a t .

STEP-3: Find Unique Character

Table 3. Scan unique character of Input String

S. No

Unique

Character

Belonging

Column

Frequency

1 A (uppercase) Column A

2 c Column B

3 a (lowercase) Column A

4 t Column B

5 r Column A

6 n Column A

7 w Column C

8 y Column B

9 , (comma) Column C

10 (space) Column A

11 h Column C

12 s Column B

13 i Column C

14 g Column B

15 . Column C

STEP-4 Frequency Analysis

Table 4. Find frequency of each unique character

S.

No

Unique

Character

Belonging

Column
Frequency

1
A

(uppercase)
Column A

1

2 c Column B 2

3
a

(lowercase)
Column A 6

4 t Column B 3

5 r Column A 2

6 n Column A 2

7 w Column C 1

8 y Column B 1

9 , (comma) Column C 1

10 (space) Column A 6

11 H Column C 1

12 S Column B 1

13 I Column C 1

14 G Column B 1

15 . Column C 1

Table 5. Index Assignment

Index

Value Character

Belonging

Column Frequency

0 a (lowercase) Column A 6

1 (space) Column A 6

2 r Column A 2

3 n Column A 2

4 A (uppercase) Column A 1

5 t Column B 3

6 c Column B 2

7 y Column B 1

8 s Column B 1

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.43, September 2024

14

9 g Column B 1

10 w Column C 1

11 , (comma) Column C 1

12 h Column C 1

13 i Column C 1

14 . Column C 1

15

.

Upto 255

Table 6. Matrix Substitution

Column A Column B Column C

4 1 6

0 5 1

2 0 3

1 0 10

0 7 11

1 6 12

0 8 13

3 9 1

0 1 2

0 5 14

STEP-5: Calculate Numeric value of each row

Table 7. Numeric value of each row

Column A Column B Column C Row Value

4 1 6 260361

0 5 1 1276

2 0 3 130053

1 0 10 65035

0 7 11 1796

1 6 12 66567

0 8 13 2053

3 9 1 197371

0 1 2 257

0 5 14 1289

Table 8. Convert Row numeric values to Binary

Row

Value

Check

Value

LHS bits

Padding
Final String

260361 <524287 01 010111111100100001001

1276 <65535 00 000000010011111100

130053 <524287 01 010011111110000000101

65035 <65535 00 001111111000001011

1796 <65535 00 000000011100000100

66567 <524287 01 010010000010000000111

2053 <65535 00 000000100000000101

197371 <524287 01 010110000001011111011

257 <65535 00 000000000100000001

1289 <65535 00 000000010100001001

STEP-6: Compress Data Output:

01011111110010000100100000001001111110001001111111

00000001010011111110000010110000000111000001000100

10000010000000111000000100000000101010110000001011

111011000000000100000001000000010100001001

Total Number of Bits is = 192

IJCATM : www.ijcaonline.org

