
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.43, September 2024

40

Enterprise Design Patterns for CPQ Integration in B2B

SaaS Environments

Hrishikesh Joshi
Enterprise Architect, San Francisco, California, USA

ABSTRACT

In the rapidly evolving landscape of Business-to-Business

(B2B) Software-as-a-Service (SaaS), Configure-Price-Quote

(CPQ) systems have emerged as critical tools for streamlining

complex sales processes. These systems enable organizations

to efficiently configure products or services, determine pricing,

and generate accurate quotes. However, integrating CPQ

systems within diverse B2B SaaS environments presents

unique architectural challenges. This paper examines enterprise

design patterns that address these challenges, offering a

comprehensive framework for CPQ integration in B2B SaaS

contexts. The research explores the application of core patterns

such as Microservices, API-centric, and Event-Driven

Architecture, examining their applicability and effectiveness in

CPQ integration scenarios. It reveals that while certain patterns

offer significant benefits in terms of scalability and flexibility,

their implementation introduces increased complexity. This

study contributes to the field by proposing an innovative design

pattern called Adaptive Mosaic Architecture (AMA) for CPQ

integration in B2B SaaS. The AMA approach provides

practical use cases applications and valuable insights for

architects, developers, and decision-makers in the SaaS

industry.

General Terms

B2B, Software as a service, Product Management, Go-To-

Market Strategy and Business Process.

Keywords

Enterprise Architecture, Design Patterns, Software

Engineering, Configure-Price-Quote (CPQ), Integration,

Customer Relationship Management (CRM), API, Services.

1. INTRODUCTION
Configure, Price, Quote (CPQ) software is a sales enablement

tool designed to help businesses configure complex products,

determine accurate pricing, and generate professional quotes

efficiently. CPQ automates the traditionally labor-intensive

process of product configuration, pricing, and quote generation,

thereby streamlining sales operations and enhancing accuracy.

This software is particularly beneficial for companies offering

highly configurable products or services, as it simplifies the

creation of customized quotes and contracts. In the fast-paced

and competitive landscape of the SaaS industry, companies

face numerous challenges including the need to innovate

continuously and scale their operations effectively. CPQ

software addresses these challenges by automating and

optimizing the sales process, which is crucial for SaaS

companies that often deal with complex pricing models and

product configurations. The flexibility of CPQ in supporting

various pricing models such as subscription-based, usage-

based, and value-based pricing makes it an invaluable tool for

SaaS businesses. CPQ software not only accelerates the sales

cycle by enabling faster and more accurate quote generation but

also improves sales performance through guided selling tools

and better data analytics. Additionally, it helps minimize errors

in quotes and product configurations, thereby reducing revenue

leaks and improving customer satisfaction. Implementing CPQ

software in a SaaS environment involves significant integration

complexity. Successful deployment requires a coordinated

effort across multiple departments, including Sales, Finance,

IT, and Product Management [1]. The integration process must

ensure seamless connectivity with existing systems such as

Customer Relationship Management (CRM) and Enterprise

Resource Planning (ERP) platforms to maintain a unified

source of truth for customer records, product catalogs, and

pricing information. A technical lead with a deep

understanding of the CPQ platform and its integration

requirements is essential to navigate the complexities of the

implementation process. Moreover, the CPQ system must be

agile and scalable to adapt to the evolving needs of the business

and support various sales channels especially, in the recent

years, CPQ systems have undergone a significant

transformation from on-premises solutions to cloud-based SaaS

offerings, bringing benefits such as enhanced scalability,

improved accessibility, and regular updates. The empirical

evidence, as illustrated in the accompanying data visualization,

emphatically demonstrates the transformative impact of

Configure-Price-Quote (CPQ) implementations across key

performance indicators in the B2B SaaS domain. These metrics

reveal substantial enhancements in sales force efficiency,

notable expansion of transaction magnitudes, and an

impressive return on investment. CPQ solutions emerge as a

pivotal technological catalyst, empowering SaaS enterprises to

achieve exponential scalability and drive substantial revenue

acceleration. The architectural paradigms and design patterns

proposed for CPQ integration in B2B SaaS ecosystems

necessitate a nuanced approach, addressing a complex interplay

of factors such as:

● The crucial role of event-driven architectures in managing

real-time updates and ensuring data consistency across

distributed systems.The emerging importance of low-

code/no-code configurable patterns in enabling rapid

customization and adaptation of CPQ systems.
● The potential of AI-driven patterns, serverless

architectures and technologies such as RPA in enhancing

CPQ capabilities and reshaping integration and

automation strategies.
● Seamless integration of CPQ solutions with existing

enterprise systems (CRM, ERP) ensures data consistency

across multiple platforms, managing real-time updates in

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.43, September 2024

41

Fig. 1. CPQ Industry Usage Statistics

● The critical need for complementary patterns addressing

resilience, data management, security, and external system

integration [2].
By examining these patterns and their applications, this paper aims

to provide a comprehensive framework and a unique design pattern

which combines the benefits of all the design patterns heavily

adopted by traditional CPQ platforms and addressing the challenges

presented by them. This paper not only proposes an innovative

design pattern but also a comprehensive guide for selecting and

implementing the correct design patterns for CPQ integration based

on their B2B SaaS use cases. These findings offer valuable insights

for architects, developers, and decision-makers navigating the

complex landscape of modern B2B sales technology, contributing

to the ongoing evolution of SaaS architectures in this critical

domain and complex Enterprise applications portfolio. This

research employs qualitative and quantitative methods to

comprehensively examine enterprise design patterns for CPQ

integration in B2B SaaS environments to ensure a robust and

holistic analysis of the subject matter.

2. METHODOLOGY
This research employed a multi-faceted approach to

comprehensively examine enterprise design patterns for CPQ

integration in B2B SaaS environments. The methodology consisted

of the following components:

2.1 Literature Review
An extensive review of academic papers, industry reports, and

technical documentation was conducted to establish the current

state of knowledge regarding CPQ systems, enterprise architecture

patterns, and B2B SaaS integration challenges. This review covered

publications from the past decade, with a focus on the most recent

developments in the field.

2.2 Case Study Analysis
Multiple case studies of B2B SaaS companies implementing CPQ

systems were analyzed. These included both successful

implementations and those that faced challenges, providing insights

into best practices and common pitfalls. The case studies were

selected to represent a diverse range of industries and company

sizes.

2.3 Expert Interviews
Semi-structured interviews were conducted with 15 enterprise

architects, CPQ implementation specialists, and B2B SaaS product

managers. These interviews provided valuable insights into real-

world challenges and innovative solutions in CPQ integration.

2.4 Technical Prototyping
To validate theoretical concepts and explore novel approaches,

several prototypes were developed using popular CPQ platforms

such as Salesforce CPQ and Veloce CPQ. These prototypes focused

on implementing different architectural patterns and testing their

performance in simulated B2B scenarios.

2.5 Comparative Analysis
A systematic comparison of different architectural approaches

(Microservices, API-Centric, Event-Driven) was performed,

evaluating their strengths, weaknesses, and suitability for various

CPQ integration scenarios.

2.6 Synthesis and Pattern Development
Based on the insights gathered from the literature review, case

studies, expert interviews, and prototyping, a new design pattern -

the Adaptive Mosaic Architecture (AMA) - was conceptualized and

developed. This pattern synthesizes the strengths of existing

approaches while addressing their limitations.

2.7 Validation
The proposed AMA pattern was validated through:

● Peer review by a panel of 5 senior enterprise architects

● Implementation in a simulated B2B SaaS environment using

Salesforce CPQ

● Performance benchmarking against traditional architectural

approaches

This multi-method approach ensured a comprehensive exploration

of the subject matter, combining theoretical knowledge with

practical insights and empirical testing. The resulting findings and

the proposed AMA design pattern represent a synthesis of academic

research and industry best practices in CPQ integration for B2B

SaaS environments.

3. CORE ENTERPRISE DESIGN

PATTERNS FOR CPQ INTEGRATION
Implementing the most suitable design pattern for an organization's

specific requirements necessitates in-depth analysis and a

comprehensive study of their business processes, as demonstrated

in the earlier sections. Now, let's explore the fundamental concepts,

applications, and practical instances where these design patterns

have been effectively utilized.

3.1 Microservices Architecture
Microservices architecture in the context of CPQ refers to a design

approach where the CPQ system is decomposed into smaller,

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.43, September 2024

42

independently deployable services, each responsible for a specific

business capability. This architectural style is based on the

following core principles:

● Service independence: Each microservice can be developed,

deployed, and scaled independently.

● Loose coupling: Services interact through well-defined APIs,

minimizing inter-service dependencies.

● Single responsibility: Each service focuses on a specific

business function within the CPQ process.

Key components of a microservices-based CPQ architecture

typically include [5]:

 Fig. 2. Microservices based CPQ services architecture

a. Service Registry: Maintains a catalog of available services and

their locations.

b. API Gateway: Serves as the entry point for client requests,

handling routing and protocol translation.

c. Load Balancer: Distributes incoming requests across multiple

instances of services.

d. Individual CPQ services:

i. Product Configurator Service: Manages product rules

and configurations.

ii. Pricing Engine Service: Handles complex pricing

calculations and discounting rules.

iii. Quote Generator Service: Creates and manages quotes,

maintains terms and conditions.

iv. Customer Data Service: Provides customer specific

information for personalized quoting.

v. Provisioning Service: Checks customer org data,

collects domain information and helps provisioning of

subscription licenses into customer tenants.

3.1.1 Case Study - Large-scale B2B SaaS

implementing microservices based CPQ patterns
One of the most popular CPQ platforms used heavily by B2B SaaS

companies is Salesforce CPQ, earlier called SteelBrick CPQ [6]. It

implements nuanced microservices based architecture to enable

smooth integration of CPQ modules into the enterprise ecosystem

along with middleware and ERP integration capabilities. The

integrated architecture seamlessly combines cloud-based

Salesforce CPQ with on-premises systems, leveraging Active

Directory Federation Services (ADFS) for secure single sign-on

authentication. Users access a suite of Salesforce and AppExchange

applications, including the account management, opportunity

tracking, and quote generation tools, alongside community features

for customer interaction. The integration layer, comprising an

Enterprise Service Bus and ETL processes, facilitates robust data

exchange between Salesforce and on-premises systems. This

ensures synchronization across various data repositories, including

the Customer Sold Plan Database, Document Repository, and

Enterprise Billing System.

Fig. 3. Salesforce modular architecture with microservices

The result is a comprehensive, unified platform that streamlines

CPQ processes, enhances data consistency, and provides a holistic

view of customer information, effectively bridging cloud and on-

premises environments in a secure and efficient manner.

3.1.1.1 Application Layer
a. Salesforce CPQ:

○ Account: Manages customer accounts.

○ Opportunity: Tracks potential sales and business

opportunities.

○ Contacts: Stores contact information for customers and

prospects.

○ Product Management: Manages product details and

offerings.

○ Quote Management: Handles the generation and

management of sales quotes.

○ Pricing and Discount Management: Manages pricing

rules and discount policies.

○ Contract and Renewal Management: Tracks and manages

contracts and their renewals.

○ Asset Management: Manages company assets and their

life cycles [7].

b. Salesforce AppExchange

○ Document Generator App: Creates and manages

documents within Salesforce.

○ E-Signature App: Facilitates electronic signatures on

documents. Third party packages can also be leveraged to

extend the document generation.

c. Salesforce Communities

○ Customer Census Upload: Allows the upload of customer

demographic information.

○ View Quoting Status: Provides status updates on quotes.

○ View and Update Quote for Enrollment: Allows viewing

and updating of quotes for customer enrollment.

3.1.1.2 Integration Layer
a. Active Directory Federation Service (ADFS): Provides single

sign-on (SSO) capabilities, enabling users to log in to multiple

applications with a single set of credentials.

b. Integration (Enterprise Service Bus, Extract Transform Load):

Acts as a middleware layer to facilitate data exchange between

Salesforce and on-premise legacy systems. It includes:

○ Enterprise Service Bus (ESB): A communication system

between mutually interacting software applications in a

service-oriented architecture (SOA).

○ Extract Transform Load (ETL): Processes that extract

data from source systems, transform the data for storing

in proper format/structure, and load it into the target DB.

3.1.1.3 On-Premise Legacy Systems & External

Interaction
a. Active Directory: A directory service for Windows domain

networks, responsible for user authentication and

authorization.

b. Customer Sold Plan Database: Stores information about the

sold customer plans.

c. Document Repository: A storage system for managing and

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.43, September 2024

43

storing documents.

d. Enterprise Billing System: Manages billing processes and

invoicing.

e. Enrollment Platform (3rd Party Cloud Apps): The enrollment

platform interacts with Salesforce Communities to update and

view quotes for enrollment purposes.

3.1.2 Benefits
a) Scalability: Individual services can be scaled independently

based on demand. For instance, the pricing engine can be scaled

during peak periods without affecting other components. b)

Flexibility: Services can be updated or replaced without impacting

the entire system, allowing for easier adoption of new technologies

or business rules. c) Technology diversity: Different services can

use technologies best suited for their specific functions. For

example, the pricing engine might use a rules engine, while the

product configurator could leverage a graph database. d) Fault

isolation: Issues in one service (e.g., a memory leak in the quote

generator) don't necessarily affect other services. e) Improved

development velocity: Smaller, focused teams can work on

individual services, potentially increasing the development speed.

3.1.3 Challenges
a) Increased complexity: Managing a distributed system of

microservices is more complex than a monolithic application. b)

Data consistency: Ensuring data consistency across services,

especially in distributed transactions, can be challenging. c)

Performance overhead: Inter-service communication can introduce

latency, impacting overall system performance. d) Testing

complexity: Testing the entire CPQ system end-to-end becomes

more complex with multiple interacting services. e) Operational

overhead: Deployment, monitoring, and troubleshooting of

multiple services require sophisticated DevOps practices. This

illustration aims to demonstrate how a microservices architecture

can significantly enhance the flexibility, scalability, and

performance of a CPQ system in a B2B SaaS environment, while

also highlighting the challenges that need to be addressed for

successful implementation.

3.2 API-Centric Architecture
API-centric architecture [8] forms the backbone of interoperability

in CPQ systems, enabling seamless integration with various internal

and external components.

3.2.1 API Gateway Pattern
● Acts as a single entry point for all client requests

● Provides essential functions such as request routing,

composition, and protocol translation

● Implements critical security measures including

authentication, authorization, and rate limiting

● Enables versioning and deprecation strategies for evolving

APIs

3.2.2 RESTful API Design for CPQ Services
● Adheres to REST principles for intuitive and standardized

interfaces

● Models CPQ-specific resources such as products, prices, and

quotes

● Implements HATEOAS (Hypermedia as the Engine of

Application State) for improved discoverability and navigation

● Utilizes appropriate HTTP methods and status codes for clear

communication of actions and outcomes

3.2.3 GraphQL for Complex CPQ Queries
● Offers flexible querying capabilities for complex product

configurations and pricing scenarios

● Reduces over-fetching and under-fetching of data, optimizing

performance

● Provides strong typing and introspection, enhancing developer

experience and API documentation

3.2.4 API Management and Versioning Strategies
● Implements comprehensive API lifecycle management

● Adopts semantic versioning for clear communication of

changes

● Ensures backward compatibility through careful API evolution

● Provides extensive documentation and SDKs for improved

developer onboarding

The following case study illustrates the practical application of

another CPQ platform called Veloce CPQ where the composable

API-centric architecture is implemented.

3.2.5 Case Study - Niche industry-specific B2B

SaaS company adapting API-Centric CPQ patterns
The Veloce CPQ platform was designed from the ground up with a

composable API architecture. It offers all CPQ functionalities as

stateless RESTful APIs on the backend, with the frontend

interfacing with the backend via these RESTful APIs, as illustrated

in the following architecture [9]. For instance, when API consumers

need to initiate a configuration from a quote identified by a Quote

ID and return the configuration with pricing information, a

composite API can be implemented. This involves calling the quote

API to retrieve the quote with its line items, the configuration API

to validate the configuration, and the pricing API to price the line

items, returning the configuration result with pricing information.

In another scenario, if API consumers want to add a product to a

quote identified by a Quote ID, an additional step can be included

in the previous example to add a line item to the configuration.

Veloce’s composable API-based CPQ architecture is an agile

platform that enables customers to swiftly implement new CPQ

processes and adapt to ever-changing business requirements. Some

customers leverage Veloce's APIs in customer portals to create

sophisticated partner quoting and customer self-service

experiences. With the API composer, API consumers can

implement any quoting process and expose it as high-level APIs.

This capability allows customers to quickly expose any CPQ

functionality as a RESTful API. Veloce offers a robust suite of APIs

designed to facilitate seamless integration and enhance the

functionality of Configure-Price-Quote (CPQ) systems in B2B

SaaS environments. These APIs provide a comprehensive set of

tools for managing complex sales processes, from initial product

selection to final order management. This modular API suite

empowers organizations to adopt a tailored approach to CPQ

implementation. Rather than investing in a monolithic CPQ

solution with potentially underutilized features, businesses can

strategically integrate specific APIs that address their unique

requirements, optimizing both cost-effectiveness and operational

efficiency.

3.2.5.1 Product Catalog API
Purpose: Enable dynamic access to product information and

eligibility.

Key Functions: Retrieve comprehensive product catalogs with real-

time updates; Implement advanced search functionality with filters

and facets; Execute product eligibility rules based on customer

profiles or market segments.

Use Case: Allows sales representatives to quickly access up-to-date

product information and determine product availability for specific

customers.

3.2.5.2 Product Model API
Purpose: Provides detailed product structure and configuration

options.

Key Functions: Retrieve hierarchical product structures and

relationships; Access product option details and constraints;

Obtain UI definitions for dynamic form generation.

Use Case: Enables the creation of interactive product configurators

with real-time validation of selected options.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.43, September 2024

44

Fig. 4. Veloce’s API-Centric CPQ Architecture

3.2.5.3 Configuration API
Purpose: Manages complex product configurations and rule

enforcement.

Key Functions: Run configuration engine to validate and update

product configurations; Apply business rules and constraints in

real-time; Return detailed error messages for invalid configurations.

Use Case: Ensures that all product configurations meet business

rules and technical constraints, reducing errors in the quoting

process.

3.2.5.4 Pricing API
Purpose: Calculates and provides detailed pricing information.

Key Functions: Price individual line items and complete quotes;

Generate detailed price waterfalls showing discounts and

adjustments; Calculate group pricing for bundled products.

Use Case: Enables dynamic pricing based on various factors such

as volume, customer tier, or market conditions.

3.2.5.5 Approval API
Purpose: Manages the quote approval process.

Key Functions: Execute approval rules against line items or entire

quotes; Identify items requiring approval and provide approval

messages; Facilitate multi-level approval workflows.

Use Case: Streamlines the approval process for quotes that exceed

certain thresholds or require special considerations.

3.2.5.6 DocGen API
Purpose: Automates document generation and management.

Key Functions: Generate professional quotes and proposals using

predefined templates; Merge multiple documents into

comprehensive sales packages; Customize documents based on

quote data and customer information

Use Case: Produces polished, accurate sales documents, reducing

manual effort and enhancing presentation quality.

3.2.5.7 Subscription Management API
Purpose: Manages the entire lifecycle of subscription-based

products and services.

Key Functions: Convert quotes to orders and activate subscriptions;

Query and manage existing assets and subscriptions; Generate delta

quotes for subscription modifications; Handle renewals, upgrades,

and cancellations.

Use Case: Enables efficient management of complex subscription-

based products, supporting upsell and cross-sell opportunities.

3.2.5.8 Salesforce API
Purpose: Facilitates seamless integration with Salesforce CRM.

Key Functions: Perform CRUD operations on any Salesforce

object; Invoke custom Salesforce APIs and workflows; Sync data

between CPQ and Salesforce in real-time.

Use Case: Ensures consistent data flow between the CPQ system

and Salesforce, providing a unified view of customer interactions

and sales processes.

3.2.5.9 Quote and Order API
Purpose: Manages the core quoting and ordering processes.

Key Functions: Create, read, update, and delete quotes and orders;

Manage quote/order headers, line items, and associated pricing

information; Support complex quote structures including multi-

level quotes and bundles.

Use Case: Provides a flexible foundation for managing the entire

quote-to-order process, supporting various B2B sales scenarios.

3.2.6 Benefits
a) Flexibility and Modularity: Enables a modular approach to

system design, allowing organizations to build, update, or replace

individual components without affecting the entire system.

Facilitates the integration of best-of-breed solutions for different

CPQ functionalities. b) Scalability: Allows independent scaling of

different CPQ components based on demand. Supports cloud-native

deployments for elastic scalability. c) Improved Developer

Experience: Provides clear contracts between different system

components, simplifying development and testing. Enables parallel

development across teams, potentially speeding up the development

process. d) Enhanced Integration Capabilities: Simplifies

integration with external systems, partners, and third-party

applications. Facilitates the creation of omnichannel experiences by

exposing CPQ functionalities through various interfaces. e)

Innovation and Extensibility: Allows for easy addition of new

features or services without major system overhauls. Enables

experimentation and A/B testing of new CPQ functionalities.

3.2.7 Challenges
a) Increased Complexity: Managing a large number of APIs can

become complex, requiring sophisticated API management tools

and practices. Debugging issues across multiple API calls can be

more challenging than in monolithic systems. b) Versioning and

Compatibility: Managing API versions and ensuring backward

compatibility can be challenging, especially in rapidly evolving

systems. Requires a well-thought-out versioning strategy and clear

deprecation policies. c) Security Concerns: Each API endpoint

represents a potential attack surface, requiring robust security

measures. Implementing consistent authentication and

authorization across all APIs can be complex. d) Operational

Complexity: Monitoring and maintaining a distributed API-based

system requires sophisticated DevOps practices and tools. Tracking

issues across multiple API interactions can be more complex than

in monolithic systems. e) Network Dependency: Increased reliance

on network communication between components can introduce

new points of failure. Requires robust error handling and resilience

patterns to manage network issues. In the context of CPQ systems

for B2B SaaS, the benefits of an API-centric architecture often

outweigh the challenges, particularly for organizations dealing with

complex products, pricing models, and integration requirements.

The flexibility offered by this approach aligns well with the

dynamic nature of B2B sales processes. However, successful

implementation requires a strong focus on security and performance

optimization.

3.3 Event-Driven Architecture
Event-driven architecture (EDA) revolves around the production,

detection, and consumption of events. This section discusses the

core concepts of EDA, including event producers, event consumers,

and event brokers and a case study of an organization that

implemented EDA with their CPQ integration [10]. Below figure

provides high-level conceptual flow for different events handling

simultaneous services execution. when a SalesRep initiates the

quoting process:

a) Quote initiation:

Event: "QuoteInitiated"

Payload: Customer ID, Sales Rep ID, Initial Products

Consumers: Pricing Engine, Customer Profile Service, Product

Catalog

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.43, September 2024

45

Fig.5. Example of events and services in EDA

b) Customer status check:

Event: "CustomerStatusChecked"

Payload: Customer ID, Status, Applicable Discounts

Consumers: Pricing Engine, Approval Workflow Service

c) Product selection:

Event: "ProductAdded" or "ProductRemoved"

Payload: Product ID, Quantity, Quote ID

Consumers: Pricing Engine, Inventory Check Service,

Compatibility Checker

d) High-value quote detection:

Event: "HighValueQuoteDetected"

Payload: Quote ID, Total Value, Threshold Exceeded

Consumers: Approval Workflow Service, Notification Service

e) Pricing update:

Event: "GlobalPricingUpdated"

Payload: Updated Price List, Effective Date

Consumers: All Active Quote Sessions, Pricing Engine

f) Quote finalization:

Event: "QuoteFinalized"

Payload: Quote ID, Final Details, Customer ID

Consumers: CRM Update Service, Contract Generation Service,

Analytics Service

3.3.1 Case Study - A B2B SaaS provider

implementing EDA with micro services

Fig.6. SAP Event-driven architecture

The integration between SAP CPQ and SAP S/4HANA Cloud

enables an automated process for creating solution orders [11].

When a user finalizes an SAP CPQ quote and sends it to SAP

S/4HANA Cloud, a corresponding solution order is automatically

generated. This integration also triggers the automatic creation of

subsequent documents within SAP S/4HANA Cloud. It's crucial to

note that this functionality is only available with the Quote 2.0

engine in SAP CPQ. The integration is set in motion by the "Place

Order" event. This event occurs when a user activates the Place

Order action within an SAP CPQ Quote, signaling the conclusion

of the quoting process. At this point, the finalized quote is

transmitted to the backend system, initiating the creation of a

Solution Order. For product configuration and pricing within SAP

CPQ, the system employs SAP Variant Configuration and Pricing

as its standard mechanism. Upon activation of the integration, the

entire SAP CPQ Quote, encompassing product & pricing details, is

conveyed to SAP S/4HANA Cloud for further processing.

3.3.2 Benefits
a) Real-time responsiveness: True real-time updates without

polling, unlike typical API-based systems; Immediate propagation

of changes across the entire system. b) Reduced coupling: Even

looser coupling than microservices, as components don't need to

know about each other directly. c) Event-driven workflows: Natural

support for complex, multi-step business processes; Easier

implementation of long-running transactions. d) Asynchronous

processing: Better handling of time-consuming operations without

blocking; Improved system responsiveness under heavy load.

3.3.3 Challenges
a) Event-driven thinking: Shift from request-response model to

event-based design; Different approach to modeling business

processes. b) Event choreography: Complexity in managing the

flow of events across the system; Potential for unintended

consequences in event chains. c) Eventual consistency: Managing

temporary data inconsistencies across the system; Handling out-of-

order events. d) Event schema evolution: Challenges in changing

event structures over time; Maintaining compatibility between

event producers and consumers. e) Difficulty in tracing issues

across asynchronous event flows and general debugging. Having

addressed the detailed architecture, case studies, benefits, and

challenges, the next section now takes a slightly different approach

for the next design pattern. This section demonstrates specific CPQ

use cases and their ideal solutions, considering industry best

practices. The Following frameworks have been prototyped using

the Salesforce CPQ platform to display their practical application.

However, it's important to note that these frameworks can be

extended to any platform for CPQ integration.

3.4 Adaptive Mosaic Architecture Design

Pattern (AMA)
This is a unique design pattern prototyped and proposed by the

author of this paper for the effective CPQ integration in any B2B

SaaS environments. The Adaptive Mosaic Architecture (AMA)

represents an innovative hybrid design pattern that synergizes the

strengths of multiple architectural approaches to address the

complex needs of CPQ systems in B2B SaaS environments [12].

This pattern combines the modularity and scalability of

microservices, the integration capabilities of API-centric design,

the reactivity of event-driven systems, the efficiency of serverless

computing, and the agility of low-code/no-code platforms. The

name "Adaptive Mosaic Architecture" encapsulates its core

attributes: adaptability to evolving business requirements, a

modular composition of diverse architectural elements, and a

deliberately architected framework.. AMA promotes a system

framework that is inherently scalable, easily integrable with

external systems, responsive to real-time events, cost-efficient in

resource utilization, and quickly customizable to changing business

rules.

3.4.1 Solutions and frameworks for a two common

practical CPQ specific use cases in any B2B SaaS
Use Case # 1: The large B2B SaaS companies sell their Support

packages and/or some of the add-on products such as Preview

Sandboxes, special cells as a Percent-of-Total (POT) products. POT

products are subscriptions whose price is determined as a

percentage of the total value of other base products or services

within a quote, instead of having a fixed price [15]. The diagram

illustrates this complex CPQ process flow that exemplifies the

AMA pattern to demonstrate the POT design in Salesforce CPQ.

1. Event-Driven Core: The process initiates with an event-driven

trigger when a user adds products to a CPQ quote, showcasing

AMA's reactive capabilities.

2. Microservices Modularity: Throughout the flow, various

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.43, September 2024

46

Fig.7. Derived Pricing calculations solution design

decision points and actions are labeled as microservices,

reflecting AMA's modular approach. This allows for

independent scaling and modification of different process

components.

3. Adaptive Logic: The system adapts to various scenarios such

as new quotes, renewals, and amendments, demonstrating

AMA's flexibility in handling diverse business rules.

4. Mosaic of Pricing Models: The flow integrates different

pricing models (e.g., Percent of Total, List Prices, Floor

Pricing, Custom Contributors) into a cohesive process,

embodying the 'mosaic' aspect of AMA.

5. API-Centric Design Implications: While not explicitly shown,

the modular nature suggests an API-centric approach for

communication between different services and components.

6. Scalable Architecture: The breakdown of the process into

distinct steps allows for scalability, a key feature of AMA,

enabling the system to handle increased load in specific areas.

7. Customization Capabilities: The system accounts for custom

POT contributors and special pricing scenarios, indicating

AMA's ability to accommodate rapid customization.

8. Real-Time Processing: The flow suggests real-time price

calculations and adjustments, aligning with AMA's emphasis

on real-time capabilities.

9. Complex Business Logic Integration: The system incorporates

intricate business rules and contract-specific logic (e.g., Zuora

contracts), showcasing AMA's ability to handle complex B2B

scenarios.

10. Flexible Data Handling: The process considers various data

points (e.g., Previous MRR, Floor Prices) in decision-making,

reflecting AMA's adaptability in data processing.

Use Case #2: Large B2B enterprises have complex approval

hierarchies where requirements vary based on customer segments,

geographic regions, and management structures. No single solution

can address all complex approval requirements. The following

workflow in Salesforce’s advanced approvals employs the AMA

design pattern to tackle these intricate approval processes while

maintaining scalability.

1. Event-Driven Initialization: The process begins with an event-

driven creation of a CPQ Quote with mandatory fields,

exemplifying AMA's reactive nature.

2. Quote Line Entry (QLE) Population: Products are added to the

QLE with additional discount percentages, showcasing the

system's adaptability to specific pricing scenarios [13].

3. Microservices for Price Rules: Three distinct price rule

microservices populate various fields:

4. Approver Hierarchy fields based on Approver Matrices

5. Approver Role and Product Line based on Discount

Thresholds

6. Maximum Discounts and Quantity fields for given Product

Lines This modular approach aligns with AMA's principle of

using interchangeable components.

7. User Interactions: The workflow accommodates various user

actions (saving, previewing, submitting), demonstrating

AMA's flexibility in handling different user paths.

8. Advanced Approval Rules: A microservice processes

advanced approval rules based on conditions and quote-level

approver fields, showcasing AMA's ability to handle complex

business logic.

Fig.9. CPQ Advanced Approvals implementation

9. API-Centric Approval Triggering: The system uses an API-

centric approach to trigger approval emails, illustrating AMA's

emphasis on standardized interfaces for integration.

10. Diverse Approval Fields: The CPQ Quote includes a wide

range of approval-related fields, demonstrating the system's

adaptability to various organizational structures and approval

requirements.

11. Unique Approver Rules: The system incorporates unique

approver rules (UNIQUEID: DAR001-n), showing AMA's

capability to handle specialized business requirements.

12. Email Template Integration: The use of a specific email

template (DiscountApprovalsEmailRequest) demonstrates the

system's ability to integrate with existing processes.

13. Third-Party API Integration: The final step involves sending

approver emails via a third-party API, highlighting AMA's

openness to external integrations.

3.4.2 Benefits
a) Flexibility: Easily adapts to changing business requirements and

technologies. b) Scalability: Individual components can be scaled

independently as needed. c) Modularity: Enables independent

development and maintenance of system components. d)

Integration: Facilitates seamless integration with various systems

and services. e) Customization: Supports complex business rules

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.43, September 2024

47

without affecting the entire system. f) Resilience: Failures in one

component are less likely to impact the entire system. g)

Technology Diversity: Allows use of different technologies for

different components. h) Agile Development: Supports parallel

development and faster time-to-market. i) Cost Efficiency: Enables

optimized resource allocation and targeted scaling. j) Future-

Proofing: Easier to incorporate new technologies and adapt to

market changes.

3.4.3 Challenges
a) Complexity: Managing multiple components and their

interactions can be challenging. b) Overhead: Distributed systems

may introduce performance overhead. c) Data Consistency:

Maintaining consistency across distributed components can be

difficult. d) Testing: End-to-end testing becomes more complex in

a distributed environment. e) Deployment: Coordinating

deployments across multiple services can be complicated. f)

Monitoring: Requires sophisticated monitoring and logging for

effective troubleshooting. g) Skills Gap: Requires a team with

diverse skills to manage different components. To summarize, the

Adaptive Mosaic Architecture (AMA) design pattern, as illustrated

in these use cases, offers significant benefits for complex enterprise

CPQ integrations. It provides modularity, allowing independent

development and scaling of distinct components, while its

flexibility enables easy adaptation to various scenarios. The event-

driven and API-centric approach ensures responsive and well-

integrated systems. AMA's scalability and customization

capabilities support complex business rules and workflows without

compromising overall system integrity [14]. The architecture

facilitates reusability of common components, enhancing efficiency

and consistency. Its modular nature improves maintainability,

allowing updates to individual parts without disrupting the entire

system. In essence, AMA provides a robust, flexible, and scalable

framework that efficiently handles complex business processes

while remaining agile in the face of changing requirements and

technologies.

4. CONCLUSION
Various architectural approaches offer distinct advantages and

challenges. Microservice-based architectures provide modularity

and flexibility, ideal for environments requiring independent

service development and deployment. API-Centric architectures

excel in real-time data access and latency reduction, suitable for

scenarios demanding seamless inter-system communication. Event-

Driven architectures offer superior scalability and responsiveness,

beneficial in high-transaction, real-time processing environments.

The Adaptive Mosaic Architecture (AMA) design pattern

synthesizes the strengths of Microservice-based, API-centric, and

Event-driven approaches. This integration results in a versatile

solution that optimizes flexibility, scalability, and responsiveness.

AMA excels in managing complex workflows and real-time

processing, crucial for dynamic pricing and interactive experiences

in modern enterprise environments. AMA's key strength lies in its

adaptability to evolving business needs, making it particularly

suitable for dynamic enterprise settings. It provides a robust,

flexible, and scalable framework that efficiently handles intricate

business processes while remaining agile in the face of changing

requirements and technologies. However, the AMA pattern requires

further experimentation and detailed review by industry experts and

researchers to fully validate its effectiveness and applicability

across various scenarios. Organizations should assess their specific

needs, system requirements, and operational capabilities when

selecting an architectural approach for CPQ system integration. By

leveraging these integration paradigms, enterprises can achieve

more agile, efficient, and scalable CPQ processes, ultimately

driving improved business outcomes. The choice of architecture

should be guided by a thorough understanding of organizational

goals, existing infrastructure, and future scalability needs to ensure

the most effective implementation of CPQ systems in complex B2B

environments.

5. CONFLICT OF INTEREST
The authors declare that the research was conducted in the absence

of any commercial or financial relationships that could be construed

as a potential conflict of interest. This research did not receive any

specific grant from funding agencies in the public, commercial, or

not-for-profit sectors. The authors have no relevant employment

relationships, consultancy roles, stock ownership, honoraria,

patents, personal relationships, or institutional affiliations that

could inappropriately influence or bias the content of the paper. The

authors confirm that the content of the research has been presented

with objectivity and scientific rigor, and any opinions expressed are

the authors' own. This statement is made to ensure transparency and

to maintain the highest standards of scientific integrity in the

research and its dissemination.

6. ACKNOWLEDGEMENT
I would like to express my sincere gratitude to all those who

have supported this research and provided invaluable

insights into the numerous architectural concepts and

frameworks for enterprise implementations. I would

sincerely like to thank my family, my mentors, the

publishers, study participants, and the anonymous reviewers

for their valuable support and feedback on this article.

7. REFERENCES
[1] Jordan, M., Auth, G., Jokisch, O., & Kühl, J. (2020).

Knowledge-based systems for the Configure Price Quote

(CPQ) process – A case study in the IT solution business.

Online Journal of Applied Knowledge Management, 8(2), 17-

30. https://doi.org/10.36965/OJAKM.2020.8(2)17-30
[2] Tsyganov, Dmitry. "Fundamental properties of SaaS

Architecture: Literature review and analysis of development

practices." (2018).
[3] Wikipedia contributors, "Configure, price and quote,"

Wikipedia, The Free Encyclopedia,

https://en.wikipedia.org/w/index.php?title=Configure,_price_

and_quote&oldid=1170520730
[4] Hoang, Thu. "Restructuring an Enterprise Monolith into a

Microservices Architecture." (2024).
[5] Taibi, Davide, Valentina Lenarduzzi, and Claus Pahl.
[6] "Architectural Patterns for Microservices: A Systematic

Mapping Study." Closer (2018): 221-232.
[7] Saikat Kumar Dutta, . (2024). Implementing the Salesforce

Enablement Playbook: A Guide to Best Practices and

Organizational Success. The American Journal of Engineering

and Technology, 6(07), 13–23.

https://doi.org/10.37547/tajet/Volume06Issue07-03
[8] Guide, Solutions, Dipanker Jyoti, and James A. Hutcherson.

"Salesforce Architect’s Handbook."
[9] Baldwin, Donald. "A Domain Neutral Enterprise Architecture

Framework for Enterprise Application Integration and

Pervasive Platform Services." (2015).
[10] Veloce. (n.d.). Composable API-based CPQ

architecture.https://veloceapps.com/post/composable-api-

based-cpq-architecture/
[11] Verginadis, Yiannis, Dimitris Apostolou, Nikos

Papageorgiou, and Gregoris Mentzas. "An architecture for

collaboration patterns in agile event-driven environments." In

2009 18th IEEE International Workshops on Enabling

Technologies: Infrastructures for Collaborative Enterprises,

pp. 227-230. IEEE, 2009.
[12] SAP Community. (n.d.). SAP CPQ integration with SAP

S/4HANA Cloud, public edition.

https://community.sap.com/t5/financial-management-blogs-

by-sap/sap-cpq-integration-with-sap-s-4-hana-cloud-public-

edition/ba-p/13561363
[13] Shiliang Wu, H. Wortmann and Chee-wee Tan, "A pricing

framework for software-as-a-service," Fourth edition of the

international Conference on the Innovative Computing

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.43, September 2024

48

Technology (INTECH 2014), Luton, UK, 2014, pp. 152-157,

doi: 10.1109/INTECH.2014.6927738.
[14] Hadzic, T., Subbarayan, S., Jensen, R., Andersen, H., Møller,

J., & Hulgaard, H. (2004). Fast backtrack-free product

configuration using a precompiled solution space

representation. Proceedings of the International Conference on

Economic, Technical and Organizational Aspects of Product

Configuration Systems,
[15] Li, B., & Kumar, S. (2022). Managing Software‐as‐a‐Service:

Pricing and operations. Production and Operations

Management, 31(6), 2588-2608.

https://doi.org/10.1111/poms.13729
[16] Ritson, Carl G., and Peter H. Welch. "A process‐oriented

architecture for complex system modelling." Concurrency and

Computation: Practice and Experience 22, no. 8 (2010): 965-

980.
[17] Marion, Tucker J., Mohsen Moghaddam, Paolo Ciuccarelli,

and Lu Wang. "AI for user-centered new product

development: from large-scale need elicitation to generative

design." The PDMA handbook on innovation and new product

development (2023).
[18] Anthropic Claude, AI, Available, [Online], https://claude.ai/

IJCATM : www.ijcaonline.org

