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ABSTRACT

Software-Defined Networking (SDN) provides enhanced manage-
ability, control, and dynamic updating of network rules through
the separation of the control and data planes. However, SDN ar-
chitectures remain vulnerable to various network attacks, includ-
ing Distributed Denial of Service (DDoS) attacks. To address this
challenge, this paper proposes the DDoSDetect solution, which
leverages Logistic Regression machine learning algorithm to de-
tect DDoS attacks in SDN environments. The DDoSDetect solu-
tion focuses on identifying flooding-based DDoS attacks, includ-
ing TCP SYN, HTTP, UDP, and ICMP attacks, by analyzing SDN
network traffic. The Logistic Regression classifier is trained to dis-
tinguish between normal and attack traffic based on four key fea-
tures: number of packets, packet size, source and destination MAC
addresses. The performance of the DDoSDetect solution is evalu-
ated and compared to other binary classification algorithms, such
as Naive Bayes, Random Forest, K-Nearest Neighbor and Sup-
port Vector Machine. The experimental results demonstrate that the
DDoSDetect solution based on logistic regression outperforms the
well-known performing alternative classifiers, achieving an accu-
racy improvement of 2.4%, an F1-score enhancement of 2.0%, and
a precision increase of 11.68%.
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1. INTRODUCTION
The rapid development of new technologies has highlighted the
need to reconfigure network policies and upgrade devices. Conven-
tional networks have static architectures that cannot meet these re-
quirements. In traditional networks, the control plane, forwarding
plane and application plane are tightly coupled, making dynamic
network management difficult.
Introducing new features or upgrading existing ones require man-
ual reconfiguration of all network devices, a tedious and costly pro-
cess [1]. Additionally, these devices are vendor-specific, requiring

separate configuration, and the software, or network operating sys-
tem, accounts for a significant portion of the high device costs.
Software-Defined Networking (SDN) solves the problems of tra-
ditional networks by simplifying and centralizing network man-
agement [2, 3]. The key advantages of SDN are programmabil-
ity, vendor neutrality, greater agility, centralized supervision, and
network automation. This allows administrators to manage mul-
tiple devices from a centralized controller rather than configuring
each one individually. It also enables easy separation of experimen-
tal and production traffic without interference. SDN is more cost-
effective than traditional networks, as a single controller can man-
age all devices, reducing deployment and management expenses.
According to a Markets report, the SDN market is expected to grow
from $8.8 billion in 2018 to $28.9 billion by 2023, a 26.8% [4]. The
primary growth driver is the need for advanced network manage-
ment to handle increasing traffic and complexity. However, SDN
faces concerns around network security, scalability, and supporta-
bility. Of these, security is a primary issue. The centralized SDN
controller is responsible for managing the network, so its failure
would disrupt the entire system. Additionally, the centralized con-
trol and communication between the controller and switches could
be targets for sophisticated Distributed Denial of Service (DDoS)
attacks. The goal of DDoS attacks is to consume the resources of
SDN components, leading to network performance degradation.
The distributed and variable nature of DDoS attacks, including their
shifting volumes and use of spoofed IP addresses, make them diffi-
cult to detect and address [5]. DDoS threats target all layers of the
SDN architecture. At the data plane, the OpenFlow-enabled for-
warding devices (known as OpenFlow switches) have limited flow
table sizes to store rules and limited processing capacity to han-
dle unmatched packets [6]. This makes the data plane susceptible
to DDoS attacks like buffer saturation and flow table overloading.
Further, adversaries can overload the control plane by saturating its
computational and network resources [7]. The application plane is
also vulnerable, as DDoS attacks can target the northbound API or
launch traditional application-layer DDoS assaults [8]. Addressing
these multi-layered DDoS threats in SDN environments requires a
comprehensive security strategy.
A wide range of techniques have been used in conventional net-
works to reduce the effect of DDoS attacks, but these often proved
resource-intensive [9]. For example, packet analysis in traditional
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networks required significant processing power, so sampling tech-
niques were used to verify packets instead, like Cisco’s NetFlow
and SFlow technologies for traffic collection and analytics [10].
The programmable nature of software-defined networking (SDN)
offers opportunities for more dynamic DDoS mitigation. When at-
tacks are detected, flow rules can be dynamically inserted into the
SDN switch flow tables to address the malicious traffic [11]. Many
DDoS defense mechanisms in SDN leverage statistical analysis and
machine learning techniques, taking advantage of the flow statistics
provided by the OpenFlow southbound API. This enables commu-
nication between switches and the SDN controller allows extracting
relevant features for security analytics to detect DDoS attacks [12].
The main goal of this paper is to detect DDoS attack by leveraging
logistic regression algorithm in SDN environment. Logistic regres-
sion is particularly well-suited for binary classification tasks, mak-
ing it a natural choice for distinguishing between normal and attack
traffic [13]. The interpretability of logistic regression model can
provide insights into the relative importance of different features
in the DDoS detection process. The solution focuses on identifying
flooding-based DDoS attacks, including TCP SYN, HTTP, UDP,
and ICMP attacks, by analyzing SDN network traffic. The logistic
regression classifier is trained to distinguish between normal and
attack traffic based on four key features: number of packets, packet
size, source MAC address, and destination MAC address. The per-
formance of the DDoSDetect solution is evaluated and compared to
other binary classification algorithms, such as Naive Bayes, Ran-
dom Forest, K-Nearest Neighbor, and Support Vector Machine.
The experimental results demonstrate that the DDoSDetect solu-
tion based on logistic regression outperforms the well-known alter-
native classifiers. This indicates that the logistic regression-based
DDoSDetect solution is an effective approach for detecting DDoS
attacks in SDN environments.
The rest of this paper is organized as follows. Section 2 discusses
the related work. Section 3 presents a design of the DDoSDetect
Solution. A model is presented in Section 4. The implementation
and evaluation are illustrated in Section 5. The paper concludes in
Section 6.

2. RELATED WORK
Several recent studies have proposed novel frameworks and tech-
niques for detecting DDoS attacksin software-defined networks
(SDNs) using machine learning approaches.
Kang et al. [14] have proposed a way to describe DDoS attacks in
terms of similarity and hierarchy. The results show that the classifi-
cation is effective for dealing with attack samples based on different
mechanisms and supports more than 12 attack samples. In addition,
it showed that high accuracy of the results was achieved, but large
datasets are not acceptable due to time complexity. Barki et al. [15]
used K-Nearest Neighbors KNN cluster algorithm to classify traf-
fic as normal and malicious. The results showed that KNN had the
highest detection rate of 90% and had a good level of accuracy.
However, the training took a long time. Dong et al. [16] used KNN,
but the results show that the KNN algorithm have an accuracy of
85%. Yadav et al. [17] have used logistic regression to find an ef-
ficient solution to discover the traffic in DDoS application-layer
attacks. The proposed method effectively classifies the attack traf-
fic from the normal traffic with an average detection rate of 98.64%
and an average false positive rate of 1.41%. Meti et al. [18] have
used different machine learning algorithms to build a prediction
model in SDN. When the server receives a new request from the
customer, the order is sent to the model and forecasts if the con-

nection is normal or malicious. They used Naı̈ve Bayes NB, Sup-
port Vector Machine SVM, and Neural Network machine learning
algorithms to detect DDoS attacks in Software Defined Network-
ing. Naı̈ve Bayes had an accuracy of 70%, while SVM and Neural
Network had an 80% accuracy. Thus, the logistic regression out-
performed NB and SVM in distinguishing malicious traffic from
normal traffic.
Authors in [19] used an SDN dataset with normal and malicious
flows. Five features are extracted from the traffic trace average
(number of packets per flow, number of bytes per flow, timeout per
flow-rule, percentage of pair flows, and rule FlowMod disparity).
The samples are classified using six machine learning algorithms
such as Logistic Regression LR, K-Nearest Neighbors KNN, Naive
Bayes NB, Decision Tree DT, Random Forest RF, and Support Vec-
tor Machine SVM to classify different DDoS attacks such as Smurf,
UDP flood, and HTTP flood. The average accuracy achieved by LR
is 98.65% . On the other hand, RF achieved 98.40% with less ex-
ecution time than LR. Ye et al. [20] developed an SDN simulation
platform using Mininet, where they extracted 6-tuple characteristic
values from the switch flow table (e.g., source IP speed, source port
speed, flow packet standard deviation, flow byte deviation, flow en-
try speed, and pair-flow ratio). They then built a DDoS attack model
using the SVM classification algorithm, which achieved a mean ac-
curacy of 95.24% in distinguishing normal and malicious traffic.
The proposed DDoSDetect solution apply the Logistic Regression
algorithm with only four features while achieve a mean accuracy of
97%.
Bawany et al. [21] evaluated the performance of various machine
learning algorithms, including KNN, SVM, NB, DT, RF, for DDoS
attack detection. Their results showed that DT and RF achieved
the highest accuracy, both reaching 99%. Nadeem et al. [22] cre-
ated an SDN environment and extracted features such as duration,
source bytes, and destination bytes to detect DDoS attacks. Using
the RF algorithm, they reported an accuracy of 99.97%. The re-
viewed studies highlight the effectiveness of supervised machine
learning techniques, such as DT and RF, in achieving high accu-
racy for DDoS attack detection in SDNs. In contrast, unsupervised
learning approaches may face challenges in accurately sorting data
and handling large datasets. Supervised detection algorithms allow
for data collection, output generation, and performance optimiza-
tion to address various real-world computational problems. How-
ever, the study did not consider the logistic Regression algorithm
in the comparison although it is a supervised detection algorithm.
Bhayo et al. [23] introduced a framework that integrates machine
learning and software-defined IoT for effective and timely detec-
tion of DDoS attacks. Operating on the SDN-WISE controller, the
ML-based module employs supervised learning classifiers such as
NB, SVMs, and DT to identify malicious traffic flows. Their frame-
work achieved high accuracy rates of 98.1%, 97.4%, and 96.1%
for the respective classifiers. Through a comprehensive analysis of
parameters like IoT nodes, attack nodes, payload size, and packet
frequency, the framework evaluates network performance based on
CPU usage, attack detection time, and memory consumption. In
contrast, Alubaidan et al. [24] introduced an intrusion detection
technique using machine learning in the SDN environment, testing
various supervised classifiers like SVM, LR, KNN, RF, and LSTM.
Their study incorporated the LR classifier, which achieved an var-
ious accuracy rate for different classifiers in identifying DDoS at-
tacks.
Elubeyd et al. [25] proposed a hybrid deep learning algorithm for
detecting and defending against DoS/DDoS attacks in SDNs by
combining both supervised and unsupervised techniques. Their ap-
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proach achieved accuracy rates of 99.81% and 99.88% on different
datasets, considering both volumetric and low-rate DDoS attacks
to maintain network integrity and availability. Using hybrid meth-
ods over supervised approaches like logistic regression can present
challenges in data analysis. While hybrid models offer advanced
capabilities in detecting complex patterns, they often require more
complex architectures, increased computational resources, and can
be harder to interpret due to their black-box nature.

3. DESIGN OF THE DDOSDETECT SOLUTION
This section describes the key components of the Software Defined
Network SDN and the planes in the DDoSDetect model, which
utilizes Logistic Regression for identifying Distributed Denial-of-
Service (DDoS) attacks in network traffic.

—Part-A: OpenFlow Controller (RYU Controller): The RYU
controller serves as the OpenFlow controller, which manages the
network topology and enforces policies.

—Part-B: Network Topology: This component represents the
physical network infrastructure, including switches, routers, and
hosts, along with the data transmission processes between them.

—Part-C: Applications: This layer includes various applications
that leverage the SDN capabilities, such as intrusion preven-
tion/detection systems, security systems, traffic monitoring, load
balancing, bandwidth management, and quality of service.

The communication between the RYU controller (Part-A) and the
network switches is facilitated by the OpenFlow protocol, which
is a programmable network protocol for the SDN environment. An
OpenFlow switch is an OpenFlow-enabled data switch that com-
municates with the external controller over the OpenFlow channel.
The OpenFlow switches perform packet lookup and forwarding ac-
cording to their flow tables and group tables, which are set up and
managed by the RYU controller.
As shown in Figure 1, the DDoSDetect solution consists of (1) Data
plan which includes the hosts that are linked to OpenFlow switches;
(2) Control plane which is part of the SDN controller where pack-
ets are received and classified into the traffic into normal and ma-
licious; (3) Application layer in the SDN architecture includes a
DDoS Attack Detection application that implements the Logistic
Regression method, programmed in the Python programming lan-
guage. The key components of the application are as follows:

—Feature Engineering: The application employs a comprehen-
sive feature engineering process to extract relevant network-level
characteristics that can effectively capture the patterns and indi-
cators of DDoS attacks. This includes exploring a range of met-
rics, such as packet rates, packet size, and other relevant network
parameters.

—Logistic Regression Modeling: The core of the DDoS attack
detection application is the Logistic Regression model, which
learns the relationship between the extracted network features
and the presence of a DDoS attack. This allows the model to ac-
curately classify the incoming network traffic as either normal or
attack traffic.

—Model Evaluation and Benchmarking: The DDoS attack detec-
tion application undergoes a thorough evaluation process using
simulated network datasets. The performance of the Logistic
Regression-based approach is assessed in terms of detection ac-
curacy, false positive rates, and other relevant metrics. Addition-
ally, a comparative analysis is conducted with alternative ma-
chine learning techniques to highlight the advantages and practi-
cal applicability of the proposed DDoS attack detection solution.

Fig. 1. The Architecture of DDoSDetect Solution

4. LOGISTIC REGRESSION MODEL
This section outlines the four major stages of the proposed DDoS-
Detect solution based on Logistic Regression:

4.1 Data Collection
The first step involves collecting a comprehensive dataset of net-
work traffic, including both normal traffic and DDoS attack traffic.
Thus, a network traffic dataset is generated. The dataset built by
gathering information about various network traffic parameters that
can be used to analyze and detect DDoS attacks. These parameters
include:

—Number of packets received by each switch

—Packet size

—Source MAC address

—Destination MAC address

The data acquisition process is carried out using a Python script
that runs the RYU controller and monitors the network traffic for
30 minutes. This allowed us to capture both suspicious and normal
traffic information between the hosts in the SDN.
To generate the DDoS traffic, hping3 tool is utilized to send DDoS
traffic between two hosts and collect the relevant traffic informa-
tion. Each normal traffic flow from the source to the destination
was captured and labeled as normal traffic. In total, the collected
dataset comprises 11,232 data records, with 3,412 records repre-
senting malicious DDoS traffic and 7,820 records representing nor-
mal traffic.
The generated network traffic dataset for the DDoSDetect solution
is summarized as fellows:
Datapath: identifies each connection between the OpenFlow
switch and the controller (i.e., Four connections).
In-port: indicates the input port through which the network traffic
enters the switch.
Out-port: specifies the output port through which the network traf-
fic leaves the switch.
Packets No.: shows the number of packets in the network traffic
flow.
Bytes: represents the total number of bytes in the network traffic
flow (i.e., packets size).
Traffic: classifies the network traffic as either ”normal” or ”mali-
cious” (DDoS attack).

3



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.43, September 2024

4.2 Data Prepossessing and Feature Selection
Data preprocessing is essential to convert the dataset into usable in-
formation for training the proposed DDoSDetect model. It aims to
efficiently detect the dependent variable (traffic type) by utilizing
independent variables effectively. In this phase, Jupyter Lab [26] is
used to prepare the dataset to build and train the Logistic Regres-
sion model, as seen in the following steps:
First: the collected dataset is imported as a CSV file to extract the
dependent and independent variables.
Second: split the dataset into source and targets.
Third: three different scenarios are implemented to split the
dataset:

(1) 80% of the data is used for training, and the remaining 20% is
used for testing.

(2) 70% of the data is used for training, and the remaining 30% is
used for testing.

(3) 60% of the data is used for training, and the remaining 40% is
used for testing.

Fourth: apply standardization feature scaling when building the
Logistic Regression model to get accurate prediction results.
Fifth: train the logistic regression model for all different scenarios.
Sixth: the trained model in the previous steps is saved as a file using
the Pickle library, allowing it to be used in the detection process.

4.3 Feature Extraction
The logistic regression classification algorithm is adopted to extract
traffic features in order to classify traffic categories as normal or
malicious traffic. Therefore, data preprocessing techniques are uti-
lized, such as scaling and pipeline techniques, to build an accurate
logistic regression model.
Standard Scaler Techniques: a standardization feature scaling is
used to get accurate prediction results. The feature scaling tech-
nique used is called standardization, which is the process of chang-
ing the scale of certain features to a common one such that they
have a mean value of 0 and a standard deviation of 1. It assumes
that all features have the same variance and are centered around
zero. If a feature has a high variance, it can dominate the objec-
tive function and prevent the estimator from learning from other
features properly. Standardization is useful with classification tech-
niques in logistic regression [27]. The standard score of a sample
X is calculated as defined in Equation. 1, where U represents the
mean and S represents the standard deviation of the training sam-
ples.

Z =
X − U

S
(1)

Pipeline: the pipeline method is used to apply Standard Scaler and
to implement fit and transform scale methods on a trained dataset
to train a logistic regression model. It assembles several steps that
are cross-validated together while utilizing different parameters via
their names. The purpose of the pipeline is to avoid data leakage
through data preparation.

4.4 Classification Processes
A Logistic Regression model has been trained to analyze and pre-
dict the category of network traffic as normal or malicious. Lo-
gistic Regression is suitable for binary classification by applying
the logistic (sigmoid) function, which takes feature values as input

Fig. 2. Network Topology and Communication with Controller.

and calculates an output between 0 and 1. If the sigmoid output is
greater than 0.5, the traffic is classified as normal; if it’s less than
0.5, the traffic is classified as malicious.
The logistic regression formula is based on linear regression, de-
fined in Eq. 2, where m is the intercept and c is the slope of the
line.

Y = mx+ c (2)

To convert the linear regression output, which can range from neg-
ative to positive infinity, to a probability between 0 and 1, the log-
arithm of the equation is used to define the sigmoid function, as
shown in Eq. 3:

Y =
1

1 + e−x
(3)

5. EVALUATION AND DISCUSSION
The implementation of the DDoSDetect solution is conducted
within a Mininet-simulated environment [28]. Mininet plays a piv-
otal role in generating the Software-Defined Networking (SDN)
components, such as controllers, switches, and hosts, which can be
shared across different network setups. The external controller em-
ployed in this study is the RYU controller [29]. RYU is a key com-
ponent grounded in a software-defined networking framework, pro-
viding software elements with a comprehensive API that stream-
lines network management and control processes, enabling the
identification of potential attacks. This controller is seamlessly in-
stalled via the Python PIP module’s installer menu. The RYU con-
troller then establishes a connection with the OpenFlow controller
within the customized network topology simulated in Mininet.
Figure 2 shows the network topology and controller-switch com-
munication. The network consists of four switches, one controller,
and eight hosts. The network addresses start from 10.0.0.1 to
10.0.0.8. Three of the hosts (10.0.0.1, 10.0.0.2, and 10.0.0.3 )
connected to Switch-2 and hosts (10.0.0.4, 10.0.0.5,10.0.0.6, and
10.0.0.7) connected to Switch-3. The victim server 10.0.0.8 is con-
nected to Switch-4. The entire implementation of the DDoSDetect
solution is carried out on an Ubuntu virtual machine set up on a
VirtualBox machine with 4GB of RAM and 40GB of hard drive
space.
To execute traffic generation, the experiment started by executing
network generator script. The normal traffic are injected for three
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Fig. 3. Detect Normal Traffic between Hosts.

Fig. 4. Malicious Traffic Originating from Host Two to the Victim server.

days. This includes HTTP traffic, TCP, UDP and ICMP. HTTP
traffic is generated by using JupyterLab, which is an interactive
web development environment. Hping3 is used for generating TCP,
UDP, and ICMP traffic. The collected dataset as it is mentioned be-
fore had a total of 11,232 rows and attack traffic of 3,412 rows. The
normal traffic flood from the Hosts is depicted in Figure 3. Mean-
while, Figure 4 illustrates the malicious traffic originating from
Host two and targeting the victim server. Additionally, Figures 5
and 6 showcase the malicious traffic flows from Host five and Host
seven, respectively, also targeting the victim server.
In order to evaluate how effectively the Logistic Regression model
performs on the dataset used for training, as well as how well
the Logistic Regression model performs on new, unseen data (the
test set), the model’s ability to accurately predict unseen data is
assessed. As shown in Table 1, the training accuracy results are
97.94%, 97.79%, and 97.69% respectively with 80/20, 70/30. and

Fig. 5. Malicious Traffic Originating from Host Five to the Victim Server

Fig. 6. Malicious Traffic Originating from Host Seven to the Victim Server

Table 1. Training and test accuracy results
Data Splitting Ratio

80/20 70/30 60/40
Training Accuracy 97.94% 97.79% 97.69%
Testing Accuracy 97.82% 97.92% 97.77%

60/40 splits. The training accuracy decreases as the training-test
split ratio increases (i.e., more data is used for testing). On the other
hand, the testing accuracy is highest for the 70/30 split, and slightly
lower for the 80/20 and 60/40 splits. Overall observation is that
the model performs well across different data splitting ratios, with
training accuracy around 97.7-97.9% and testing accuracy around
97.8-97.9%. This table provides a comprehensive comparison of
the model’s performance under different train-test split scenarios,
which is useful for evaluating the model’s robustness and general-
ization capabilities.
On top of that, to assess how well the proposed model can make ac-
curate predictions on new, unseen data, error rate on the test set is
calculated. This allows to evaluate the model’s performance outside
of the training data, which is crucial for determining if the model
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Table 2. Error Rates
Data Splitting Ratio

80/20 70/30 60/40
Error Rates 2.18% 2.08% 2.23%

Table 3. Confusion Matrix
Actual

Positive Negative
Positive True Positive False PositivePrediction Negative False Negative True Negative

can generalize well to make correct predictions in real-world sce-
narios. As shown in Table 2, the error rates on the unseen test data
are 2.18%, 2.08%, and 2.23% for the 80/20, 70/30, and 60/40 data
splitting ratios, respectively. These error rates are calculated using
the method defined in Equation 4.

ErrorRate = 1−Accuracy (4)

The consistently low error rates across the different data splitting
scenarios indicate that the model performs well and generalizes ef-
fectively to new data. Notably, the model achieves its lowest error
rate of 2.08% with the 70/30 data split. An error rate of around
2% is generally considered a strong performance for classifica-
tion tasks, meaning the model is able to accurately predict the out-
comes of new, previously unseen data. This analysis demonstrates
the model’s ability to make reliable predictions beyond the train-
ing data, which is an important measure of its practical effective-
ness and robustness. The low error rates across the different data
splitting ratios highlight the model’s capacity to function well and
provide accurate results when applied to new information it has not
encountered during the training process.
Conventionally, to evaluate the performance of the LR classifica-
tion model, a confusion matrix is used - a powerful tool that pro-
vides a comprehensive view of the model’s predictive capabilities.
The confusion matrix is calculated based on four key parameters:
true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN). In this context, True Positive (TP) refers to
correctly identified attacks, False Negative (FN) denotes attacks
mistakenly classified as normal, False Positive (FP) refers to benign
instances labeled as malicious, and True Negative (TN) represents
accurate classification of normal instances (See Table 3). A confu-
sion matrix allows to calculate the number of correct and incorrect
prediction values for each actual class. In essence, the confusion
matrix depicts the various ways in which the classification model
becomes perplexed when making predictions on observations. This
valuable information helps to identify the specific types of errors
the model generates when assigning data to different classes.
As shown in Figure 7, Figure 8, and Figure 9 the results of confu-
sion matrix for different data splitting ratios. These figures depict
the classifier’s measurement matrix, illustrating the model’s perfor-
mance in a traffic detection experiment assessed on testing data.
With 80/20 split, TP is 637 which is the total number of correct
predictions when the actual class is classified as normal, and FP is
49 which is the total number of wrong predictions when the actual
class is classified as normal. In addition, TN is 1561, which is the
total number of correct predictions when the actual class is classi-
fied as malicious, and FN is 0, which represents the total number of
wrong predictions when the actual class is classified as malicious.
With 70/30 split ratio, the TP is 930, FP is 70, TN is 2370, and FN
is 0. Further, with 60/30 split ratio, the TP value is 1245, FP is 100,
TN is 3148, and FN is 0.

Based on the confusion matrices values, the results indicate that the
classification model is performing very well:

—The True Positive (TP) values are quite high, ranging from 637 to
1245, showing the model is correctly identifying a large number
of normal instances.

—The True Negative (TN) values are also very high, ranging from
1561 to 3148, indicating the model is accurately classifying a
large number of malicious instances.

—The False Positive (FP) and False Negative (FN) values are quite
low, with FP ranging from 49 to 100, and FN being 0 for all data
split ratios.

The low FP and FN rates, along with the high TP and TN values,
suggest the classification model is performing very well and has
a high degree of accuracy in distinguishing between normal and
malicious instances. Overall, these results demonstrate the model
has excellent performance in correctly identifying both normal and
malicious cases, with very few misclassifications. This is a strong
indicator that the model is capable of generalizing well and making
accurate predictions on new, unseen data.

Fig. 7. Confusion Matrix of 80/20 Data Splitting Ratio.

Fig. 8. Confusion Matrix of 70/30 Data Splitting Ratio.
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Fig. 9. Confusion Matrix of 60/40 Data Splitting Ratio.

To evaluate the efficiency of the DDoSDetect solution based on
Logistic Regression algorithm, binary classification to classify the
data into normal and attack traffic is performed using four clas-
sification algorithms: Naive Bayes NB, Random Forest RF, Sup-
port Vector Machine SVM, and K-Nearest Neighbor K-NN. The
70/30 data split ratio is conducted, as this configuration demon-
strated the best performance with low error rates. The performance
of classifier and feature selection is evaluated by using four im-
portant performance metrics, Accuracy, Precision, Recall and F-
1 score. Accuracy denotes the correctness of the algorithm while
detecting the attacks over the normal and the attack traffic (Equa-
tion 5). Precision denotes the percentage of positive identification
of attack over total predictive positive cases (Equation 6). Recall
indicates the percent of actual attack traffic that are identified cor-
rectly(Equation 7). F1 score which combines recall and precision
is also computed(Equation 8).

Accuracy =
TP + TN

(TP + FP + TN + FN)
(5)

Precision =
TP

(TP + FP )
(6)

Recall =
TP

(TP + FN)
(7)

F1Score = 2 ∗ (Precision ∗Recall)

(Precision+Recall)
(8)

Tab1e 5 illustrates the performance of the Logistic Regression
model compared to NB, SVM, RF, and K-NN. The experimental
results show that the Logistic Regression model outperforms the
other classifiers across several key metrics. In terms of accuracy, the
Logistic Regression model achieves the highest score at 97.978%,
surpassing the accuracy of NB (95.716%), SVM (97.681%), RF
(95.705%), and K-NN (95.715%). Furthermore, the Logistic Re-
gression , NB and K-NN models attain a perfect precision of 100%,
indicating their ability to accurately identify positive (attack) in-
stances without any false positives. While the RF model demon-
strates the highest recall of 100%, implying its sensitivity in de-
tecting all attack instances, the Logistic Regression model main-
tains a strong recall of 93.0%. Importantly, the Logistic Regres-
sion model demonstrates the best overall performance, as reflected

Table 4. DDoS detection classifier performance metrics in an SDN environment.
Performance Metrics

Classifier Algorithms Accuracy% Precision% Recall% F1-Score%
Logistic Regression 97.978 100 93 96.373
Naive Bayes 95.716 100 90.021 94.748
Support Vector Machine 97.681 99 91.12 95.896
Random Forest 95.705 98.537 100 94.479
K-NN 95.715 100 90.723 95.136

by its superior F1-score of 96.373%, a balanced measure of preci-
sion and recall. In comparison, the F1-scores for NB, SVM, RF, k-
NN are 94.748%, 94.896%, 94.479%, and 95.136%, respectively.
These findings clearly illustrate the effectiveness of the Logistic
Regression-based DDoSDetect solution in accurately and reliably
detecting DDoS attacks in the context of software-defined network-
ing environments.
The evaluation of the Logistic Regression model reveals its effec-
tiveness and adaptability. By examining training and testing accura-
cies across various data splits, the experiment provides insights into
the model’s behavior with different data amounts. Low error rates
on test data indicate the model’s stability and reliability, even with
varying data proportions. Achieving a 2.08% error rate on a 70/30
split demonstrates strong predictive power. This accuracy is crucial
for detecting network attacks effectively. Overall, the model effec-
tively distinguishes between normal and malicious traffic, show-
ing reliability and potential for enhancing network security against
DDoS attacks. The model’s superior metrics and consistent perfor-
mance demonstrate its dependability and potential as a useful tool
for strengthening network security and successfully fending off po-
tential cyber threats.

6. CONCLUSIONS AND FUTURE WORK
The evolution of network technologies has necessitated a shift to-
wards Software-Defined Networking (SDN) to address the lim-
itations of traditional network architectures. SDN brings advan-
tages like centralized control, compatibility with various vendors,
and improved flexibility, making operations more cost-effective
and efficient. While the SDN market is expected to grow, worries
linger about security risks, especially concerning Distributed De-
nial of Service (DDoS) attacks. SDN environments are vulnerable
to DDoS attacks, which target several network architecture layers
and necessitate a thorough security plan for prevention. Because
SDN is programmable, it offers opportunities for dynamic mitiga-
tion through machine learning-based defense mechanisms and flow
rule adjustments, whereas conventional networks used resource-
intensive techniques to counter DDoS attacks.
This paper introduced DDoSDetect, employing Logistic Regres-
sion to detect DDoS attacks in SDN environments, emphasizing
flood-based attacks like TCP SYN, HTTP, UDP, and ICMP. The
solution analyzes SDN traffic using key features like packet count,
size, and MAC addresses to differentiate between normal and at-
tack traffic. Evaluation of the proposed model against Naive Bayes,
Random Forest, K-NN and SVM classifiers reveal that DDoSDe-
tect, leveraging Logistic Regression, outperforms alternatives with
a 2.4% accuracy boost, a 2.0% F1-score improvement, and an
11.68% precision increase, showcasing its effectiveness in combat-
ing DDoS threats in SDN networks.
Future work includes implementing mitigation strategies upon
DDoS detection in SDN, along with exploring larger datasets and
conducting thorough feature selection analysis. Furthermore, an
upcoming focus will involve the development of a hypermodel that
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incorporates multiple classifier algorithms to improve detection ac-
curacy and robustness against DDoS attacks in SDN environments.
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