
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.42, September 2024

7

Enhancing Software Defect Prediction with Ensemble

Models based on Defect Relations Rule Learning

Sareddy Shiva Reddy

Assis. Professor, Department of CSE
JNTUH University College of Engineering, Science

& Technology Hyderabad, Telangana

Suresh Pabbojur, PhD
Professor, Department of IT

CBIT, Osmania University, Hyderabad, Telangana

ABSTRACT

Software defect prediction (SDP) is a crucial aspect of software

quality assurance, aiming to identify potential defects early in

the development process to enhance reliability and reduce

maintenance costs. This paper presents a defect relations rule

learning (DRRL) to enhance the defect classification models. It

discovers the rules based on the defect relation association and

applies a rule-ranking mechanism to perform a two-stage

prediction model for accurate defect prediction software

modules. In the first stage Random Forest, Support Vector

Machine, and Naïve Bayes — are employed to analyze their

prediction accuracy. In the second stage, an Ensemble Voting

Model (EVM) with classifiers prediction outcome for

enhancing the accuracy and reliability of defect detection is

proposed. The EVM was implemented and evaluated further to

validate previous models for effectiveness. The EVM with the

proposed DRRL exhibited superior performance of 99.2%

accuracy for the CM11 dataset, 88.2% accuracy for the JM1

dataset, and 100% accuracy for the PC1 and PC4 datasets.

These findings underscore the model's potential to significantly

improve software defect prediction.

General Terms

Software Engineering, Defect Prediction, Machine Learning,

Classification

Keywords

Software Defect Prediction, Defect Relations Rule, Machine

Learning, Ensemble Model

1. INTRODUCTION
The success of a software system is determined not only by its

cost and adherence to schedule but also significantly by its

quality. Among the various characteristics that define software

quality, the presence of residual defects has emerged as the

industry benchmark [1]. Predicting software defects—defined

as deviations from specifications or expectations that could

cause operational failures—has been a pivotal research area in

software engineering for over three decades [2]. These defects

serve as indicators of reliability; however, assessing reliability

accurately before the full deployment of the software remains

a challenging task.

Current efforts in defect prediction emphasize estimating the

remaining number of defects in software systems. This is

achieved using a variety of data sources, including code

metrics, inspection data, and process-quality data, and applying

statistical approaches to analyze them [3], [4]. Notably,

capture-recapture (CR) models and detection profile methods

(DPM) are widely utilized in this domain [x]. These

methodologies leverage different types of data and statistical

techniques to provide insights into software quality and defect

prevalence, thereby guiding maintenance and improvement

efforts.

The predicted number of remaining defects in a software

system serves as a crucial metric for developers. These metrics

aid in controlling the software process by helping decide

whether further inspections are necessary or if the software

artifacts can proceed to the next development phase. It also

helps in assessing the likely quality of the delivered software.

On the other hand, the author [5] suggests that defects found

during production reflect underlying process deficiencies. They

illustrate this through a case study employing a defect-based

method for software process improvement. Specifically, they

utilize an attribute-focusing method to uncover associations

among defect attributes, such as defect type, source, phase

introduced, phase found, component, and impact. By

identifying events leading to these associations, they pinpoint

process issues and implement corrective actions.

Several approaches [6] support enabling a project team to

enhance its development process by focusing specifically on

predicting defect types and their associated correction efforts.

By accurately identifying and categorizing defects, the team

can allocate resources more efficiently and implement targeted

interventions to address issues. This proactive strategy not only

improves overall software quality but also optimizes the

correction effort, leading to a more streamlined and effective

development process. This work aims to find what the related

defect(s) may occur for the given defect(s), by predicting defect

types and their relation.

Using defect-type data to predict software defect relations

allows us to identify relationships among different defect types.

These relationships can be expressed as rules, such as: If

defects A and B occur, then defect C is also likely to occur,

formally written as A ^ B → C. These defect relations serve

three primary purposes:

1. Enhancing Defect Detection and Correction: By

identifying related defects to those already detected, it can

make more effective corrections to the software. For

instance, if it has a historical rule A ^ B → C, and defects

A and B have been detected together but defect C has not

yet been discovered, the rule suggests that defect C is

likely present. This prompts us to inspect the

corresponding software artifact to confirm its existence. If

confirmed, then it will continue the search using

additional rules, such as A ^ B ^ C → D, further guiding

the testing efforts and optimizing the use of limited testing

resources.

2. Evaluating Reviewers' Results: During inspections, these

rules can help assess the thoroughness of reviewers. For

example, if the rule A ^ B → C holds, but a reviewer has

only found defects A and B, it is possible they missed

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.42, September 2024

8

defect C. In such cases, a recommendation can be made to

re-inspect the work for completeness, ensuring a more

comprehensive review process.

3. Improving Software Processes: By analyzing why certain

defects frequently occur together, managers can gain

insights into potential process problems. If a recurring

relation between defects is identified, managers can

investigate and implement corrective actions to address

the underlying issues, ultimately enhancing the overall

software development process.

These applications of defect relations not only improve defect

detection and correction but also enhance the inspection

process and support continuous improvement in software

development practices.

This paper presents a defect relations rule learning (DRRL)

method for defect classification by discovering the rules based

on the defect relation association. It is to discover software

defect associations from historical software engineering data

sets and help determine whether or not a defect is accompanied

by other defects. The methods for predicting defect relations

are grounded in the principles of association rule (AR) learning

[1]. It seeks to uncover patterns of co-occurrence among

attributes within a database. However, it is important to note

that such associations do not imply a relationship. An AR is

typically expressed in the form A → C, where A (Antecedent)

and C (Consequent) represent sets of items. The interpretation

of these rules is straightforward for example, if a given database

D of transactions, where each transaction T in D is a set of

items, then the rule A → C indicates that whenever a transaction

T includes A, it is likely to also include C, with a certain level

of confidence. This confidence is defined as the proportion of

transactions that contain both A and C relative to the total

number of transactions that contain A.

The DRRL will uncover the patterns of co-occurring attributes

in databases, and it has been observed that classification based

on AR will achieve higher accuracy than other classification

techniques. This is largely due to the use of heuristic and greedy

search methods in building classifiers, which result in a

representative subset of rules. Unlike decision-tree induction

methods, which evaluate one variable at a time, AR identifies

high-confidence relations among multiple variables, potentially

overcoming some limitations of other techniques.

Consequently, it will utilize the most effective rule(s) from the

constructed set for accurate classification. A data source from

the NASA repository is utilized to obtain four datasets for the

learning, prediction, and experimental evaluation.

The remainder of this paper is structured as follows: Section 2

outlines the methodology employed in this study. Section 3

details the methods used for defect relation learning and

prediction for defects. Section 4 presents the results of the

experiments. Lastly, Section 5 provides a summary of the work

and key findings.

2. RELATED WORKS
In software development, identifying and fixing software

bugs—errors and flaws—is crucial, especially as these issues

are addressed in subsequent software updates. Recent research

has delved into this topic, building on existing literature. Thota

et al. [6] conducted a significant study on software defect

prediction (SDP), underscoring its importance in maintaining

high-quality software amidst rapid technological

advancements. The researchers proposed an effective approach

that leverages soft computing-based machine learning

techniques to optimize feature prediction. This strategy

addresses challenges faced by industries with high software

development costs, particularly in safety-critical systems,

offering valuable insights to enhance testing strategies and

improve overall software reliability.

Classification techniques play a vital role in this process by

categorizing data into specific classes or labels, thereby

identifying potential software defects. Commonly employed

methods include decision trees (DT), logistic regression (LR),

and support vector machines (SVM), all of which proactively

assess and address software quality concerns. Historical studies

[7-9] have utilized these techniques to enhance defect

prediction model accuracy. Despite their effectiveness, these

approaches face limitations, including challenges with the

classification methods. These challenges highlight the need for

ongoing research and innovation in defect prediction

methodologies.

In addition to classification, Ensemble Modeling (EM) has

become a prominent technique in machine learning (ML),

known for its ability to enhance predictive performance by

combining outputs from multiple models [10]. Techniques such

as bagging, boosting, stacking, and RF have significantly

advanced this field by addressing challenges like overfitting,

underfitting, and biases that typically affect individual

classifiers[11], [12]. By aggregating predictions from various

base models, ensemble methods improve the accuracy and

robustness of predictions, particularly in the context of defect

prediction models. This aggregation helps to minimize the

biases inherent in single classifiers. Despite these benefits,

researchers have identified that ensemble techniques

themselves can be prone to biases, which may impact their

overall effectiveness [13], [14].

2.1 Classification Approaches in SDP
Machine learning (ML)-based classification algorithms have

gained immense popularity and interest in recent literature on

SDP. These approaches have proven to be highly effective in

identifying defect-prone modules, offering significant benefits

in software quality assurance and maintenance. Matloob et al.

[15] conducted a systematic review of the literature focusing on

the use of classification learning in SDP, and Daoud et al. [16]

performed a comparative analysis of four classifiers using

NASA's datasets to improve the accuracy and robustness of

defect prediction models.

In [17], researchers developed an advanced cloud-based SDP

system that utilized data fusion and decision-level machine

learning fusion techniques. This innovative system combined

the predictive outputs of three classifiers—naïve Bayes (NB),

artificial neural network (ANN), and DT—through a fuzzy

logic-based fusion method. When tested with NASA datasets,

the system demonstrated superior performance compared to

other techniques, aiming to enhance software quality while

reducing costs. A comprehensive comparative analysis of

various classifiers was undertaken to explore their

effectiveness in software defect prediction, as detailed in [18].

The authors evaluated ten machine learning algorithms,

including DT, NB, K-NN, SVM, RF, Extra Trees, Adaboost,

Gradient Boosting, Bagging, and Multi-Layer Perceptron. This

analysis was conducted using benchmark NASA datasets from

the PROMISE repository, specifically CM1, KC1, KC2, JM1,

and PC1. The experimental results revealed that these

algorithms attained higher average accuracy rates on the PC1

dataset. Notably, the RF models, when combined with

Principal Component Analysis (PCA), demonstrated

significantly improved average performance across all datasets.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.42, September 2024

9

In [19], researchers introduced a novel algorithm combining

SVM and Extreme Learning Machines (ELM) for predicting

software reliability. They examined various factors affecting

prediction accuracy, such as the utilization of historical failure

data and selecting the appropriate type of failure information.

To enhance feature selection, they proposed a model that

leverages both ELM and SVM, addressing dataset imbalance

through resampling methods and applying their approach to

NASA Metrics datasets. In [20], the researchers tackled the

issue of handling the extensive volume of software defect

reports encountered during software development and

maintenance. They developed an SDP model integrated feature

selection through the Least Absolute Shrinkage and Selection

Operator (LASSO) with the Support Vector Machine (SVM)

algorithm to boost prediction accuracy. In [23], researchers

introduced a cloud-based framework designed for real-time

SDP, in which they evaluated four back-propagation training

algorithms. Among these, Bayesian Regularization (BR)

proved to be the most effective. The framework also

incorporated a fuzzy layer to dynamically select the optimal

training function based on performance metrics. Using publicly

available NASA datasets for evaluation, the framework's

performance was assessed through various measures.

Akimova et al. [25] conducted a comprehensive review of the

application of deep learning techniques for SDP, a critical area

aimed at improving software quality and reliability by

identifying defective source code. The study focused on the

latest advancements in ML, especially deep learning, and

examined methods for the automatic extraction of semantic and

structural features from code. This survey provided an in-depth

analysis of recent research in the field, identified existing

challenges, and discussed new trends in software defect

prediction using deep learning.

Goyal [26] focused on SDP and the effective use of SVM to

address issues related to imbalanced datasets, such as the

uneven distribution of faulty and non-faulty modules. The

study introduced a novel filtering technique called FILTER to

improve defect prediction accuracy. The research involved

developing various SVM-based classifiers, including linear,

polynomial, and radial basis function models, and applying

FILTER to five different datasets. The results indicated

significant enhancements in model performance.

2.2 Ensemble Learning in SDP
Ensemble learning (EL) is an ML technique that integrates

predictions from multiple weak classifiers to create a robust

classifier that outperforms individual models [27]. EL

encompasses various homogeneous methods, such as bagging,

boosting, etc., as well as heterogeneous approaches like voting

and stacking [28]. Voting, in particular, is a heterogeneous

ensemble method that aggregates predictions from different

base classifiers to improve overall performance.

Abbas et al. [29] introduced an intelligent system for predicting

defective software modules, leveraging feature selection and

ensemble machine learning techniques. Their approach

incorporates a novel metric selection technique to identify the

most relevant features and employs a three-step nested

methodology for precise prediction. Initially, DT, SVM, and

NB are utilized to identify faulty modules. In the subsequent

step, the predictive accuracy of these methods is enhanced

through ensemble techniques such as bagging, voting, and

stacking. Finally, fuzzy logic is applied to further refine the

predictive accuracy of the ensemble methods. The experiments,

conducted on a combined software defect dataset from five

NASA datasets, demonstrated that the proposed system

outperforms other advanced techniques, achieving a notable

accuracy rate.

Soe et al. [30], proposed a SDP model utilizing multi-layer

feed-forward neural networks combined with stacking as an

ensemble technique. To enhance the model's performance, six

different search methods were employed for feature selection,

with the multilayer perceptron used as the subset evaluator. The

model achieved better accuracies on NASA's datasets using the

best-first search, greedy stepwise search, and GS methods,

respectively. Unlike previous studies that often rely on

individual classifiers and face issues such as overfitting, lack of

robustness, and algorithm-specific biases, this model addresses

these limitations through its innovative ensemble approach.

Standalone classifiers often fail to capture the diverse patterns

in complex software datasets, resulting in suboptimal

predictive performance. While some studies have explored

ensemble techniques, they mostly focus on homogeneous

classifiers within their ensembles [31]. The proposed

framework, however, introduces a paradigm shift by

integrating the predictive accuracy of heterogeneous

classifiers—RF, SVM, and NB —through a voting ensemble

classification technique. This innovative approach addresses

the limitations of both individual classifiers and conventional

homogeneous ensembles. By leveraging the strengths of

diverse classifiers, the proposed model enhances

interpretability, generalizability, and predictive accuracy,

offering a more comprehensive and effective solution for

software defect prediction.

3. PROPOSED METHODOLOGY
This section introduces the basic concepts of defect relation

rule learning (DRRL). Then, it presents the rule-ranking

scheme used for defect relations and predictions. After that, it

respectively gives the methods of defect relation prediction

based on the DRRL method.

3.1 Defect Relation Rule Learning (DRRL)
DRRL was searching for interesting relationships, such as

frequent patterns, associations, correlations, or potential causal

structures, among sets of objects in databases or other

information repositories. The approach was data-driven rather

than hypothesis-driven. The interestingness of an association

rule was measured by both support and confidence, which

respectively reflect the usefulness and certainty of the rule. It

had to be stressed that even rules that were being discovered

with high levels of support (or relevance) and high confidence

were not necessarily implying causality. However, such rules

stimulated further research through the postulation of models

that could be empirically evaluated.

The mechanisms of DRRL for generating rules are given in a

series of procedural steps below:

1. Create the set of defect Items, 1 2{ , ,..., }mX x x x= with

a set of attribute values.

2. Create an item attribute set, F for each defect as a set

where F X .

3. Create a database, Z having multisets of X, where each

transaction recordsT Z .

4. Process for Defect Relation Rule Learning (DRRL):

• A relation rule, R is for a defect class D is expression

as, R : F D , where

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.42, September 2024

10

F X , D X and F D = .

• F is referred to as the antecedent of the rule, and D is

the consequent of the rule R.

5. Calculate the Support Value of the Rule, R:

• The support of the rule F D in Z is defined as,

() ()Sup F D Sup F D = .

• This means that ()Sup F D is the percentage of

transactions in Z that contain F D .

• The support of a defect item set R is defined as

| (T | T) |
()

| |

Z F
Sup F

Z

 
= .

• This is the fraction of transactions T which supports

the defect item attribute set F for the database Z.

• It gives the minimum count of transactions required

for a defect item set to satisfy the minimum support.

• A transactionT Z supports a defect item set

F X if F T holds.

6. Calculate the Confidence Value of the Rule, R:

• The rule R : F D holds in Z with confidence

()
()

()

Sup F D
Conf F D

Sup F
 = .

• This means that ()Conf F D the percentage of

defect transactions in Z that contain attributes F and

also contain defect class D. It provides the measure

of rules relation strength and usefulness of the rule.

The process DRRL constructed rules might have a similar

length of attributes, support, and confidence values. So, to

normalize the rule selection a rule ranking scheme is employed

to organize the rules as their priority.

3.2 Rule-Ranking Mechanism
The length-first (LF) methodology was employed to rank

discovered rules before making predictions. This approach

prioritized longer rules for defect relation prediction, enabling

the identification of as many defects as possible that aligned

with known defects. The utilization of the LF in the rule-

ranking scheme is to prioritize longer rules based on their

condition lengths. In case two or more rules are of the same

length, they will be re-ranked based on their confidence values.

If these rules also have identical confidence values, then they

will be re-ranked according to their support values. The process

of the rule-ranking scheme is described in Algorithm 1.

Algorithm-1: Rule-Ranking Mechanism

Input: Set of defect relation rules created, R.

Output: Ranking of each rule based on LF mechanism.

Loop for (each rule ra → R) do {

Loop for (each rule rb → R) do {

If length(ra) < length(rb) {

 ra ↔ rb ; //-- Interchange of priority.

}

Else if length(ra)  length(rb) {

If Conf_Value(ra) < Conf_Value (rb) {

 ra ↔ rb ; //-- Interchange of priority.

}

Else if Conf(ra)  Conf(rb) {

If Sup_Value(ra) < Sup_Value(rb) {

 ra ↔ rb ; //-- Interchange of priority.

}

}

}

ra ≺ rb ; // has higher priority

}

}

3.3 Defect Relation Prediction
The prediction of the defect relationships, employed the DRRL

rules to identify defect relations within the defect dataset

initially. Although constructing these rules is relatively

straightforward, implementing the DRRL rules for predicting

defect relationships can be challenging, especially when

dealing with datasets that often contain single defects. To

address these challenges and ensure accurate predictions a

“NULL” value is added for transactions with only one defect.

This helps in differentiating between single-defect transactions

and those with multiple defects. An illustration of this example

is given in Figure 1.

Fig. 1: Illustration of Data Relation Prediction

To predict whether a k-defect will occur with others, it needs to

follow a systematic approach that leverages the ranked rules

and iteratively generates potential defect combinations. For a

given k-defect, scan through the ranked rules to find rules

whose antecedent (i.e., the if-part of the rule) contains the k-

defect. Identify the rule where the antecedent includes the k-

defect and then merge the consequent (i.e., the then-part of the

rule) with the k-defect to form a (k+1)-defect. Now, for the

newly formed (k+1)-defect, repeat the process to scan the

ranked rules to find the next rule whose antecedent contains the

(k+1)-defect and merge its consequent with the (k+1)-defect to

form a (k+2)-defect. This will continue this process until no

more applicable rules are available. The final defect set {(k+n)-

defect}Ө{k-defect} represents the defect(s) that are predicted

to occur with the original k-defect.

3.4 Classification using DRRL
To classify defective and non-defective modules, using rules to

train models is an effective approach. In this research, four

heterogeneous supervised machine learning classifiers have

been implemented: Random Forest (RF), Support Vector

Machine (SVM), and Naïve Bayes (NB).

• Random Forest (RF): This is an ensemble learning

method that constructs multiple decision trees during

training and outputs the class which is the mode of the

classes of the individual trees. RF is known for its high

accuracy, robustness to overfitting, and ability to handle

large datasets with higher dimensionality.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.42, September 2024

11

• Support Vector Machine (SVM): SVM is a powerful

classifier that works by finding the hyperplane that best

separates the data into different classes. It is effective in

high-dimensional spaces and is versatile in handling both

linear and non-linear classification tasks using different

kernel functions.

• Naïve Bayes (NB): This is a probabilistic classifier based

on applying Bayes' theorem with strong (naïve)

independence assumptions between the features. It is

particularly useful for large datasets and is known for its

simplicity, efficiency, and often surprisingly good

performance.

These classifiers are trained using rules that differentiate

between defective and non-defective modules. After training,

these classifiers are evaluated to identify potentially faulty

modules in new, unseen data. The selection of RF, SVM, and

NB as base classifiers leverages their diverse and

complementary strengths. RF excels in capturing complex

relationships within data, making it particularly useful for

software defect prediction [30]. SVM, with its capability to

handle non-linear data through kernel functions, offers robust

classification capabilities [32]. NB, based on probabilistic

principles, provides simplicity and efficiency in processing

large datasets, assuming conditional independence [33]. This

strategic combination aims to harness the unique advantages of

each classifier, enhancing the overall robustness and versatility

of the classification system.

Fig. 2: Ensemble Voting Model (EVM) workflow

The ensemble model is a powerful technique in ML that

combines the predictions of multiple individual models, to

enhance the accuracy and robustness of the predictions. This

paper employs an ensemble voting model (EVM) using RF,

SVM, and NB to enhance the accuracy of software defect

prediction. The EVM leverages the unique strengths of each

base model, promoting a robust and reliable prediction system

[34]. The predictive accuracy of three heterogeneous base

classifiers—RF, SVM, and NB is utilized as input to the voting

ensemble model through DRRL rules as shown in Figure 2.

This integration harnesses the distinct capabilities of each

classifier, leading to an overall improvement in accuracy. The

experiment's evaluation demonstrates that the EVM the

precision and reliability in the software defect prediction.

4. EXPERIEMENT EVALUATION
To perform the experiment evaluation, four publicly accessible

NASA datasets (CM1, JM1, PC1, and PC4) were sourced from

the MDP repository [36]. The obtained undergoes cleaning,

normalization, and splitting initially to create two sub-sets,

namely training, and testing in 80:20 ratios using the class-

based splitting rule [35]. Three potential classifiers — RF,

SVM, and NB iteratively evaluated based on the DRRL rules

to obtain the highest possible accuracy for the datasets. Based

on the predictive accuracy from individual classifiers is

integrated using the voting ensemble technique, which further

boosts the performance of the proposed model.

4.1 Performance Measures
To evaluate the effectiveness of the defect prediction method,

precision, recall, accuracy, and F-measure (F1) are commonly

used. These metrics can be derived from the confusion matrix,

which summarizes the results of the predictions compared to

the actual outcomes. A confusion matrix is a table used to

evaluate the performance of a classification model. In the

context of predictive modeling and classification, four key

metrics are used to evaluate the performance of a model. True

Positives (TP) represent the number of actual defects that the

model correctly identifies as defects; False Positives (FP) refer

to instances where the model incorrectly labels non-defects as

defects, True Negatives (TN) denote the number of non-defects

that the model accurately predicts as non-defects and False

Negatives (FN) is the actual defects that the model fails to

identify, incorrectly predicting them as non-defects. A

comparison with three techniques proposed by Azam et al. [21],

Iqbal et al. [22], and Alsaeedi et al. [24] is performed to assess

the accuracy and reliability of a predictive model for software

defect prediction.

Precision
TP

TP FP
=

+
 (1)

Recall
TP

TP FN
=

+
 (2)

Accuracy
TP TN

TP TN FP FN

+
=

+ + +
 (3)

(Precision×Recall)
1 2

(Precision+Recall)
F =  (4)

4.2 Results
Figure 3(a) illustrates the performance of the CM1 dataset,

highlighting that the RF algorithm excelled in both precision

and recall when combined with DRRL. The SVM

demonstrated high precision but suffered from lower recall,

indicating a tendency to reduce false positives. Naive Bayes

(NB) achieved good overall accuracy with a balanced approach

to precision and recall. Notably, with DRRL, NB exhibited

impressive precision, decent recall, and an excellent F-

measure, proving its effectiveness. Despite a slight decrease in

recall, it maintained solid precision with a reasonable F-

measure and competitive accuracy.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.42, September 2024

12

(a) (b)

(c) (d)

Fig. 3: Performance Measure of CM1, JM1, PC1 and PC4 Dataset

In contrast, Figure 3(b) presents the performance on the JM1

dataset, where RF achieved perfect precision with DRRL but

had lower recall. SVM again showed high precision but very

low recall, prioritizing the reduction of false positives. NB

displayed moderate precision and recall, indicating a more

balanced performance. These results underscore the varying

performance characteristics of different models and datasets,

with RF showing strong precision in both datasets but

struggling with recall in JM1. SVM's focus on high precision

often comes at the expense of recall, while NB offers a

balanced approach across metrics.

Figure 3(c) illustrates the performance of various classifiers on

the PC1 dataset, highlighting the impact of DRRL. The RF

classifier achieved perfect precision and recall, indicating an

optimal balance between identifying true positives and

avoiding false positives. The SVM, while achieving perfect

precision, suffered from lower recall, suggesting it missed

some relevant instances. The NB classifier showed a balanced

performance with notable improvements in recall, making it a

reliable choice.

In contrast, Figure 3(d) depicts the performance on the PC4

dataset, where the RF classifier also achieved perfect scores

with DRRL, albeit with potential over-fitting. Despite this, RF

maintained commendable precision and recall, effectively

identifying defective modules. The SVM's performance was

marked by low recall, indicating challenges in defect

recognition. Meanwhile, the NB classifier maintained a

balanced and effective performance in both phases, showcasing

its suitability for software defect prediction and its potential to

enhance software quality assurance. The Random Forest (RF)

classifier is prone to overfitting when applied to small and

imbalanced datasets, such as those from NASA. This issue

arises because the limited amount of data leads the RF model

to capture noise rather than the underlying patterns, resulting in

poor generalization of unseen data. An effective way to

mitigate this overfitting is by employing ensemble models,

which combine predictions from multiple algorithms. These

ensemble approaches leverage the strengths of each model,

thereby improving overall performance and accuracy.

• Performance of EVM

Fig 4: Comparison Analysis of EVM with the datasets

Figure 4 presents a comparative analysis evaluating the

accuracy of the EVM with and without DRRL. The results

demonstrate that incorporating DRRL significantly enhances

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.42, September 2024

13

prediction accuracy, particularly for the CM1, PC1, and PC4

datasets, where accuracy reaches up to 100%. This

improvement underscores the EVM's effectiveness in

identifying and retaining the most informative features,

potentially reducing computational costs. However, in the case

of the JM1 dataset, a marginal decrease in accuracy to 88.2%

is observed with DRRL. This highlights the trade-off between

the benefits of DRRL and the practical efficiency of classifiers

in real-world applications.

• Performance with existing techniques

Fig 5: Comparison Analysis with existing technical works

Figure 5 presents a comparative analysis between the approach

and existing technical works, demonstrating superior

performance across all datasets. The EVM model achieves an

accuracy of 99.2% with the CM1 dataset, 88.2% with the JM1

dataset, and a perfect 100% with both the PC1 and PC4

datasets. These results highlight the efficacy of the proposed

approach in enhancing the effectiveness of the DRRL. The

findings suggest that the individual classifier is highly effective

in selecting rules that optimize the predictive performance of

the EVM, thereby contributing significantly to improved

overall accuracy.

5. CONCLUSION
This paper presented a Defect Relations Rule Learning (DRRL)

approach designed to enhance software defect classification

models. Unlike traditional decision-tree induction methods that

evaluate one variable at a time, DRRL identifies high-

confidence relationships among multiple variables, thereby

utilizing the most effective rules for accurate classification. The

study employs RF, SVM, and NB in the initial stage to evaluate

prediction accuracy. The DRRL uncovers co-occurring

attribute patterns in databases, demonstrating that classification

based on association rules (AR) achieves higher accuracy

compared to other techniques. In the second stage, an Ensemble

Voting Model (EVM) is proposed to combine classifier

prediction outcomes, further enhancing defect detection

accuracy and reliability. The EVM, integrated with DRRL,

shows superior performance, achieving 99.2% accuracy on the

CM11 dataset, 88.2% on the JM1 dataset, and 100% on both

the PC1 and PC4 datasets. These results highlight the DRRL's

potential to significantly improve the precision of software

defect prediction models. In the future it can be integrated with

feature selection and ensemble methods can offer a means to

improve prediction reliability through the combination of

multiple models.

6. REFERENCES
[1] Mohandas R., Southern M., O'Connell E., Hayes M., "A

Survey of Incremental Deep Learning for Defect

Detection in Manufacturing," Big Data and Cognitive

Computing, vol. 8, no. 1, pp. 7, 2024.

[2] Kumar H., Saxena V., "Software Defect Prediction Using

Hybrid Machine Learning Techniques: A Comparative

Study," Journal of Software Engineering and

Applications, vol. 17, pp. 155-171, 2024.

[3] Yuan Z., Liu C., Yu L., Zhang L., "ChangeChecker: A

Tool for Defect Prediction in Source Code Changes Based

on Incremental Learning Method," Proceedings of the 3rd

International Conference on Computer Science and

Network Technology, pp. 349-354, 2013.

[4] Wang S., Li Y., Mi W., Liu Y., "Software Defect

Prediction Incremental Model Using Ensemble Learning,"

International Journal of Performability Engineering, vol.

16, no. 11, pp. 1771-1780, 2020.

[5] Bhandari I. S., Halliday M. J., Chaar J., Chillarenge R.,

Jones K., et al., "In Process Improvement through Defect

Data Interpretation," IBM Systems Journal, vol. 33, no. 1,

pp. 182-214, 1994.

[6] Thota M. K., Shajin F. H., Rajesh P., "Survey on Software

Defect Prediction Techniques," International Journal of

Applied Science and Engineering, vol. 17, pp. 331-344,

2020.

[7] Husin T. F., Pribadi M. R., Yohannes, "Implementation of

Least Squares Support Vector Machines in Classification

of Software Defect Prediction Data with Feature

Selection," 9th International Conference on Electrical

Engineering, Computer Science and Informatics, pp. 126-

131, 2022.

[8] Richards J. A., "Supervised Classification Techniques," In

Remote Sensing Digital Image Analysis, pp. 263-367,

2022.

[9] Odejide B. J., Bajeh A. O., Balogun A. O., Alanamu Z. O.,

Adewole K. S., Akintola A. G., Salihu S. A., "An

Empirical Study on Data Sampling Methods in

Addressing Class Imbalance Problem in Software Defect

Prediction," in Proceedings of Computer Science, pp. 594-

610, 2022.

[10] Wu X., Wang J., "Application of Bagging, Boosting and

Stacking Ensemble and EasyEnsemble Methods for

Landslide Susceptibility Mapping in the Three Gorges

Reservoir Area of China," International Journal of

Environmental Research and Public Health, vol. 20, no. 6,

pp. 4977, 2023.

[11] Jiang F., Yu X., Gong D., Du J., "A Random Approximate

Reduct-Based Ensemble Learning Approach and Its

Application in Software Defect Prediction," Information

Science, vol. 609, pp. 1147-1168, 2022.

[12] Chen H., Jing X.-Y., Zhou Y., Li B., Xu B., "Aligned

Metric Representation Based Balanced Multiset Ensemble

Learning for Heterogeneous Defect Prediction,"

Information and Software Technology, vol. 147, art. no.

106892, 2022.

[13] Balogun A. O., Bajeh A. O., Orie V. A., Yusuf-Asaju A.

W., "Software Defect Prediction Using Ensemble

Learning: An Analytic Network Process Based Evaluation

Method," FUOYE Journal of Engineering and

Technology, vol. 3, no. 2, pp. 50-55, 2018.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.42, September 2024

14

[14] Balogun A. O., Lafenwa-Balogun F. B., Mojeed H. A.,

Adeyemo V. E., Akande O. N., Akintola A. G., Bajeh A.

O., Usman-Hamza F. E., "Synthetic Minority Over-

sampling Technique-Based Homogeneous Ensemble

Methods for Software Defect Prediction," in

Computational Science and Its Applications, vol. 12254,

pp. 615-631, 2020.

[15] Matloob F., Ghazal T. M., Taleb N., Aftab S., Ahmad M.,

Khan M. A., Soomro T. R., "Software Defect Prediction

Using Ensemble Learning: A Systematic Literature

Review," IEEE Access, vol. 9, pp. 98754-98771, 2021.

[16] Daoud M. S., Aftab S., Ahmad M., Khan M. A., Iqbal A.,

Abbas S., Iqbal M., Ihnaini B., "Machine Learning

Empowered Software Defect Prediction System,"

Intelligent Automation and Soft Computing, vol. 31, no.

2, pp. 1287-1300, 2022.

[17] Aftab S., Abbas S., Ghazal T. M., Ahmad M., Hamadi H.

A., Yeun C. Y., Khan M. A., "A Cloud-Based Software

Defect Prediction System Using Data and Decision-Level

Machine Learning Fusion," Mathematics, vol. 11, no. 3,

pp. 632, 2023.

[18] Cetiner M., Sahingoz O. K., "A Comparative Analysis for

Machine Learning Based Software Defect Prediction

Systems," in Proceedings of the 11th International

Conference on Computing, Communication and

Networking Technologies, pp. 1-7, 2020.

[19] Rath S. K., Sahu M., Das S. P., Bisoy S. K., Sain M., "A

Comparative Analysis of Support Vector Machines and

Extreme Learning Machine Classification on Software

Reliability Prediction Model," Electronics, vol. 11, no. 17,

pp. 2707, 2022.

[20] Wang K., Liu L., Yuan C., Wang Z., "Software Defect

Prediction Model Based on Least Absolute Shrinkage and

Selection Operator-Support Vector Machines," Neural

Computing and Applications, vol. 33, no. 14, pp. 8249-

8259, 2021.

[21] Azam M., Nouman M., Rehman G. A., "Comparative

Analysis of Machine Learning Techniques to Improve

Software Defect Prediction," KIET Journal of Computing

and Information Sciences, vol. 5, no. 2, 2022.

[22] Iqbal A., Aftab S., Ali U., Nawaz Z., Sana L., Ahmad M.,

Husen A., "Performance Analysis of Machine Learning

Techniques on Software Defect Prediction Using NASA

Datasets," International Journal of Advanced Computer

Science and Applications, vol. 10, no. 5, 2019.

[23] Mohammadi M., Nucci D. D., Tamburri D. A., "Bayesian

Meta-Analysis of Software Defect Prediction With

Machine Learning," IEEE Transactions on Industrial

Cyber-Physical Systems, vol. 1, pp. 147-156, 2023.

[24] Alsaeedi A., Khan M. Z., "Software Defect Prediction

Using Supervised Machine Learning and Ensemble

Techniques: A Comparative Study," Job Safety and

Environmental Analysis, vol. 12, no. 5, pp. 85-100, 2019.

[25] Akimova E. N., Bersenev A. Y., Deikov A. A., Kobylkin

K. S., Konygin A. V., Mezentsev I. P., Misilov V. E., "A

Survey on Software Defect Prediction Using Deep

Learning," Mathematics, vol. 9, art. no. 1180, 2021.

[26] Goyal S., "Effective Software Defect Prediction Using

Support Vector Machines," International Journal of

System Assurance Engineering and Management, vol. 13,

pp. 681-696, 2022.

[27] Mehta S., Patnaik K. S., "Improved Prediction of Software

Defects Using Ensemble Machine Learning Techniques,"

Neural Computing and Applications, vol. 33, no. 16, pp.

10551-10562, 2021.

[28] Wu X., Wang J., "Application of Bagging, Boosting and

Stacking Ensemble and EasyEnsemble Methods for

Landslide Susceptibility Mapping in the Three Gorges

Reservoir Area of China," International Journal of

Environmental Research and Public Health, vol. 20, no. 6,

pp. 4977, 2023.

[29] Abbas S., Aftab S., Khan M. A., Ghazal T. M., Hamadi H.

A., Yeun C. Y., "Data and Ensemble Machine Learning

Fusion Based Intelligent Software Defect Prediction

System," Computers, Materials & Continua, vol. 75, no.

3, pp. 6083-6100, 2023.

[30] Soe Y. N., Santosa P. I., Hartanto R., "Software Defect

Prediction Using Random Forest Algorithm," in

Proceedings of the 12th South East Asian Technical

University Consortium, pp. 1-5, 2018.

[31] Cetiner M., Sahingoz O. K., "A Comparative Analysis for

Machine Learning Based Software Defect Prediction

Systems," in Proceedings of the 11th International

Conference on Computing, Communication and

Networking Technologies, pp. 1-7, 2020.

[32] Alsghaier H., Akour M., "Software Fault Prediction Using

Particle Swarm Algorithm with Genetic Algorithm and

Support Vector Machine Classifier," Software Practice

and Experience, vol. 50, no. 4, pp. 407-427, 2020.

[33] Tua F. M., Sunindyo W. Danar, "Software Defect

Prediction Using Software Metrics with Naïve Bayes and

Rule Mining Association Methods," in Proceedings of the

5th International Conference on Science and Technology,

pp. 1-5, 2019.

[34] Kim S. Y., Upneja A., "Majority Voting Ensemble with

Decision Trees for Business Failure Prediction During

Economic Downturns," Journal of Innovation and

Knowledge, vol. 6, no. 2, pp. 112-123, 2021.

[35] Kaur I., Kaur A., "Comparative Analysis of Software

Fault Prediction Using Various Categories of Classifiers,"

International Journal of System Assurance Engineering

and Management, vol. 12, no. 3, pp. 520-535, 2021.

[36] PROMISE Software Engineering Repository,

"http://promise.site.uottawa.ca/SERepository/datasets-

page.html".

IJCATM : www.ijcaonline.org

