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ABSTRACT 

Software defect prediction (SDP) is a crucial aspect of software 

quality assurance, aiming to identify potential defects early in 

the development process to enhance reliability and reduce 

maintenance costs. This paper presents a defect relations rule 

learning (DRRL) to enhance the defect classification models. It 

discovers the rules based on the defect relation association and 

applies a rule-ranking mechanism to perform a two-stage 

prediction model for accurate defect prediction software 

modules.  In the first stage Random Forest, Support Vector 

Machine, and Naïve Bayes — are employed to analyze their 

prediction accuracy. In the second stage, an Ensemble Voting 

Model (EVM) with classifiers prediction outcome for 

enhancing the accuracy and reliability of defect detection is 

proposed. The EVM was implemented and evaluated further to 

validate previous models for effectiveness. The EVM with the 

proposed DRRL exhibited superior performance of 99.2% 

accuracy for the CM11 dataset, 88.2% accuracy for the JM1 

dataset, and 100% accuracy for the PC1 and PC4 datasets. 

These findings underscore the model's potential to significantly 

improve software defect prediction.   
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1. INTRODUCTION 
The success of a software system is determined not only by its 

cost and adherence to schedule but also significantly by its 

quality. Among the various characteristics that define software 

quality, the presence of residual defects has emerged as the 

industry benchmark [1]. Predicting software defects—defined 

as deviations from specifications or expectations that could 

cause operational failures—has been a pivotal research area in 

software engineering for over three decades [2]. These defects 

serve as indicators of reliability; however, assessing reliability 

accurately before the full deployment of the software remains 

a challenging task.  

Current efforts in defect prediction emphasize estimating the 

remaining number of defects in software systems. This is 

achieved using a variety of data sources, including code 

metrics, inspection data, and process-quality data, and applying 

statistical approaches to analyze them [3], [4]. Notably, 

capture-recapture (CR) models and detection profile methods 

(DPM) are widely utilized in this domain [x]. These 

methodologies leverage different types of data and statistical 

techniques to provide insights into software quality and defect 

prevalence, thereby guiding maintenance and improvement 

efforts. 

The predicted number of remaining defects in a software 

system serves as a crucial metric for developers. These metrics 

aid in controlling the software process by helping decide 

whether further inspections are necessary or if the software 

artifacts can proceed to the next development phase. It also 

helps in assessing the likely quality of the delivered software. 

On the other hand, the author [5] suggests that defects found 

during production reflect underlying process deficiencies. They 

illustrate this through a case study employing a defect-based 

method for software process improvement. Specifically, they 

utilize an attribute-focusing method to uncover associations 

among defect attributes, such as defect type, source, phase 

introduced, phase found, component, and impact. By 

identifying events leading to these associations, they pinpoint 

process issues and implement corrective actions.  

Several approaches [6] support enabling a project team to 

enhance its development process by focusing specifically on 

predicting defect types and their associated correction efforts. 

By accurately identifying and categorizing defects, the team 

can allocate resources more efficiently and implement targeted 

interventions to address issues. This proactive strategy not only 

improves overall software quality but also optimizes the 

correction effort, leading to a more streamlined and effective 

development process. This work aims to find what the related 

defect(s) may occur for the given defect(s), by predicting defect 

types and their relation.  

Using defect-type data to predict software defect relations 

allows us to identify relationships among different defect types. 

These relationships can be expressed as rules, such as: If 

defects A and B occur, then defect C is also likely to occur, 

formally written as A ^ B → C. These defect relations serve 

three primary purposes: 

1. Enhancing Defect Detection and Correction: By 

identifying related defects to those already detected, it can 

make more effective corrections to the software. For 

instance, if it has a historical rule A ^ B → C, and defects 

A and B have been detected together but defect C has not 

yet been discovered, the rule suggests that defect C is 

likely present. This prompts us to inspect the 

corresponding software artifact to confirm its existence. If 

confirmed, then it will continue the search using 

additional rules, such as A ^ B ^ C → D, further guiding 

the testing efforts and optimizing the use of limited testing 

resources.  

2. Evaluating Reviewers' Results: During inspections, these 

rules can help assess the thoroughness of reviewers. For 

example, if the rule A ^ B → C holds, but a reviewer has 

only found defects A and B, it is possible they missed 
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defect C. In such cases, a recommendation can be made to 

re-inspect the work for completeness, ensuring a more 

comprehensive review process. 

3. Improving Software Processes: By analyzing why certain 

defects frequently occur together, managers can gain 

insights into potential process problems. If a recurring 

relation between defects is identified, managers can 

investigate and implement corrective actions to address 

the underlying issues, ultimately enhancing the overall 

software development process. 

These applications of defect relations not only improve defect 

detection and correction but also enhance the inspection 

process and support continuous improvement in software 

development practices. 

This paper presents a defect relations rule learning (DRRL) 

method for defect classification by discovering the rules based 

on the defect relation association. It is to discover software 

defect associations from historical software engineering data 

sets and help determine whether or not a defect is accompanied 

by other defects. The methods for predicting defect relations 

are grounded in the principles of association rule (AR) learning 

[1]. It seeks to uncover patterns of co-occurrence among 

attributes within a database. However, it is important to note 

that such associations do not imply a relationship. An AR is 

typically expressed in the form A → C, where A (Antecedent) 

and C (Consequent) represent sets of items. The interpretation 

of these rules is straightforward for example, if a given database 

D of transactions, where each transaction T in D is a set of 

items, then the rule A → C indicates that whenever a transaction 

T includes A, it is likely to also include C, with a certain level 

of confidence. This confidence is defined as the proportion of 

transactions that contain both A and C relative to the total 

number of transactions that contain A. 

The DRRL will uncover the patterns of co-occurring attributes 

in databases, and it has been observed that classification based 

on AR will achieve higher accuracy than other classification 

techniques. This is largely due to the use of heuristic and greedy 

search methods in building classifiers, which result in a 

representative subset of rules. Unlike decision-tree induction 

methods, which evaluate one variable at a time, AR identifies 

high-confidence relations among multiple variables, potentially 

overcoming some limitations of other techniques. 

Consequently, it will utilize the most effective rule(s) from the 

constructed set for accurate classification. A data source from 

the NASA repository is utilized to obtain four datasets for the 

learning, prediction, and experimental evaluation. 

The remainder of this paper is structured as follows: Section 2 

outlines the methodology employed in this study. Section 3 

details the methods used for defect relation learning and 

prediction for defects. Section 4 presents the results of the 

experiments. Lastly, Section 5 provides a summary of the work 

and key findings. 

2. RELATED WORKS 
In software development, identifying and fixing software 

bugs—errors and flaws—is crucial, especially as these issues 

are addressed in subsequent software updates. Recent research 

has delved into this topic, building on existing literature. Thota 

et al. [6] conducted a significant study on software defect 

prediction (SDP), underscoring its importance in maintaining 

high-quality software amidst rapid technological 

advancements. The researchers proposed an effective approach 

that leverages soft computing-based machine learning 

techniques to optimize feature prediction. This strategy 

addresses challenges faced by industries with high software 

development costs, particularly in safety-critical systems, 

offering valuable insights to enhance testing strategies and 

improve overall software reliability. 

Classification techniques play a vital role in this process by 

categorizing data into specific classes or labels, thereby 

identifying potential software defects. Commonly employed 

methods include decision trees (DT), logistic regression (LR), 

and support vector machines (SVM), all of which proactively 

assess and address software quality concerns. Historical studies 

[7-9] have utilized these techniques to enhance defect 

prediction model accuracy. Despite their effectiveness, these 

approaches face limitations, including challenges with the 

classification methods. These challenges highlight the need for 

ongoing research and innovation in defect prediction 

methodologies. 

 

In addition to classification, Ensemble Modeling (EM) has 

become a prominent technique in machine learning (ML), 

known for its ability to enhance predictive performance by 

combining outputs from multiple models [10]. Techniques such 

as bagging, boosting, stacking, and RF have significantly 

advanced this field by addressing challenges like overfitting, 

underfitting, and biases that typically affect individual 

classifiers[11], [12].  By aggregating predictions from various 

base models, ensemble methods improve the accuracy and 

robustness of predictions, particularly in the context of defect 

prediction models. This aggregation helps to minimize the 

biases inherent in single classifiers. Despite these benefits, 

researchers have identified that ensemble techniques 

themselves can be prone to biases, which may impact their 

overall effectiveness [13], [14]. 

2.1 Classification Approaches in SDP 
Machine learning (ML)-based classification algorithms have 

gained immense popularity and interest in recent literature on 

SDP. These approaches have proven to be highly effective in 

identifying defect-prone modules, offering significant benefits 

in software quality assurance and maintenance. Matloob et al. 

[15] conducted a systematic review of the literature focusing on 

the use of classification learning in SDP, and Daoud et al. [16] 

performed a comparative analysis of four classifiers using 

NASA's datasets to improve the accuracy and robustness of 

defect prediction models. 

 

In [17], researchers developed an advanced cloud-based SDP 

system that utilized data fusion and decision-level machine 

learning fusion techniques. This innovative system combined 

the predictive outputs of three classifiers—naïve Bayes (NB), 

artificial neural network (ANN), and DT—through a fuzzy 

logic-based fusion method. When tested with NASA datasets, 

the system demonstrated superior performance compared to 

other techniques, aiming to enhance software quality while 

reducing costs. A comprehensive comparative analysis of 

various classifiers was undertaken to explore their 

effectiveness in software defect prediction, as detailed in [18]. 

The authors evaluated ten machine learning algorithms, 

including DT, NB, K-NN, SVM, RF, Extra Trees, Adaboost, 

Gradient Boosting, Bagging, and Multi-Layer Perceptron. This 

analysis was conducted using benchmark NASA datasets from 

the PROMISE repository, specifically CM1, KC1, KC2, JM1, 

and PC1. The experimental results revealed that these 

algorithms attained higher average accuracy rates on the PC1 

dataset. Notably, the RF models, when combined with 

Principal Component Analysis (PCA), demonstrated 

significantly improved average performance across all datasets. 



International Journal of Computer Applications (0975 – 8887) 

Volume 186 – No.42, September 2024 

9 

In [19], researchers introduced a novel algorithm combining 

SVM and Extreme Learning Machines (ELM) for predicting 

software reliability. They examined various factors affecting 

prediction accuracy, such as the utilization of historical failure 

data and selecting the appropriate type of failure information. 

To enhance feature selection, they proposed a model that 

leverages both ELM and SVM, addressing dataset imbalance 

through resampling methods and applying their approach to 

NASA Metrics datasets. In [20], the researchers tackled the 

issue of handling the extensive volume of software defect 

reports encountered during software development and 

maintenance. They developed an SDP model integrated feature 

selection through the Least Absolute Shrinkage and Selection 

Operator (LASSO) with the Support Vector Machine (SVM) 

algorithm to boost prediction accuracy. In [23], researchers 

introduced a cloud-based framework designed for real-time 

SDP, in which they evaluated four back-propagation training 

algorithms. Among these, Bayesian Regularization (BR) 

proved to be the most effective. The framework also 

incorporated a fuzzy layer to dynamically select the optimal 

training function based on performance metrics. Using publicly 

available NASA datasets for evaluation, the framework's 

performance was assessed through various measures.  

 

Akimova et al. [25] conducted a comprehensive review of the 

application of deep learning techniques for SDP, a critical area 

aimed at improving software quality and reliability by 

identifying defective source code. The study focused on the 

latest advancements in ML, especially deep learning, and 

examined methods for the automatic extraction of semantic and 

structural features from code. This survey provided an in-depth 

analysis of recent research in the field, identified existing 

challenges, and discussed new trends in software defect 

prediction using deep learning. 

Goyal [26] focused on SDP and the effective use of SVM to 

address issues related to imbalanced datasets, such as the 

uneven distribution of faulty and non-faulty modules. The 

study introduced a novel filtering technique called FILTER to 

improve defect prediction accuracy. The research involved 

developing various SVM-based classifiers, including linear, 

polynomial, and radial basis function models, and applying 

FILTER to five different datasets. The results indicated 

significant enhancements in model performance. 

2.2 Ensemble Learning in SDP 
Ensemble learning (EL) is an ML technique that integrates 

predictions from multiple weak classifiers to create a robust 

classifier that outperforms individual models [27]. EL 

encompasses various homogeneous methods, such as bagging, 

boosting, etc., as well as heterogeneous approaches like voting 

and stacking [28]. Voting, in particular, is a heterogeneous 

ensemble method that aggregates predictions from different 

base classifiers to improve overall performance. 

Abbas et al. [29] introduced an intelligent system for predicting 

defective software modules, leveraging feature selection and 

ensemble machine learning techniques. Their approach 

incorporates a novel metric selection technique to identify the 

most relevant features and employs a three-step nested 

methodology for precise prediction. Initially, DT, SVM, and 

NB are utilized to identify faulty modules. In the subsequent 

step, the predictive accuracy of these methods is enhanced 

through ensemble techniques such as bagging, voting, and 

stacking. Finally, fuzzy logic is applied to further refine the 

predictive accuracy of the ensemble methods. The experiments, 

conducted on a combined software defect dataset from five 

NASA datasets, demonstrated that the proposed system 

outperforms other advanced techniques, achieving a notable 

accuracy rate. 

 

Soe et al. [30], proposed a SDP model utilizing multi-layer 

feed-forward neural networks combined with stacking as an 

ensemble technique. To enhance the model's performance, six 

different search methods were employed for feature selection, 

with the multilayer perceptron used as the subset evaluator. The 

model achieved better accuracies on NASA's datasets using the 

best-first search, greedy stepwise search, and GS methods, 

respectively. Unlike previous studies that often rely on 

individual classifiers and face issues such as overfitting, lack of 

robustness, and algorithm-specific biases, this model addresses 

these limitations through its innovative ensemble approach.  

 

Standalone classifiers often fail to capture the diverse patterns 

in complex software datasets, resulting in suboptimal 

predictive performance. While some studies have explored 

ensemble techniques, they mostly focus on homogeneous 

classifiers within their ensembles [31]. The proposed 

framework, however, introduces a paradigm shift by 

integrating the predictive accuracy of heterogeneous 

classifiers—RF, SVM, and NB —through a voting ensemble 

classification technique. This innovative approach addresses 

the limitations of both individual classifiers and conventional 

homogeneous ensembles. By leveraging the strengths of 

diverse classifiers, the proposed model enhances 

interpretability, generalizability, and predictive accuracy, 

offering a more comprehensive and effective solution for 

software defect prediction. 

3. PROPOSED METHODOLOGY 
This section introduces the basic concepts of defect relation 

rule learning (DRRL). Then, it presents the rule-ranking 

scheme used for defect relations and predictions. After that, it 

respectively gives the methods of defect relation prediction 

based on the DRRL method. 

3.1 Defect Relation Rule Learning (DRRL) 
DRRL was searching for interesting relationships, such as 

frequent patterns, associations, correlations, or potential causal 

structures, among sets of objects in databases or other 

information repositories. The approach was data-driven rather 

than hypothesis-driven. The interestingness of an association 

rule was measured by both support and confidence, which 

respectively reflect the usefulness and certainty of the rule. It 

had to be stressed that even rules that were being discovered 

with high levels of support (or relevance) and high confidence 

were not necessarily implying causality. However, such rules 

stimulated further research through the postulation of models 

that could be empirically evaluated. 

The mechanisms of DRRL for generating rules are given in a 

series of procedural steps below: 

1. Create the set of defect Items, 1 2{ , ,..., }mX x x x=  with 

a set of attribute values. 

2. Create an item attribute set, F for each defect as a set 

where F X . 

3. Create a database, Z having multisets of X, where each 

transaction recordsT Z . 

4. Process for Defect Relation Rule Learning (DRRL): 

• A relation rule, R is for a defect class D is expression 

as, R : F D , where 
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F X , D X  and F D = . 

• F is referred to as the antecedent of the rule, and D is 

the consequent of the rule R. 

5. Calculate the Support Value of the Rule, R: 

• The support of the rule F D in Z is defined as, 

( ) ( )Sup F D Sup F D = . 

• This means that ( )Sup F D is the percentage of 

transactions in Z that contain F D . 

• The support of a defect item set R is defined as 

| (T | T) |
( )

| |

Z F
Sup F

Z

 
=  . 

• This is the fraction of transactions T which supports 

the defect item attribute set F for the database Z. 

• It gives the minimum count of transactions required 

for a defect item set to satisfy the minimum support. 

• A transactionT Z supports a defect item set 

F X  if F T   holds. 

6. Calculate the Confidence Value of the Rule, R: 

• The rule R : F D  holds in Z  with  confidence 

( )
( )

( )

Sup F D
Conf F D

Sup F
 = . 

• This means that ( )Conf F D  the percentage of 

defect transactions in Z that contain attributes F and 

also contain defect class D.  It provides the measure 

of rules relation strength and usefulness of the rule.  

The process DRRL constructed rules might have a similar 

length of attributes, support, and confidence values. So, to 

normalize the rule selection a rule ranking scheme is employed 

to organize the rules as their priority. 

3.2 Rule-Ranking Mechanism 
The length-first (LF) methodology was employed to rank 

discovered rules before making predictions. This approach 

prioritized longer rules for defect relation prediction, enabling 

the identification of as many defects as possible that aligned 

with known defects. The utilization of the LF in the rule-

ranking scheme is to prioritize longer rules based on their 

condition lengths. In case two or more rules are of the same 

length, they will be re-ranked based on their confidence values. 

If these rules also have identical confidence values, then they 

will be re-ranked according to their support values. The process 

of the rule-ranking scheme is described in Algorithm 1. 

Algorithm-1: Rule-Ranking Mechanism 

Input: Set of defect relation rules created, R. 

Output: Ranking of each rule based on LF mechanism. 

Loop for (each rule ra → R ) do { 

Loop for (each rule rb → R ) do { 

If length(ra)  < length(rb) { 

 ra ↔ rb ; //-- Interchange of priority. 

} 

Else if length(ra)  length(rb) { 

If Conf_Value(ra)  < Conf_Value (rb) { 

 ra ↔ rb ; //-- Interchange of priority. 

} 

Else if Conf(ra)  Conf(rb) { 

If Sup_Value(ra)  < Sup_Value(rb) { 

 ra ↔ rb ; //-- Interchange of priority. 

} 

} 

} 

ra ≺ rb ; // has higher priority 

} 

} 

3.3 Defect Relation Prediction 
The prediction of the defect relationships, employed the DRRL 

rules to identify defect relations within the defect dataset 

initially. Although constructing these rules is relatively 

straightforward, implementing the DRRL rules for predicting 

defect relationships can be challenging, especially when 

dealing with datasets that often contain single defects. To 

address these challenges and ensure accurate predictions a 

“NULL” value is added for transactions with only one defect. 

This helps in differentiating between single-defect transactions 

and those with multiple defects. An illustration of this example 

is given in Figure 1. 

 

Fig. 1: Illustration of Data Relation Prediction 

 

To predict whether a k-defect will occur with others, it needs to 

follow a systematic approach that leverages the ranked rules 

and iteratively generates potential defect combinations. For a 

given k-defect, scan through the ranked rules to find rules 

whose antecedent (i.e., the if-part of the rule) contains the k-

defect. Identify the rule where the antecedent includes the k-

defect and then merge the consequent (i.e., the then-part of the 

rule) with the k-defect to form a (k+1)-defect. Now, for the 

newly formed (k+1)-defect, repeat the process to scan the 

ranked rules to find the next rule whose antecedent contains the 

(k+1)-defect and merge its consequent with the (k+1)-defect to 

form a (k+2)-defect. This will continue this process until no 

more applicable rules are available. The final defect set {(k+n)-

defect}Ө{k-defect} represents the defect(s) that are predicted 

to occur with the original k-defect. 

3.4 Classification using DRRL 
To classify defective and non-defective modules, using rules to 

train models is an effective approach. In this research, four 

heterogeneous supervised machine learning classifiers have 

been implemented: Random Forest (RF), Support Vector 

Machine (SVM), and Naïve Bayes (NB).  

• Random Forest (RF): This is an ensemble learning 

method that constructs multiple decision trees during 

training and outputs the class which is the mode of the 

classes of the individual trees. RF is known for its high 

accuracy, robustness to overfitting, and ability to handle 

large datasets with higher dimensionality. 
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• Support Vector Machine (SVM): SVM is a powerful 

classifier that works by finding the hyperplane that best 

separates the data into different classes. It is effective in 

high-dimensional spaces and is versatile in handling both 

linear and non-linear classification tasks using different 

kernel functions. 

• Naïve Bayes (NB): This is a probabilistic classifier based 

on applying Bayes' theorem with strong (naïve) 

independence assumptions between the features. It is 

particularly useful for large datasets and is known for its 

simplicity, efficiency, and often surprisingly good 

performance. 

These classifiers are trained using rules that differentiate 

between defective and non-defective modules. After training, 

these classifiers are evaluated to identify potentially faulty 

modules in new, unseen data. The selection of RF, SVM, and 

NB as base classifiers leverages their diverse and 

complementary strengths. RF excels in capturing complex 

relationships within data, making it particularly useful for 

software defect prediction [30]. SVM, with its capability to 

handle non-linear data through kernel functions, offers robust 

classification capabilities [32]. NB, based on probabilistic 

principles, provides simplicity and efficiency in processing 

large datasets, assuming conditional independence [33]. This 

strategic combination aims to harness the unique advantages of 

each classifier, enhancing the overall robustness and versatility 

of the classification system. 

 

 

Fig. 2: Ensemble Voting Model (EVM) workflow 

The ensemble model is a powerful technique in ML that 

combines the predictions of multiple individual models, to 

enhance the accuracy and robustness of the predictions. This 

paper employs an ensemble voting model (EVM) using RF, 

SVM, and NB to enhance the accuracy of software defect 

prediction. The EVM leverages the unique strengths of each 

base model, promoting a robust and reliable prediction system 

[34].  The predictive accuracy of three heterogeneous base 

classifiers—RF, SVM, and NB is utilized as input to the voting 

ensemble model through DRRL rules as shown in Figure 2. 

This integration harnesses the distinct capabilities of each 

classifier, leading to an overall improvement in accuracy. The 

experiment's evaluation demonstrates that the EVM the 

precision and reliability in the software defect prediction. 

4. EXPERIEMENT EVALUATION 
To perform the experiment evaluation, four publicly accessible 

NASA datasets (CM1, JM1, PC1, and PC4) were sourced from 

the MDP repository [36]. The obtained undergoes cleaning, 

normalization, and splitting initially to create two sub-sets, 

namely training, and testing in 80:20 ratios using the class-

based splitting rule [35]. Three potential classifiers — RF, 

SVM, and NB iteratively evaluated based on the DRRL rules 

to obtain the highest possible accuracy for the datasets. Based 

on the predictive accuracy from individual classifiers is 

integrated using the voting ensemble technique, which further 

boosts the performance of the proposed model. 

4.1 Performance Measures 
To evaluate the effectiveness of the defect prediction method, 

precision, recall, accuracy, and F-measure (F1) are commonly 

used. These metrics can be derived from the confusion matrix, 

which summarizes the results of the predictions compared to 

the actual outcomes. A confusion matrix is a table used to 

evaluate the performance of a classification model. In the 

context of predictive modeling and classification, four key 

metrics are used to evaluate the performance of a model. True 

Positives (TP) represent the number of actual defects that the 

model correctly identifies as defects; False Positives (FP) refer 

to instances where the model incorrectly labels non-defects as 

defects, True Negatives (TN) denote the number of non-defects 

that the model accurately predicts as non-defects and False 

Negatives (FN) is the actual defects that the model fails to 

identify, incorrectly predicting them as non-defects. A 

comparison with three techniques proposed by Azam et al. [21], 

Iqbal et al. [22], and Alsaeedi et al. [24] is performed to assess 

the accuracy and reliability of a predictive model for software 

defect prediction. 

Precision
TP

TP FP
=

+
   (1) 

Recall
TP

TP FN
=

+
   (2) 

Accuracy
TP TN

TP TN FP FN

+
=

+ + +
  (3) 

(Precision×Recall)
1 2

(Precision+Recall)
F =     (4) 

4.2 Results 
Figure 3(a) illustrates the performance of the CM1 dataset, 

highlighting that the RF algorithm excelled in both precision 

and recall when combined with DRRL. The SVM 

demonstrated high precision but suffered from lower recall, 

indicating a tendency to reduce false positives. Naive Bayes 

(NB) achieved good overall accuracy with a balanced approach 

to precision and recall. Notably, with DRRL, NB exhibited 

impressive precision, decent recall, and an excellent F-

measure, proving its effectiveness. Despite a slight decrease in 

recall, it maintained solid precision with a reasonable F-

measure and competitive accuracy. 
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(a) (b) 

  
(c) (d) 

Fig. 3: Performance Measure of CM1, JM1, PC1 and PC4 Dataset 

In contrast, Figure 3(b) presents the performance on the JM1 

dataset, where RF achieved perfect precision with DRRL but 

had lower recall. SVM again showed high precision but very 

low recall, prioritizing the reduction of false positives. NB 

displayed moderate precision and recall, indicating a more 

balanced performance. These results underscore the varying 

performance characteristics of different models and datasets, 

with RF showing strong precision in both datasets but 

struggling with recall in JM1. SVM's focus on high precision 

often comes at the expense of recall, while NB offers a 

balanced approach across metrics. 

Figure 3(c) illustrates the performance of various classifiers on 

the PC1 dataset, highlighting the impact of DRRL. The RF 

classifier achieved perfect precision and recall, indicating an 

optimal balance between identifying true positives and 

avoiding false positives. The SVM, while achieving perfect 

precision, suffered from lower recall, suggesting it missed 

some relevant instances. The NB classifier showed a balanced 

performance with notable improvements in recall, making it a 

reliable choice.  

In contrast, Figure 3(d) depicts the performance on the PC4 

dataset, where the RF classifier also achieved perfect scores 

with DRRL, albeit with potential over-fitting. Despite this, RF 

maintained commendable precision and recall, effectively 

identifying defective modules. The SVM's performance was 

marked by low recall, indicating challenges in defect 

recognition. Meanwhile, the NB classifier maintained a 

balanced and effective performance in both phases, showcasing 

its suitability for software defect prediction and its potential to 

enhance software quality assurance. The Random Forest (RF) 

classifier is prone to overfitting when applied to small and 

imbalanced datasets, such as those from NASA. This issue 

arises because the limited amount of data leads the RF model 

to capture noise rather than the underlying patterns, resulting in 

poor generalization of unseen data. An effective way to 

mitigate this overfitting is by employing ensemble models, 

which combine predictions from multiple algorithms. These 

ensemble approaches leverage the strengths of each model, 

thereby improving overall performance and accuracy. 

• Performance of EVM 

 
Fig 4: Comparison Analysis of EVM with the datasets 

Figure 4 presents a comparative analysis evaluating the 

accuracy of the EVM with and without DRRL. The results 

demonstrate that incorporating DRRL significantly enhances 
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prediction accuracy, particularly for the CM1, PC1, and PC4 

datasets, where accuracy reaches up to 100%. This 

improvement underscores the EVM's effectiveness in 

identifying and retaining the most informative features, 

potentially reducing computational costs. However, in the case 

of the JM1 dataset, a marginal decrease in accuracy to 88.2% 

is observed with DRRL. This highlights the trade-off between 

the benefits of DRRL and the practical efficiency of classifiers 

in real-world applications. 

• Performance with existing techniques 

  
Fig 5: Comparison Analysis with existing technical works 

Figure 5 presents a comparative analysis between the approach 

and existing technical works, demonstrating superior 

performance across all datasets. The EVM model achieves an 

accuracy of 99.2% with the CM1 dataset, 88.2% with the JM1 

dataset, and a perfect 100% with both the PC1 and PC4 

datasets. These results highlight the efficacy of the proposed 

approach in enhancing the effectiveness of the DRRL. The 

findings suggest that the individual classifier is highly effective 

in selecting rules that optimize the predictive performance of 

the EVM, thereby contributing significantly to improved 

overall accuracy. 

5. CONCLUSION 
This paper presented a Defect Relations Rule Learning (DRRL) 

approach designed to enhance software defect classification 

models. Unlike traditional decision-tree induction methods that 

evaluate one variable at a time, DRRL identifies high-

confidence relationships among multiple variables, thereby 

utilizing the most effective rules for accurate classification. The 

study employs RF, SVM, and NB in the initial stage to evaluate 

prediction accuracy. The DRRL uncovers co-occurring 

attribute patterns in databases, demonstrating that classification 

based on association rules (AR) achieves higher accuracy 

compared to other techniques. In the second stage, an Ensemble 

Voting Model (EVM) is proposed to combine classifier 

prediction outcomes, further enhancing defect detection 

accuracy and reliability. The EVM, integrated with DRRL, 

shows superior performance, achieving 99.2% accuracy on the 

CM11 dataset, 88.2% on the JM1 dataset, and 100% on both 

the PC1 and PC4 datasets. These results highlight the DRRL's 

potential to significantly improve the precision of software 

defect prediction models. In the future it can be integrated with 

feature selection and ensemble methods can offer a means to 

improve prediction reliability through the combination of 

multiple models. 
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