
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.42, September 2024

36

Selection of Software Development Life Cycle Models
using Machine Learning Approach

Dires Bitew Aniley

School of Computing Department
of Information Technology

Woldia University
Woldia, Ethiopia

Esubalew Alemneh Jalew

ICT4D Research Center, Bahir Dar
Institute of Technology

Bahir Dar University
Bahir Dar, Ethiopia

Getasew Abeba Agegnehu

School of Computing Department
of Information Technology

Woldia University
Woldia, Ethiopia

ABSTRACT
Inappropriate selection of Software Development Life Cycle

(SDLC) models can lead to increased development time and costs,

heightened overhead, elevated risk exposure, difficulty managing

uncertainty, reduced quality, strained client relations, and

insufficient project tracking and control. These challenges are

exacerbated by the diverse expertise levels of software developers,

ranging from novices to seasoned professionals. While experts may

conduct in-depth analyses to select suitable SDLC models,

beginners often lack the criteria for effective model selection.

Previous research has shown limitations in the criteria used for

SDLC model selection, usually relying on knowledge-based

systems that lack flexibility and scalability. To address this

problem, they propose an automatic SDLC model selection system

using a machine-learning approach tailored to specific project

requirements. They conducted comparative experimental analyses

using machine learning and deep learning algorithms such as KNN,

CNN, NB, ANN, Random Forest, and Decision Trees.

Experimental results demonstrated that Decision Tree and Random

Forest achieved 99.9% accuracy in the classification task,

indicating their effectiveness in automating SDLC model selection

for software projects.

Keywords

Software Development Life Cycle, Selection of Software

Development Life Cycle, Project Characteristics, Machine

Learning, Deep Learning

1 INTRODUCTION
In the current dynamic and competitive environment of software

development, the selection of a Software Development Life Cycle

(SDLC) model plays a crucial role in determining project success.

SDLC models offer structured frameworks that steer the planning,

execution, and completion of software projects, affecting elements

such as development strategies, resource distribution, and project

schedules. Nevertheless, given the abundance of SDLC models,

which span from conventional waterfall to contemporary agile

methodologies, choosing the most appropriate model for a specific

software project can be challenging [1].

According to [2] and [3], SDLC model selection is significant in

ensuring project alignment with organizational goals and

stakeholder expectations. These studies highlight the diverse nature

of software projects and the need for adaptable and flexible SDLC

selection approaches to accommodate varying project requirements.

The necessity of SDLC model selection arises from the diverse

nature of software projects, each characterized by unique

requirements, constraints, and stakeholder expectations. While some

projects may benefit from the structured and sequential approach of

the waterfall model, others may thrive in the iterative and adaptive

environment fostered by agile methodologies. The ability to identify

the optimal SDLC model tailored to the specific needs of each

project is therefore paramount for maximizing project efficiency,

productivity, and ultimately, success.

Previous research efforts have explored various approaches to

SDLC model selection, including qualitative assessments, expert

opinions, and decision support systems. However, these approaches

often rely on subjective judgments, lack of scalability, and may

overlook valuable insights hidden within project data. Moreover,

traditional methods may struggle to adapt to the evolving nature of

software development practices and the increasing complexity of

modern software projects.

Studies [4] and [5] highlighted the limitations of traditional SDLC

model selection approaches and emphasize the need for data-driven

methodologies to enhance decision-making processes in software

development.

In response to these challenges, the integration of machine learning

(ML) techniques offers a promising avenue for enhancing SDLC

model selection processes [6]. ML algorithms have the ability to

analyze large volumes of historical project data, identify patterns,

and extract actionable insights to inform decision-making. By

leveraging features such as project size, complexity, team

composition, and project objectives, ML models can learn from past

project experiences and select appropriate SDLC model for new

projects.

The proposed model in this research aims to address the limitations

of existing SDLC model selection approaches by leveraging ML

algorithms to provide data-driven and objective recommendations.

By training models on comprehensive datasets containing project

attributes and corresponding SDLC model choices, they seek to

develop predictive models capable of accurately predicting the

optimal SDLC model for new projects.

This problem statement encapsulates the need to move beyond

traditional, subjective approaches to SDLC model selection and

develop more objective, scalable, and adaptive methodologies that

influence ML to enhance decision-making processes in software

development. They addressed this problem statement, and

contributed a labeled dataset and new model to the advancement of

SDLC model selection methodologies.

Finally, to achieve the identified specific objective, this thesis

answered the following research questions:

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.42, September 2024

37

✓ What are the key project characteristics and stakeholder

requirements that influence the selection of an appropriate

SDLC model?

✓ In what ways can historical project data be leveraged to

identify patterns and trends that inform SDLC model

selection decisions?

✓ To what extent can machine learning models accurately

predict the optimal SDLC model for new projects, and

what factors contribute to their predictive performance?

The remainder of this paper is organized as follows: Section II

provides a detailed review of the related work, establishing the

context and significance of their research. Section III describes the

methodology and the theoretical framework underpinning their

study, including the models, algorithms, or experimental setup

utilized. In Section IV, they present the results of their experiments

or analysis, supplemented with figures, and comprehensive

discussions. Section V concludes the paper by summarizing the

findings from their experiments. Section VI summarizes the key

contributions of the study, discusses the implications of the findings,

and suggests areas for future research.

2 RELATED WORKS
Kumar, K. (2013) addresses a crucial aspect of software

engineering: the selection of an appropriate SDLC model. The

authors make a significant contribution to the field of software

engineering by providing a structured and objective approach to

SDLC selection. Given the multitude of SDLC models available

such as waterfall, incremental, iterative, RAD, and prototype

models. Choosing the most suitable one for a specific project can

significantly impact the project's success [7]. The authors propose a

rule-based recommendation system to guide this selection process,

aiming to streamline decision-making and enhance project

outcomes.

However, a predefined set of rules that may not account for the

dynamic and evolving nature of software development practices.

This static approach can limit the system's adaptability to new

project requirements and emerging SDLC models

Ozturk, V. (2016) this research paper delves into the critical

decision-making process for selecting an appropriate SDLC model.

The authors propose an innovative approach using fuzzy logic to

handle the inherent uncertainties and subjective criteria involved in

the selection [8]. Traditional methods often fall short in accounting

for the nuanced preferences and varying project requirements. The

fuzzy logic-based model excels by evaluating complex factors like

project size, risk, and team expertise with greater flexibility and

precision. However, the paper's validation through a narrow set of

case studies restricts its demonstration of applicability across diverse

industries and project types. Broader empirical evidence would

enhance the robustness and generalizability of the proposed model

Overall, the integration of fuzzy logic into SDLC selection presents

a significant advancement, offering a robust tool for project

managers navigating the multifaceted landscape of software

development. This approach promises to refine how teams choose

SDLC models, potentially leading to more successful project

executions.

The study by Adanna, A. A., & Nonyelum, O. F. (2020) provides a

comprehensive analysis of the essential criteria for selecting the

most suitable SDLC models, crucial for the success of software

projects [9]. The authors outline a structured framework that

highlights key factors such as project complexity, team size, client

requirements, and risk management. Their methodical approach aids

in matching those criteria with the characteristics of various SDLC

models like Agile, Waterfall, Spiral, iterative, incremental,

prototype, and RAD.

One of the paper's notable strengths is its practical guidance on

evaluating these criteria through detailed tables and comparative

analyses. This clarity helps project managers make informed

decisions by aligning project-specific needs with the optimal SDLC

approach. The inclusion of real-world examples enhances the

relevance and applicability of the proposed criteria.

Dhami et al., 2021 applied advanced deep learning techniques to the

domain of SDLC models prediction, an innovative approach that

highlighted the potential of DL in automating complex decision-

making processes within software engineering [10].

The study presented comprehensive experimental results, evaluating

the performance of different ML and DL techniques using multiple

metrics. These models are trained and evaluated using a substantial

dataset comprising 6000 instances across different project types and

complexities. Evaluation metrics such as accuracy, precision, recall,

and F1 score are used to assess the models' performance in

predicting four main SDLC models.

However, the number of SDLC models they used (waterfall,

evolutionary, incremental, and hybrid) and level of datasets for

their experiment may not represent the diversity in software

development projects across different industries and scales. This

limitation could affect the generalizability of the model predictions.

3 METHODLOGIES
In this research they use experimental methodologies which are

broadly used in computing science to evaluate new solutions for

problems. The evaluation has two phases. In an exploratory phase

the researcher took measurements that will help identify what are

the questions that should be asked about the system under evaluation

[11]. Then an evaluation phase attempted to answer these questions.

A well-designed experiment started with a list of the questions that

the experiment was expected to answer.

3.1 Dataset Preparation Metnodology

Preparing a dataset for use in software engineering research involves

several key steps to ensure that the data is relevant, accurate, and

suitable for the research objectives. Here is a methodology for

dataset preparation in this research:

• Review literature relevant for Software development model

selection.

• Identify criteria and model relationship from available

literature.

• Identify significant criteria and models that the research

mainly concerns.

• Identify the possible domain value of each criterion.

• Identify rules for model selection from collected literature

facts.

• Prepare a dataset based on rules.

This research focused on ten (10) main criteria namely product

delivery, clear requirement specification. Requirement change, user

involvement, project size, project risk, project complexity, team

experience, project budget, and reusability of components were

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.42, September 2024

38

selected as a criterion for system development model selection.

System development models for this research focused on are

selected based the following criteria.

• formal software development model.

• The model must be in majority of literatures in system

development model researched works.

• Recent Project developers used the model.

• The model must have its own unique criteria.

Based on the above criteria eight software development models

namely waterfall, iterative, incremental, prototype, spiral, RAD, v-

model, and agile were selected in this research.

They identified relevant criteria, models, potential values for each

criterion, and the corresponding model value. For nine criteria, the

model values were categorized as neutral, low, medium, or high,

while one criterion had possible values of high, low, and neutral.

The 'neutral' label was applied when the literature did not provide a

value for an attribute, indicating no influence on model selection.

The numerical representation for these values was assigned as

follows: low (-1), medium (1), high (2), and neutral (0).

Using this numeric system, they generated a matrix based on the 10

criteria and their possible values. The matrix with four potential

values per criterion results in 1,048,576 possible combinations.

However, one criterion (Reusability of components) has only three

possible values. As a result, the total number of valid combinations

to construct their dataset is 786,432 (410-49). With this generated

matrix, they labeled the dataset following the specific rules. The

sample generated rules for dataset labeling shown in Section 1

below is represented the features of the rule product delivery (PD),

clear requirement specification (CRS). Requirement change (RC),

user involvement (UI), project size (PS), project risk management

(RM), project complexity (CP), team experience (TE), project

budget (PB), and reusability of components (RUC) order

respectively. .

{

('0','2','-1','0','0','-1','0','0','0','0'):'Waterfall',

('0','0','-1','2','-1','-1','-1','0','0','0'):'Iterative',

('0','0','2','2','-1','-1','2','0','0','0'):'Agile',

('0','-1','2','2','-1','1','2','0','2','0'):'Prototype,

('0','0','0','2','1','1','-1','0','0','0'):'Incremental',

('0','0','2','0','2','-1','0','0','0','0'):'Spiral',

('0','0','0','0','2','-1','0','0','0','0'):'RAD',

('0','0','2','0','0','2','0','0','0','0'):'Spiral',

 }

Section: 1 Sample rules used for dataset labeling

3.2 Model Development Methodology

Selecting an appropriate SDLC model using ML research involves

several steps, including data collection, feature engineering, model

selection, and evaluation. Here's a suggested model architecture for

this task:

➢ Dataset Preprocessing

The dataset for SDLC model selection is a valuable resource for

training ML models to predict the most suitable SDLC model based

on various criteria. However, before feeding the dataset into ML

algorithms, it's essential to preprocess the data to ensure its quality

and compatibility with the chosen modeling techniques. The key

steps involved in data preprocessing for this dataset are:

➢ Handling Missing Values: Conduct a thorough examination of

the dataset to identify any missing values in the attributes.

Decide on an appropriate strategy for handling missing values,

such as imputation or removal of rows/columns with missing

data. Encoding categorical variables, feature scaling, data

splitting, split the dataset into training and testing sets to

facilitate model training and evaluation, addressing class

imbalance.

➢ Model Selection: Choose an appropriate ML algorithm or

ensemble methods and deep learning (DL) algorithms for

predicting the suitable SDLC model for a given software

development project. Possible algorithms include:

• Classification algorithms: Decision trees (DT), Naïve Bayes

(NB), K-Nearest Neighbors (KNN), Artificial Neural

Network (ANN), and Convolutional Neural Network

(CNN).

• Ensemble methods: Random Forest (RF).

➢ Model Training:

• Split the dataset into training, validation, and testing sets.

• Train the selected ML model on the training data, using the

validation set to tune hyperparameters and prevent

overfitting.

➢ Evaluation Metrics and Model Evaluation:

• Define evaluation metrics to assess the performance of the

model. Since this is a classification task (selecting an SDLC

model), metrics such as accuracy, precision, recall, F1-

score, and confusion matrix can be used to evaluate the

model's performance.

• Evaluate the trained model on the test dataset to estimate its

performance on unseen data. Analyze the model's

predictions and compare them to the actual SDLC models

used in the projects.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.42, September 2024

39

Figure 1 The Proposed Model Architecture

4 RESULT AND DESCUSSION

4.1 Dataset Setup

They developed a comprehensive dataset to facilitate the selection

of SDLC models using ML techniques. This dataset was

meticulously crafted through a series of steps outlined below:

4.1.1 Data Collection and Compilation

Their dataset compilation process commenced with an extensive

review of existing literature, aimed at gathering factual information

regarding the relationship between various criteria and formal

SDLC models. This involved synthesizing insights from numerous

scholarly papers, with a total of 12 papers directly contributing to

their dataset preparation[9], [12], [13], [14], [15], [8], [16], [17], [7].

1) Rule Generation
From the amassed literature, they distilled 121 unique rules

governing the relationship between SDLC models and criteria.

These rules served as the foundation for labeling the dataset,

enabling us to categorize instances based on their adherence to

specific criteria-model relationships.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.42, September 2024

40

2) Labeling Process
Utilizing the generated rules, they labeled each instance in the

dataset according to its conformity with the established criteria-

model relationships. Instances that did not align with any rule were

assigned the class "unknown." Subsequently, a total of 85,370

instances were successfully labeled with one of the eight formal

SDLC models, while 701,062 instances remained categorized as

"unknown”.

3) Dataset Refinement
Recognizing the necessity of a dataset comprising only labeled

instances, they removed rows assigned the "unknown" class,

resulting in a final dataset of 85,370 instances. This dataset

encapsulates the essential relationships between criteria and SDLC

models, devoid of ambiguities associated with unlabeled instances.

The dataset is a structured, numeric dataset designed for multi-class

classification tasks. It consists of 8 distinct classes, each represented

by integer values ranging from 0 to 7. The dataset is composed of

10 features, each feature taking on values from the set {-1, 0, 1, 2}.

The features representing a different aspect of the data that

influences the classification outcome. Each feature is assumed to be

independent and not necessarily correlated with others. The values

{-1, 0, 1, 2} could indicate different levels or states, where: -1

represents the feature value which is low/small in the literature, 0

represents a neutral which is empty value in the literature, 1

represents the feature value which is medium/intermediate in the

literature, and 2 represent the feature value which is high in the

literature.

The target variable (class) is an integer from 0 to 7, with each integer

denoting a specific class. The representation of numbers in the class

are: v-model (0), waterfall (1), iterative (2), incremental (3), spiral

(4), agile (5), prototype (6), and RAD (7). Each class is exclusive,

meaning that any given sample belongs to one and only one class.

The classes are defined in such a way that they collectively cover

scenarios in software project development.

This research focused on ten (10) main criteria namely product

delivery (PD), clear requirement specification (CRS). Requirement

change (RC), user involvement (UI), project size (PS), project risk

management (RM), project complexity (CP), team experience (TE),

project budget (PB), and reusability of components (RUC) were

selected as a criterion for system development model selection.

Table 1 Sample Dataset

PD CRS RC UI PS RM CP TE PB RUC Class

2 2 2 2 2 1 2 -1 -1 2 5

0 1 2 2 0 0 2 0 1 2 5

-1 -1 -1 -1 -1 -1 1 2 -1 -1 1

0 1 2 2 0 0 2 0 2 -1 6

1 2 -1 -1 2 -1 2 -1 -1 -1 1

0 1 2 2 0 0 2 1 -1 -1 6

0 1 2 2 0 0 2 1 -1 0 6

0 1 2 2 0 0 2 1 -1 2 5

0 1 2 2 0 0 2 1 1 0 6

0 1 2 2 0 0 2 1 1 2 5

0 2 -1 -1 -1 2 2 1 2 0 3

0 2 -1 -1 0 -1 -1 -1 -1 0 1

A. Performance of Traditional Classifiers:

✓ K-Nearest Neighbors:

• KNN achieved an accuracy of 99% on the test set.

• KNN performed admirably, with a high accuracy score,

indicating its effectiveness in classifying the SDLC model

selection dataset. However, its performance might be

sensitive to the choice of hyperparameters, such as the

number of neighbors.

✓ Random Forest:

• RF achieved an accuracy of 99.9% on the test set.

• RF demonstrated outstanding performance, nearly

achieving perfect accuracy. Its ensemble approach helped

mitigate overfitting and handle complex relationships

within the data. This suggests RF as a robust choice for

SDLC model selection.

✓ Decision Tree:

• DT achieved an accuracy 99.9% on the test set.

• DT ability to perfectly classify the data might indicate

overfitting, especially on a relatively small dataset. While

DT offer interpretability, caution should be exercised due to

their propensity for overfitting.

✓ Naïve Bayes:

• NB achieved an accuracy of 67.9% on the test set.

• NB showed significantly lower accuracy compared to other

models. This could be due to its assumption of feature

independence, which might not hold true for the SDLC

model selection dataset. NB might not be suitable for

capturing complex relationships in the data.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.42, September 2024

41

B. Performance of Neural Network Models:

✓ Artificial Neural Network:

• ANN achieved an accuracy of 96% on the test set.

• ANN showed competitive performance, falling slightly

short of the best-performing traditional classifiers. ANN's

ability to capture non-linear relationships makes it a viable

option for SDLC model selection tasks, especially with

larger datasets.

Figure 2 Training Accuracy of ANN

Figure 3 Training Loss of ANN

✓ Convolutional Neural Network:

• CNN achieved an accuracy of 97% on the test set.

• CNN demonstrated excellent performance, comparable to

Random Forest and Decision Tree classifiers. Its sequential

data processing capabilities might have been advantageous

for extracting patterns in the SDLC model selection dataset.

Figure 4 Training Accuracy of CNN

Figure 5 Training Loss of CNN

Comparison and Implications: Among traditional classifiers,

Random Forest and Decision Tree classifiers outperformed others,

showcasing their effectiveness in handling complex classification

tasks. While Naive Bayes showed the lowest accuracy, it still serves

as a baseline model. Its simplicity and speed make it suitable for

quick prototyping and benchmarking against more sophisticated

models. Neural network models, particularly CNN, exhibited

competitive performance, demonstrating their potential in

capturing intricate patterns within the SDLC model selection

dataset. The choice between traditional classifiers and neural

network models depends on factors such as dataset size,

interpretability requirements, and computational resources

available.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.42, September 2024

42

Table 2 Experiment Result of each Algorithm

 Model Accuracy

1 KNN 99%

2 Random Forest 99.9%

3 Decision Tree 99.9%

4 Naive Bayes 67.9%

5 ANN 96%

6 CNN 97%

Based on the results obtained from their experiment, the Decision

Tree and Random Forest models emerge as the top performers in

terms of accuracy, achieving near-perfect scores of 99.9%. These

models demonstrate robust performance in capturing the underlying

patterns and relationships within the dataset. Therefore, for this

particular dataset, employing Decision Tree or Random Forest

algorithms would be advisable to achieve the highest accuracy in

classification tasks. Random Forest and Decision Trees can manage

both numerical and categorical data due to their ability to handle

mixed data types. This flexibility allows them to work effectively

with diverse datasets. However, it is crucial to account for the

dataset's specific characteristics, such as its size, complexity, and the

need for interpretability, before choosing the final algorithm.

Nonetheless, the superior performance of Decision Tree and

Random Forest models underscores their efficacy in handling the

classification task at hand.

5 CONCLUSION
In conclusion, their research has systematically evaluated various

ML algorithms for SDLC model selection using a comprehensive

dataset. Through rigorous experimentation, they have identified

Decision Tree and Random Forest as the top-performing models,

achieving exceptional accuracy rates of 99.9%. These models

demonstrate robustness in capturing underlying patterns within the

dataset, showcasing their effectiveness in classification tasks related

to SDLC model selection. Additionally, KNN, CNN, and ANN

models exhibited commendable accuracy, further validating their

suitability for handling structured data with complex relationships.

Despite the comparatively lower accuracy of Naive Bayes, their

findings underscore the importance of considering algorithmic

strengths and dataset characteristics when selecting the most suitable

model.

6 CONTRIBUTION
This research makes a significant contribution to the field of SDLC

model selection by providing empirical evidence of the performance

of various ML and DL algorithms. By systematically evaluating and

comparing these algorithms using real-world data, they offer

valuable insights into their effectiveness for SDLC model selection

tasks. Their findings serve as a guide for practitioners and

researchers in selecting the most appropriate model based

algorithms on their specific requirements and dataset characteristics.

Additionally, this research contributes to advancing the

understanding of the applicability of ML techniques in software

engineering domains.

For future work they recommend incorporating the Agile framework

SDLC models like Scrum, Kanban, Extreme Programming (XP),

Rational Unified Process (RUP) etc.

7 REFERENCES
[1] A. Mandal, “International Journal of Computer Sciences and

Engineering Open Access Identifying the Reasons for

Software Project Failure and Some of their Proposed

Remedial through BRIDGE Process Models,” no. January

2015, 2016.

[2] A. Scalability and M. Ahmed, “Systematic Literature Review

of Agile Scalability for Large Scale Projects,” vol. 6, no. 9, pp.

63–75, 2015.

[3] A. Aitken and V. Ilango, “A comparative analysis of

traditional software engineering and agile software

development,” Proc. Annu. Hawaii Int. Conf. Syst. Sci., pp.

4751–4760, 2013, doi: 10.1109/HICSS.2013.31.

[4] M. Jørgensen and M. Shepperd, “A systematic review of

software development cost estimation studies,” IEEE Trans.

Softw. Eng., vol. 33, no. 1, pp. 33–53, 2007, doi:

10.1109/TSE.2007.256943.

[5] P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, “An

effective approach for software project effort and duration

estimation with machine learning algorithms,” J. Syst. Softw.,

vol. 137, pp. 184–196, 2018, doi:

https://doi.org/10.1016/j.jss.2017.11.066.

[6] S. Shafiq, A. Mashkoor, C. Mayr-dorn, and A. Egyed,

“Machine Learning for Software Engineering : A Systematic

Mapping Machine Learning for Software Engineering : A

Systematic Mapping ⋆,” no. June, 2020.

[7] K. Kumar, “A Rule-based Recommendation System for

Selection of Software Development Life Cycle Models,” vol.

38, no. 4, pp. 1–6, 2013, doi: 10.1145/2492248.2492269.

[8] V. Ozturk, “Selection of appropriate software development

life cycle using fuzzy logic,” no. January, 2016, doi:

10.3233/IFS-120686.

[9] A. A. Adanna and O. F. Nonyelum, “Criteria for choosing the

right software development life cycle method for the success

of software project,” J. Innov. Comput., vol. 1, no. 1, pp. 16–

26, 2020, [Online]. Available: https://www.iraseat.com/wp-

content/Data/JIC/V001_I01_A04_JIC-20-007.pdf

[10] J. Dhami, N. Dave, O. Bagwe, A. Joshi, and P. Tawde, “Deep

Learning Approach to Predict Software Development Life

Cycle Model,” 2021 7th IEEE Int. Conf. Adv. Comput.

Commun. Control. ICAC3 2021, 2021, doi:

10.1109/ICAC353642.2021.9697271.

[11] R. Elio, J. Hoover, I. Nikolaidis, M. Salavatipour, L. Stewart,

and K. Wong, “About Computing Science Research

Methodology”.

[12] M. I. H. -, “Software Development Life Cycle (SDLC)

Methodologies for Information Systems Project

Management,” Int. J. Multidiscip. Res., vol. 5, no. 5, 2023, doi:

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.42, September 2024

43

10.36948/ijfmr.2023.v05i05.6223.

[13] L. Chandi, C. Silva, and T. Gualotu, “Model for Selecting

Software Development Methodology,” vol. 2, no. Icits, 2018,

doi: 10.1007/978-3-319-73450-7.

[14] V. Rastogi, “Software Development Life Cycle Models-

Comparison , Consequences,” vol. 6, no. 1, pp. 168–172,

2015.

[15] D. Singh, A. Thakur, and A. Chaudhary, “A Comparative

Study between Waterfall and Incremental Software

Development Life Cycle Model,” Int. J. Emerg. Trends Sci.

Technol., vol. 02, no. 04, pp. 2202–2208, 2015, [Online].

Available: www.ijetst.in

[16] P. M. Khan and M. M. S. S. Beg, “Extended decision support

matrix for selection of sdlc-models on traditional and agile

software development projects,” Int. Conf. Adv. Comput.

Commun. Technol. ACCT, vol. 3, no. 1, pp. 8–15, 2013, doi:

10.1109/ACCT.2013.12.

[17] R. R. Raval, “Comparative Study of Various Process Model in

Software Development,” no. November 2013, 2015, doi:

10.5120/14263-2363.

IJCATM : www.ijcaonline.org

