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ABSTRACT 
Inappropriate selection of Software Development Life Cycle 

(SDLC) models can lead to increased development time and costs, 

heightened overhead, elevated risk exposure, difficulty managing 

uncertainty, reduced quality, strained client relations, and 

insufficient project tracking and control. These challenges are 

exacerbated by the diverse expertise levels of software developers, 

ranging from novices to seasoned professionals. While experts may 

conduct in-depth analyses to select suitable SDLC models, 

beginners often lack the criteria for effective model selection. 

Previous research has shown limitations in the criteria used for 

SDLC model selection, usually relying on knowledge-based 

systems that lack flexibility and scalability. To address this 

problem, they propose an automatic SDLC model selection system 

using a machine-learning approach tailored to specific project 

requirements. They conducted comparative experimental analyses 

using machine learning and deep learning algorithms such as KNN, 

CNN, NB, ANN, Random Forest, and Decision Trees. 

Experimental results demonstrated that Decision Tree and Random 

Forest achieved 99.9% accuracy in the classification task, 

indicating their effectiveness in automating SDLC model selection 

for software projects.     
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1 INTRODUCTION  
In the current dynamic and competitive environment of software 

development, the selection of a Software Development Life Cycle 

(SDLC) model plays a crucial role in determining project success. 

SDLC models offer structured frameworks that steer the planning, 

execution, and completion of software projects, affecting elements 

such as development strategies, resource distribution, and project 

schedules. Nevertheless, given the abundance of SDLC models, 

which span from conventional waterfall to contemporary agile 

methodologies, choosing the most appropriate model for a specific 

software project can be challenging [1]. 

According to [2] and  [3],  SDLC model selection is significant in 

ensuring project alignment with organizational goals and 

stakeholder expectations. These studies highlight the diverse nature 

of software projects and the need for adaptable and flexible SDLC 

selection approaches to accommodate varying project requirements. 

The necessity of SDLC model selection arises from the diverse 

nature of software projects, each characterized by unique 

requirements, constraints, and stakeholder expectations. While some 

projects may benefit from the structured and sequential approach of 

the waterfall model, others may thrive in the iterative and adaptive 

environment fostered by agile methodologies. The ability to identify 

the optimal SDLC model tailored to the specific needs of each 

project is therefore paramount for maximizing project efficiency, 

productivity, and ultimately, success. 

Previous research efforts have explored various approaches to 

SDLC model selection, including qualitative assessments, expert 

opinions, and decision support systems. However, these approaches 

often rely on subjective judgments, lack of scalability, and may 

overlook valuable insights hidden within project data. Moreover, 

traditional methods may struggle to adapt to the evolving nature of 

software development practices and the increasing complexity of 

modern software projects. 

Studies [4] and [5] highlighted the limitations of traditional SDLC 

model selection approaches and emphasize the need for data-driven 

methodologies to enhance decision-making processes in software 

development. 

In response to these challenges, the integration of machine learning 

(ML) techniques offers a promising avenue for enhancing SDLC 

model selection processes [6]. ML algorithms have the ability to 

analyze large volumes of historical project data, identify patterns, 

and extract actionable insights to inform decision-making. By 

leveraging features such as project size, complexity, team 

composition, and project objectives, ML models can learn from past 

project experiences and select appropriate SDLC model for new 

projects. 

The proposed model in this research aims to address the limitations 

of existing SDLC model selection approaches by leveraging ML 

algorithms to provide data-driven and objective recommendations. 

By training models on comprehensive datasets containing project 

attributes and corresponding SDLC model choices, they seek to 

develop predictive models capable of accurately predicting the 

optimal SDLC model for new projects. 

This problem statement encapsulates the need to move beyond 

traditional, subjective approaches to SDLC model selection and 

develop more objective, scalable, and adaptive methodologies that 

influence ML to enhance decision-making processes in software 

development. They addressed this problem statement, and 

contributed a labeled dataset and new model to the advancement of 

SDLC model selection methodologies. 

Finally, to achieve the identified specific objective, this thesis 

answered the following research questions: 
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✓ What are the key project characteristics and stakeholder 

requirements that influence the selection of an appropriate 

SDLC model? 

✓ In what ways can historical project data be leveraged to 

identify patterns and trends that inform SDLC model 

selection decisions? 

✓ To what extent can machine learning models accurately 

predict the optimal SDLC model for new projects, and 

what factors contribute to their predictive performance? 

The remainder of this paper is organized as follows: Section II 

provides a detailed review of the related work, establishing the 

context and significance of their research. Section III describes the 

methodology and the theoretical framework underpinning their 

study, including the models, algorithms, or experimental setup 

utilized. In Section IV, they present the results of their experiments 

or analysis, supplemented with figures, and comprehensive 

discussions. Section V concludes the paper by summarizing the 

findings from their experiments. Section VI summarizes the key 

contributions of the study, discusses the implications of the findings, 

and suggests areas for future research. 

2 RELATED WORKS   
Kumar, K. (2013) addresses a crucial aspect of software 

engineering: the selection of an appropriate SDLC model. The 

authors make a significant contribution to the field of software 

engineering by providing a structured and objective approach to 

SDLC selection.  Given the multitude of SDLC models available 

such as waterfall, incremental, iterative, RAD, and prototype 

models. Choosing the most suitable one for a specific project can 

significantly impact the project's success [7]. The authors propose a 

rule-based recommendation system to guide this selection process, 

aiming to streamline decision-making and enhance project 

outcomes. 

However, a predefined set of rules that may not account for the 

dynamic and evolving nature of software development practices. 

This static approach can limit the system's adaptability to new 

project requirements and emerging SDLC models 

Ozturk, V. (2016) this research paper delves into the critical 

decision-making process for selecting an appropriate SDLC model. 

The authors propose an innovative approach using fuzzy logic to 

handle the inherent uncertainties and subjective criteria involved in 

the selection [8]. Traditional methods often fall short in accounting 

for the nuanced preferences and varying project requirements. The 

fuzzy logic-based model excels by evaluating complex factors like 

project size, risk, and team expertise with greater flexibility and 

precision. However, the paper's validation through a narrow set of 

case studies restricts its demonstration of applicability across diverse 

industries and project types. Broader empirical evidence would 

enhance the robustness and generalizability of the proposed model 

Overall, the integration of fuzzy logic into SDLC selection presents 

a significant advancement, offering a robust tool for project 

managers navigating the multifaceted landscape of software 

development. This approach promises to refine how teams choose 

SDLC models, potentially leading to more successful project 

executions. 

The study by Adanna, A. A., & Nonyelum, O. F. (2020) provides a 

comprehensive analysis of the essential criteria for selecting the 

most suitable SDLC models, crucial for the success of software 

projects [9]. The authors outline a structured framework that 

highlights key factors such as project complexity, team size, client 

requirements, and risk management. Their methodical approach aids 

in matching those criteria with the characteristics of various SDLC 

models like Agile, Waterfall, Spiral, iterative, incremental, 

prototype, and RAD. 

One of the paper's notable strengths is its practical guidance on 

evaluating these criteria through detailed tables and comparative 

analyses. This clarity helps project managers make informed 

decisions by aligning project-specific needs with the optimal SDLC 

approach. The inclusion of real-world examples enhances the 

relevance and applicability of the proposed criteria. 

Dhami et al., 2021 applied advanced deep learning techniques to the 

domain of SDLC models prediction, an innovative approach that 

highlighted the potential of DL in automating complex decision-

making processes within software engineering [10]. 

The study presented comprehensive experimental results, evaluating 

the performance of different ML and DL techniques using multiple 

metrics. These models are trained and evaluated using a substantial 

dataset comprising 6000 instances across different project types and 

complexities. Evaluation metrics such as accuracy, precision, recall, 

and F1 score are used to assess the models' performance in 

predicting four main SDLC models. 

However, the number of SDLC models they used (waterfall, 

evolutionary, incremental, and hybrid) and level of   datasets for 

their experiment may not represent the diversity in software 

development projects across different industries and scales. This 

limitation could affect the generalizability of the model predictions. 

3 METHODLOGIES  
In this research they use experimental methodologies which are 

broadly used in computing science to evaluate new solutions for 

problems. The evaluation has two phases. In an exploratory phase 

the researcher took measurements that will help identify what are 

the questions that should be asked about the system under evaluation 

[11]. Then an evaluation phase attempted to answer these questions. 

A well-designed experiment started with a list of the questions that 

the experiment was expected to answer. 

3.1 Dataset Preparation Metnodology 

Preparing a dataset for use in software engineering research involves 

several key steps to ensure that the data is relevant, accurate, and 

suitable for the research objectives. Here is a methodology for 

dataset preparation in this research: 

• Review literature relevant for Software development model 

selection. 

• Identify criteria and model relationship from available 

literature. 

• Identify significant criteria and models that the research 

mainly concerns. 

• Identify the possible domain value of each criterion. 

• Identify rules for model selection from collected literature 

facts. 

• Prepare a dataset based on rules. 

This research focused on ten (10) main criteria namely product 

delivery, clear requirement specification. Requirement change, user 

involvement, project size, project risk, project complexity, team 

experience, project budget, and reusability of components were 
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selected as a criterion for system development model selection. 

System development models for this research focused on are 

selected based the following criteria. 

• formal software development model. 

• The model must be in majority of literatures in system 

development model researched works. 

• Recent Project developers used the model. 

• The model must have its own unique criteria. 

Based on the above criteria eight software development models 

namely waterfall, iterative, incremental, prototype, spiral, RAD, v-

model, and agile were selected in this research. 

They identified relevant criteria, models, potential values for each 

criterion, and the corresponding model value. For nine criteria, the 

model values were categorized as neutral, low, medium, or high, 

while one criterion had possible values of high, low, and neutral. 

The 'neutral' label was applied when the literature did not provide a 

value for an attribute, indicating no influence on model selection. 

The numerical representation for these values was assigned as 

follows: low (-1), medium (1), high (2), and neutral (0). 

Using this numeric system, they generated a matrix based on the 10 

criteria and their possible values. The matrix with four potential 

values per criterion results in 1,048,576 possible combinations. 

However, one criterion (Reusability of components) has only three 

possible values. As a result, the total number of valid combinations 

to construct their dataset is 786,432 (410-49). With this generated 

matrix, they labeled the dataset following the specific rules. The 

sample generated rules for dataset labeling  shown in Section 1 

below is represented the features of the rule product delivery (PD), 

clear requirement specification (CRS). Requirement change (RC), 

user involvement (UI), project size (PS), project risk management 

(RM), project complexity (CP), team experience (TE), project 

budget (PB), and reusability of components (RUC) order 

respectively.  . 

{ 

('0','2','-1','0','0','-1','0','0','0','0'):'Waterfall', 

('0','0','-1','2','-1','-1','-1','0','0','0'):'Iterative', 

('0','0','2','2','-1','-1','2','0','0','0'):'Agile', 

('0','-1','2','2','-1','1','2','0','2','0'):'Prototype, 

('0','0','0','2','1','1','-1','0','0','0'):'Incremental', 

('0','0','2','0','2','-1','0','0','0','0'):'Spiral', 

('0','0','0','0','2','-1','0','0','0','0'):'RAD', 

('0','0','2','0','0','2','0','0','0','0'):'Spiral', 

     } 

Section:  1 Sample rules used for dataset labeling   

3.2 Model Development Methodology  

Selecting an appropriate SDLC model using ML research involves 

several steps, including data collection, feature engineering, model 

selection, and evaluation. Here's a suggested model architecture for 

this task:  

➢ Dataset Preprocessing  

The dataset for SDLC model selection is a valuable resource for 

training ML models to predict the most suitable SDLC model based 

on various criteria. However, before feeding the dataset into ML 

algorithms, it's essential to preprocess the data to ensure its quality 

and compatibility with the chosen modeling techniques. The key 

steps involved in data preprocessing for this dataset are: 

➢ Handling Missing Values: Conduct a thorough examination of 

the dataset to identify any missing values in the attributes. 

Decide on an appropriate strategy for handling missing values, 

such as imputation or removal of rows/columns with missing 

data. Encoding categorical variables, feature scaling, data 

splitting, split the dataset into training and testing sets to 

facilitate model training and evaluation, addressing class 

imbalance.  

➢ Model Selection: Choose an appropriate ML algorithm or 

ensemble methods and deep learning (DL) algorithms for 

predicting the suitable SDLC model for a given software 

development project. Possible algorithms include: 

• Classification algorithms: Decision trees (DT), Naïve Bayes 

(NB), K-Nearest Neighbors (KNN), Artificial Neural 

Network (ANN), and Convolutional Neural Network 

(CNN). 

• Ensemble methods: Random Forest (RF). 

➢ Model Training: 

• Split the dataset into training, validation, and testing sets. 

• Train the selected ML model on the training data, using the 

validation set to tune hyperparameters and prevent 

overfitting. 

➢ Evaluation Metrics and Model Evaluation: 

• Define evaluation metrics to assess the performance of the 

model. Since this is a classification task (selecting an SDLC 

model), metrics such as accuracy, precision, recall, F1-

score, and confusion matrix can be used to evaluate the 

model's performance. 

• Evaluate the trained model on the test dataset to estimate its 

performance on unseen data. Analyze the model's 

predictions and compare them to the actual SDLC models 

used in the projects. 
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Figure 1 The Proposed Model Architecture 

4 RESULT AND DESCUSSION  

4.1 Dataset Setup 

They developed a comprehensive dataset to facilitate the selection 

of SDLC models using ML techniques. This dataset was 

meticulously crafted through a series of steps outlined below: 

4.1.1 Data Collection and Compilation 

Their dataset compilation process commenced with an extensive 

review of existing literature, aimed at gathering factual information 

regarding the relationship between various criteria and formal 

SDLC models. This involved synthesizing insights from numerous 

scholarly papers, with a total of 12 papers directly contributing to 

their dataset preparation[9], [12], [13], [14], [15], [8], [16], [17], [7]. 

1) Rule Generation 
From the amassed literature, they distilled 121 unique rules 

governing the relationship between SDLC models and criteria. 

These rules served as the foundation for labeling the dataset, 

enabling us to categorize instances based on their adherence to 

specific criteria-model relationships. 
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2) Labeling Process 
Utilizing the generated rules, they labeled each instance in the 

dataset according to its conformity with the established criteria-

model relationships. Instances that did not align with any rule were 

assigned the class "unknown." Subsequently, a total of 85,370 

instances were successfully labeled with one of the eight formal 

SDLC models, while 701,062 instances remained categorized as 

"unknown”. 

3) Dataset Refinement 
Recognizing the necessity of a dataset comprising only labeled 

instances, they removed rows assigned the "unknown" class, 

resulting in a final dataset of 85,370 instances. This dataset 

encapsulates the essential relationships between criteria and SDLC 

models, devoid of ambiguities associated with unlabeled instances. 

The dataset is a structured, numeric dataset designed for multi-class 

classification tasks. It consists of 8 distinct classes, each represented 

by integer values ranging from 0 to 7. The dataset is composed of 

10 features, each feature taking on values from the set {-1, 0, 1, 2}.  

The features representing a different aspect of the data that 

influences the classification outcome. Each feature is assumed to be 

independent and not necessarily correlated with others. The values 

{-1, 0, 1, 2} could indicate different levels or states, where: -1 

represents the feature value which is low/small in the literature, 0 

represents a neutral which is empty value in the literature, 1 

represents the feature value which is medium/intermediate in the 

literature, and 2 represent the feature value which is high in the 

literature. 

The target variable (class) is an integer from 0 to 7, with each integer 

denoting a specific class. The representation of numbers in the class 

are: v-model (0), waterfall (1), iterative (2), incremental (3), spiral 

(4), agile (5), prototype (6), and RAD (7). Each class is exclusive, 

meaning that any given sample belongs to one and only one class. 

The classes are defined in such a way that they collectively cover 

scenarios in software project development. 

This research focused on ten (10) main criteria namely product 

delivery (PD), clear requirement specification (CRS). Requirement 

change (RC), user involvement (UI), project size (PS), project risk 

management (RM), project complexity (CP), team experience (TE), 

project budget (PB), and reusability of components (RUC) were 

selected as a criterion for system development model selection.

 
Table 1 Sample Dataset 

PD CRS RC UI PS RM CP TE PB RUC Class 

2 2 2 2 2 1 2 -1 -1 2 5 

0 1 2 2 0 0 2 0 1 2 5 

-1 -1 -1 -1 -1 -1 1 2 -1 -1 1 

0 1 2 2 0 0 2 0 2 -1 6 

1 2 -1 -1 2 -1 2 -1 -1 -1 1 

0 1 2 2 0 0 2 1 -1 -1 6 

0 1 2 2 0 0 2 1 -1 0 6 

0 1 2 2 0 0 2 1 -1 2 5 

0 1 2 2 0 0 2 1 1 0 6 

0 1 2 2 0 0 2 1 1 2 5 

0 2 -1 -1 -1 2 2 1 2 0 3 

0 2 -1 -1 0 -1 -1 -1 -1 0 1 

A. Performance of Traditional Classifiers: 

✓ K-Nearest Neighbors:  

• KNN achieved an accuracy of 99% on the test set. 

• KNN performed admirably, with a high accuracy score, 

indicating its effectiveness in classifying the SDLC model 

selection dataset. However, its performance might be 

sensitive to the choice of hyperparameters, such as the 

number of neighbors. 

✓ Random Forest:  

• RF achieved an accuracy of 99.9% on the test set. 

• RF demonstrated outstanding performance, nearly 

achieving perfect accuracy. Its ensemble approach helped 

mitigate overfitting and handle complex relationships 

within the data. This suggests RF as a robust choice for 

SDLC model selection. 

✓ Decision Tree:  

• DT achieved an accuracy 99.9% on the test set. 

• DT ability to perfectly classify the data might indicate 

overfitting, especially on a relatively small dataset. While 

DT offer interpretability, caution should be exercised due to 

their propensity for overfitting. 

✓ Naïve Bayes: 

• NB achieved an accuracy of 67.9% on the test set. 

• NB showed significantly lower accuracy compared to other 

models. This could be due to its assumption of feature 

independence, which might not hold true for the SDLC 

model selection dataset. NB might not be suitable for 

capturing complex relationships in the data. 
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B. Performance of Neural Network Models: 

✓ Artificial Neural Network: 

• ANN achieved an accuracy of 96% on the test set. 

• ANN showed competitive performance, falling slightly 

short of the best-performing traditional classifiers. ANN's 

ability to capture non-linear relationships makes it a viable 

option for SDLC model selection tasks, especially with 

larger datasets. 

 
Figure 2 Training Accuracy of ANN 

 

 
Figure 3 Training Loss of ANN 

✓ Convolutional Neural Network: 

• CNN achieved an accuracy of 97% on the test set. 

• CNN demonstrated excellent performance, comparable to 

Random Forest and Decision Tree classifiers. Its sequential 

data processing capabilities might have been advantageous 

for extracting patterns in the SDLC model selection dataset. 

 
Figure 4 Training Accuracy of CNN 

 
Figure 5 Training Loss of CNN 

Comparison and Implications: Among traditional classifiers, 

Random Forest and Decision Tree classifiers outperformed others, 

showcasing their effectiveness in handling complex classification 

tasks. While Naive Bayes showed the lowest accuracy, it still serves 

as a baseline model. Its simplicity and speed make it suitable for 

quick prototyping and benchmarking against more sophisticated 

models. Neural network models, particularly CNN, exhibited 

competitive performance, demonstrating their potential in 

capturing intricate patterns within the SDLC model selection 

dataset. The choice between traditional classifiers and neural 

network models depends on factors such as dataset size, 

interpretability requirements, and computational resources 

available. 
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Table 2 Experiment Result of each Algorithm 

  Model Accuracy 

1 KNN 99% 

2 Random Forest 99.9% 

3 Decision Tree 99.9% 

4 Naive Bayes 67.9% 

5 ANN 96% 

6 CNN 97% 

 
Based on the results obtained from their experiment, the Decision 

Tree and Random Forest models emerge as the top performers in 

terms of accuracy, achieving near-perfect scores of 99.9%. These 

models demonstrate robust performance in capturing the underlying 

patterns and relationships within the dataset. Therefore, for this 

particular dataset, employing Decision Tree or Random Forest 

algorithms would be advisable to achieve the highest accuracy in 

classification tasks. Random Forest and Decision Trees can manage 

both numerical and categorical data due to their ability to handle 

mixed data types. This flexibility allows them to work effectively 

with diverse datasets. However, it is crucial to account for the 

dataset's specific characteristics, such as its size, complexity, and the 

need for interpretability, before choosing the final algorithm. 

Nonetheless, the superior performance of Decision Tree and 

Random Forest models underscores their efficacy in handling the 

classification task at hand. 

5 CONCLUSION 
In conclusion, their research has systematically evaluated various 

ML algorithms for SDLC model selection using a comprehensive 

dataset. Through rigorous experimentation, they have identified 

Decision Tree and Random Forest as the top-performing models, 

achieving exceptional accuracy rates of 99.9%. These models 

demonstrate robustness in capturing underlying patterns within the 

dataset, showcasing their effectiveness in classification tasks related 

to SDLC model selection. Additionally, KNN, CNN, and ANN 

models exhibited commendable accuracy, further validating their 

suitability for handling structured data with complex relationships. 

Despite the comparatively lower accuracy of Naive Bayes, their 

findings underscore the importance of considering algorithmic 

strengths and dataset characteristics when selecting the most suitable 

model. 

6 CONTRIBUTION 
This research makes a significant contribution to the field of SDLC 

model selection by providing empirical evidence of the performance 

of various ML and DL algorithms. By systematically evaluating and 

comparing these algorithms using real-world data, they offer 

valuable insights into their effectiveness for SDLC model selection 

tasks. Their findings serve as a guide for practitioners and 

researchers in selecting the most appropriate model based 

algorithms on their specific requirements and dataset characteristics.  

Additionally, this research contributes to advancing the 

understanding of the applicability of ML techniques in software 

engineering domains. 

For future work they recommend incorporating the Agile framework 

SDLC models like Scrum, Kanban, Extreme Programming (XP), 

Rational Unified Process (RUP) etc. 
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