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ABSTRACT 
Clinical Assessment and decision making mainly depends on 

Temporal Relations that exists between clinical event and 

activities of treatment prescribed. Temporal Relation extraction 

is a challenging task due to complexities associated with natural 

language processing techniques, representational ways for 

temporal data related to clinical activities, methodical 

approaches followed to extract temporal relations and temporal 

reasoning. In this work, we propose review of temporal relation 

extraction in clinical text. We analyzed around 118 articles via 

an exhaustive search of semanticscholar.org, PubMed, DBLP 

computer science Bibliography between 2018 to 2023. 

Relevant studies were made concerned to data sets and 

methodical approaches incorporated to extract temporal 

information. A thorough examination of selected papers was 

made to collect information on TLINK types, data sources, 

features selection   methods used, DocTimeRel, Candidate pair 

generations and reported performance. Most state of the art is 

based on attention-based models, with contextualized word 

representations being fine-tuned for temporal relation 

extraction. Performance of Tlink extraction is dependent 

parameter of underlying mechanisms involved in temporal 

expression identification, temporal events recognitions and 

mechanisms used to extract temporal relations. F-score for 

identifying the temporal relation is observed to be in the range 

of 80% to 91.1%. Most works frequently used TLINKS are 

‘before’, ‘after’, ‘overlap’ and ‘contains’ leaving a scope to 

extend the use of other TLINKS such as ‘started by’, ‘finished 

by’ ’precedes’ and so on. Machine learning based models and 

Deep learning-based models were the most commonly adopted 

techniques for extraction of temporal relations. Dataset 

Imbalance because of candidate pair generation and task 

complexity affects system’s performance leaving a scope for 

research. Most publications worked so far resides on same 

datasets, which shows a need for design of experiments on new 

kind of annotations.  

Keywords 

TLINKS, temporal relation, extraction, complexity, candidate 

pair generation, Doctimerel, HER (Electronic Health Record) 

1.INTRODUCTION 
Health care data can be routinely collected and recorded as 

Electronic Health Records(EHRs) to facilitate clinical and 

research activities. Such health care data collected can be in 

different forms of structured, semi- and unstructured data. 

Structured EHRs normally comprises coded and numerical 

time stamped information such as clinical visits, diagnoses, 

biomarkers, results, treatments and so on. Unstructured EHRs 

normally comprises clinical free text or semi-structured 

narratives data, clinical imaging etc. Clinical Free text such as 

clinical notes, letters, reports and observations and so on can be 

to record patient’s medical history, duration of symptoms, 

patients’ condition, rejected and diagnosed hypothesis, 

treatment experience. Over the past times, research activities 

have shown that key clinical information can be extracted form 

free text or narratives. Clinical events embedded within clinical 

text can be organized in the temporal context to understand the 

time line order of clinical procedures there byfacilitating 

enhanced diagnostics and treatments. Natural Language tools 

such as Clinical NLP can be used extract rich and contextual 

information to obtain current status of a patient’s past, temporal 

relations and also provide information about patient’s 

future.Temporal Relation Extraction provides the 

chronological order among mention over texts, representing 

clinical events or Temporal Expressions. Clinical event can be 

discharge summery, treatment, reports and so on. A temporal 

Expression can be a time mentioned in free text or document 

creation Time(DCT). 

Although, many research works have contributed 

methodologies to improve the performance of temporal relation 

extraction, there exist a potential scope to advance further. This 

works mainly aims to conduct a systematic study on clinical 

text mining to survey existing methods for extracting temporal 

relations form clinical free text in English language there by 

establishing state of the art in this field. However, difficulties 

with Annotation and extraction of temporal relation is a 

complicated process due to lower inter-annotator 

agreement(IAA) than other clinical annotation tasks such as 

vent and temporal expression annotation tasks.Annotating 

clinical data may require specific medical expertise which can 

be quite expensive. In addition to that clinical text exhibits 

specific characteristics which directly impact the text pre-

processing steps and extraction results.The interest in temporal 

relation extraction from clinical narratives began to grow i2b2 

challenge and clinical TempEval in SemEval2015 [16]. With a 

focus into approaches used, main aspects and choosing of best 

method in studies, we have performed a systematic review 

which follows PRISMA statement [19].Despite previous 

review works on temporal relation extraction in clinical texts, 

there is still a scope for possibly on some areas. The authors of 

[20] highlighted some preliminary studies between 2006 and 

2012, while the authors of [21] presented studies between 2006 

and 2018. Owing to recent discoveries, the state-of-the-art 

changed over these two years, which was not covered by the 

authors of [21]. 

Authors of [22] have discussed state of the art of temporal 

relation extraction covering both TLINK and DocTimeRel 

types. However, there is still a scope to address performance of 

Temporal relation extraction methodologies with enhanced 

candidate pair generation based on ontologies and semantics. 

In this regard we performed a systematic review that follows 
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work of [22] with emphasis given to temporal extraction 

methodologies, state of the art, frameworks, tools used and 

enhanced candidate pair generation methodologies. 

Additionally, using our publication criteria, we analyze most 

extensive set of articles that contemplated by [22], covering the 

research topic evolution over recent years. 

Objective of this study is to present state-of the art temporal 

relation extraction. Reader of this work can derive answers for 

questions on “effectiveness of machine learning and rule-based 

techniques in identifying temporal relations in clinical texts”. 

Our secondary objective is to provide insights into the domain 

evolution over time by leveraging temporal relation extraction 

objectives and developing frameworks. A reader of this review 

can expect an analysis of temporal relations and investigate the 

best performing techniques and frameworks for temporal 

relation extraction. A reader of this review can expect an 

analysis of temporal relations and investigate the best 

performing techniques and frameworks for temporal relation 

extraction. Finally, recent development in candidate pair 

generation methodologies and an acceptable influence of that 

temporal relation extraction are thoroughly surveyed and 

addressing this gap to enhanced performance. 

The remainder of this article is structured as follows. Section 2 

provides an overview of temporal relation extraction in detail. 

Section 3 provides analyisis od TLINK extraction strategies 

Datasets and Tools used. Section 4 provides extraction of 

DocTimeRel relations. Section 5 provides Extraction of Tlink 

Relations. Section 6 provides concusion on candidate pair 

generation to enhance performance of temporal relation 

extraction.  

2.TEMPORAL RELATION 

EXTRACTION 
Temporal relation extraction can be summarized in two steps: 

(i) identifying a relation between pairs of mentions (e.g., event 

and temporal expressions) and (ii) classifying this relation into 

a temporal relation type among a predefined set. In Section 2.1, 

we explain temporal relation representations and discuss the 

differences between temporal relation sets. In Section 2.2, we 

explain the event and temporal expression characteristics in 

both clinical and general domains. 

2.1 Temporal Relation Representation 
Allen’s Interval–based algebra is the basis for Time-ML 

temporal Mark-up language developed exclusively to annotate 

even, temporal expressions and relations in the text [22]. The 

TLINK tag represents a temporal relationship between events 

and temporal expressions. The TimeML relations are displayed 

in Table 1 (TimeML column). In THYME-TimeML temporal 

history of medical events are annotated. Temporal expression 

definitions are similar to TimeML with addition ofnew 

category for preoperative, intraoperative and post-operative 

mentions. THYME-TimeML created DocTimeRel Category 

and a narrative container concept. The DocTimeRel relations 

are considered an event attribute and have the following 

relation set: BEFORE, AFTER, OVERLAP, 

BEFORE/OVERLAP, and AFTER. The THYME-TimeML 

DocTimeRel relations are displayed in Table 1 (THYME-

TimeML DocTimeRel column). BEFORE/OVERLAP 

indicates that the event occurred in the past and still occurs in 

the DCT. The narrative container concept is used to annotate 

the TLINKs. The THYME-TimeML TLINK relation set are 

BEFORE, OVERLAPS, BEGINS_ON, ENDS_ON, and 

CONTAINS. The THYME-TimeML TLINK relations are 

displayed in Table 1 (THYME-TimeML TLINKs column). 

Several events or temporal expressions can be connected to the 

same anchor, which contains them (represented in the 

CONTAINS row in Table 1). Events and temporal expressions 

in the same narrative container can be related, as a single 

element, with other containers [28]. The most significant 

advantage is a reduction in the number of required annotations 

[28]. The narrative container strategy is suitable in the clinical 

domain because there are central mentions of the texts, such as 

temporal expressions of date and time types, or more 

comprehensive events, such as mentions of exams.Different 

annotation schemes will have a temporal relation set based on 

the annotation requirements. For instance, the temporal relation 

OVERLAP is generic, implying that the two mentions 

somehow overlap. However, specific relations such as 

IDENTITY and SIMULTANEOUS indicate a particular 

OVERLAP case in which both events coincide, having the 

same start and endpoints. There is a trade-off between the 

amount of information represented by a relation set and the task 

complexity in both the annotation and extraction steps.To 

distinguish between close temporal relation types, additional 

information or specific knowledge may be required. In 

ClinicalTempEval only ‘CONTAINS ‘relation Type was used 

[22]. In i2b2 2012 shared task for annotation process 

‘BEFORE, BEFORE/OVERLAP, OVERLAPS, DURING, 

ENDS_BY, AFTER, BEGINS_BY, and SIMULTANEOUS 

relation types are used for annotation [22].Thus, always an 

extended relation set is ideal. However, trade-off lies between 

temporal information and task complexity. 

2.2 Temporal Relation Extraction processes 

In this section we describe the process of temporal relation 

extraction process. There has been an increasing interest among 

researchers to extract TIMEXs, Events and TLINKS form 

clinical free text [16-22]. Given a clinical text known to contain 

time expression, DCT and clinical events, to extract temporal 

relation both of TLINK and DocTimeRel it needs to undergo 

certain stages viz as follows and as shown in the figure 1. Fig 1 

describes the different stages involved in the process of 

temporal relation extraction.  

2.2.1 Pre-processing 

This stage enriches clinical text with lexical, syntactic and 

semantic information and coverts them in to representation 

form required for subsequent stages in sown stream steps. This 

stages typically comprises tokenization, sentence splitting, part 

of speech tagging etc. A range of existing have been used for 

pre-processing in the selected studies [20] Most frequently used 

tool for pre processing is cTAKES, Stanford’s cornel and 

MetaMAP. 
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Fig 1: Process of Temporal Extraction. 

2.2.2 NER (Extracting Events and Timex’s) 

This stage involves extracting EVENTs and Timex’s form 

unstructured clinical text using machine learning classifiers. In 

the study conducted most works used Support Vector machine, 

Conditional Random Fields(CRFs) and rule based methods. 

Deep learning is also a current probable choice for extracting 

EVENTs and TIMEXs [28,57]. 

2.2.3  TLINK and DocTimeRel candidate extraction 

In this stage, TLINK candidates from possible pairs of 

EVENTS and TIMEXs that should be linked through a 

temporal relation. In the research review conducted it is found 

that strategies commonly used relies upon on the following 

[20,22,73]: a) for TLINKs between Event and Document 

Creation Time (DCT) with inclusion of all pairs. b) TLINKs 

within one sentence c) TLINKs across sentences and EVENTS 

in consecutive sentences. However, there is no significant 

works from recent times about ontologies and sematic based 

candidate pair generation and also methodologies to enhance 

performance of temporal relation extraction via enhanced 

lexicographic features-oriented candidate pair generation. 

There is tremendous scope of research in extended candidate 

pair generation. 

2.2.4 TLINK classification 

In this stage heterogeneous TLINKS types will be assigned to 

pair of entities. research review conducted outlines 3 categories 

of techniques viz as follows a) Rule based Methods b) Machine 

Learning Algorithm based classification   c) Hybrid 

Approaches [20,22]. Figure 3 shows plot of distribution of 

classification approaches between 2017 to 2023. 

 

Fig 2. Plot of studies against TLINK Extraction 

approaches 

Table 1. Features used in machine learning based methods 

 

Features used in machine learning approaches in the research 

review are tabulated in the table 1. With inspection of few 

studies Shared Task events such as i2b2 and TempEval 

happened in previous years are predominately follows NLP 

approaches as shown figure 3 

 

Fig 3. Shared task events. 

2.2.4  Post Pre-processing 

Studies on Post Pre-processing focused on enhancing the 

performance of their methods or to deal with conflicting Hybrid 

Approaches [20,22,31,34,39,59,63,68,69,73]. In this stage, if 

any conflicts arise for classification due sentences that may 

contradicts relation, such relations are removed off by hand-

rule. 

2.2.5 Methodology 

SemanticScholar.org, PubMed, DibLIb databases were 

selected for this review. The inclusion and exclusion criteria for 

the title and abstract analysis and the full-text analysis are 

provided in the Table 5. The search criteria “temporal relation 

extraction in clinical text”. Chronological study on the same 

topic are shown in figure 4.  
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Fig 4. Plot of number of studies on TLINK Extraction 

approaches. 

All articles published up to 2023 since 2012 are reviewed. A 

total of 3208 studies are retained after eliminating duplication. 

Around 2908 article were excluded from the study after making 

full text analysis with retention of 214 journals. By a   careful 

inspection of each work out of 214, 96 journals were            

dropped off from the review process. Thus around 118 articles 

or journals were finally considered for the review study. The 

inclusion and exclusion of any journal to this study is based on 

criteria as shown Table 4 below. 

Table 2. Inclusive and exclusive criteria for TLINK 

extraction 

 

All 118 article were analyzed and most important and 

summarized in the tables. Methodological steps involved are 

depicted through figure 5 

 

Fig 5: Methodological steps adopted in the study 

Datasets 

Datasets used for temporal relation extraction form various 

shared tasks, reports, prescription, cases sheets and so on 

providing information such as document origin, temporal 

annotation schema and all related studies among the reviewed 

articles.There  exists a clear difference between TLINKs and 

DocTimeRel with separate annotations and evaluations in 

evaluation scripts. The ClinicalTempEval 2015 dataset has 

around 440 documents averaging 136.05 events,12,43 temporal 

expressions and 37.43 TLINKs per documents [22]. The 

ClinicalTempEval 2016 has produced more annotated data with 

a total of 591 documents averaging 133.42 events ,13.30 

temporal Expressions and 39.93 TLINKs. The 

ClinicalTempEval 2017 dataset contains 769 documents, 

averaging 120.83 events,12.70 temporal extraction and 33.28 

TLINKs per document. 

3. Analysis of TLINKs extraction strategies 
Analysis of strategies adopted to extract TLINK are analyzed 

in this section. Reviewed works are sorted and categorized 

based on strategies used deal with temporality. Three 

Categories which can be predominantly identified are a) Rule 

Based Systems b) Machine learning based systems and c) 

Hybrid systems. An in-depth analysis of all selected article and 

compiled summary of those articles are also provided here   

  3.1 Rule Based Systems 
Rul      Rule based system do not require any classifiers to feed upon. 

3.2 Machine learning based systems 
In this section we have analyzed the articles that used machine 

learning based systems for TLINKs extraction. Most articles 

reviewed in this section are related to shared task datasets. 

Ordering of temporal segments is the key agenda in [123] and 

[124]. Pairwise classification and event ranking were tested in 

[79] and achived better results. Temporal indexing, predicting 

TLINKs between events and temporal expressions while 

keeping the most relevant pair for each event. BERT model is 

used for extracting temporal relation form clinical texts [42]. 

Training a classifier with required number of positive sample 

and negative samples depends on candidate generation process. 

It is evidential that events such i2b2, THYME corpus and 

ClinicalTempEval produced more negative samples [22,23,24]. 

Strategy of restricting within sentence relations, was widely 

used in [6,12,31,34,77,84,86,87,89,90,99,101,104,108,111]. 

The strategy of using all possible pairs within sentence and 

specific heuristics to cover cross-sentence was used in 

[28,83,94,96,105,112,113,127]. In traditional Machine 

learning, most approaches use SVM. SVM classifier are used 

in [6,12,28,31,33,43, 94,100,108,127,130]. SVM classifiers 

outperformed the previously mentioned traditional machine 

learning. Approaches based on MTL focuses on both 

DocTimeRel and TLINKs [97]. [12] and [100] developed a 

strategy for the training set expansion. However, machine 

learning classifier do not perform as well as deep learning 

classifiers. Despite all previous there is still scope for research 

to enhance the candidate pair generation thereby improving the 

efficacy of temporal relation extraction. Articles related to use 

of machine learning are provided in figure 6. 
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Fig 6: Articles adopting Machine learning to extract 

TLINKs 

3.3 Hybrid systems 
Figure 7 gives research article employeed hybrid system to 

extract TLINKs. 

 

Fig 7: Research articles that used Hybrid system 

4. Analysis of DocTimeRel extraction 

strategies 
A thorough analysis of strategies adopted to extract 

DocTimeRel are analyzed in this section. Reviewed works are 

sorted and categorized based on strategies used deal with 

temporality. Three Categories which can be predominantly 

identified are a) Rule Based Systems b) Machine learning based 

systems and c) Hybrid systems. An in-depth analysis of all 

selected article and compiled summary of those articles are also 

provided here in. 

4.1 Rule Based Systems 
Rule based system to extract DocTimeRel are categorized in 

two types in to two types 

[i] those which derives relationship between the event and the 

DCT by connecting both and [ii] those which classify the 

relationships.  

Single step temporal information extraction methodology was 

adopted in [48,50-57]. Detailed temporal information 

extraction depending on the specific tasks such as regular 

expression based Tool-Context [56] for the task of extracting 

event attributes. Context Tool extracts experiencer, negation 

and Temporality(DocTimeRel). ConText tool is adopted with 

enhanced rules in [45,57]. It has been observed that 

performance of rule based systems are not better than machine 

learning system and hybrid system for I2b2 datasets. Figure 9 

gives systems that extracted DocTimeRel with Rule Based 

Approach  

4.2 Machine learning based systems 
Use of Machine learning system to extract DocTimeRel are 

summarized in figure 8. In the research review it is evident most 

works used support vector machines(SVMs) and Conditional 

Random Field (CRF) among traditional machine learning 

classifiers [47,106,67,86]. For shared task – related datasets, 

i2b2 datasets and regular dataset SVM showed better 

performance. Research articles that used Machine learning 

systems to extract DocTimeRel are summarized in figure 10. 

 

Fig 8: Research articles that used Machine learning 

4.3 Hybrid systems 
Review shows hybrid systems to extract DocTimeRel are fewer 

compared to Machine learning systems and rule based system. 

There is lack of substantial evidence to support superiority of 

hybrid systems over machine learning system and rule based 

system in performance. Figure 9 gives the summarization of 

hybrid system used to extract DocTimeRel 
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Fig 9: Research articles that used Hybrid system to extract 

DocTime relations 

5. CONCLUSION AND FUTURE WORK 
This work reviews the methods, datasets and outcomes of 

extraction of Temporal Relations and DocTimeRel relations. 

By the careful examination of 118 papers following 

conclusions are derived. 

1. Most research works use publicly available datasets 

(i2b2 and THYME) and focuses on a limited TLINK 

types such as ‘before’, ’after’, ’overlap’ and 

‘contains’. 

2. Deep Learning models, State-of-the-art based on 

Contextual Embedding and approaches based on 

BERT have shown performance improvements over 

traditional Machine learning models 

3. F-score has reached 91.1 % for some particular task. 

However Temporal relation extraction still has scope 

for improvements. 

4. DocTimeRel relation extraction (a secondary 

research topic) approaches are mostly relied upon 

Machine learning models. 

5. Most publications on TLINKs are based on a single 

dataset which limits evaluation of approaches in 

scenarios of different medical treatment scenarios. 

6. Enhanced Candidate pair generation improves 

overall performance temporal relation extraction. 

This study identifies a few topics which potential enough to 

pose a need for additional research works, which are as follows: 

1. Additional TLINK types are to be incorporated for 

training classifier and analyses the performance. 

2. Research can be extended to considering extended 

Unannoted corpus and report the performance.  

3. Extended ways such as Heuristics and semantic 

ontologies set to enhance Candidate Generation 

Techniques which may improve F-score of TLINK 

extraction process. 

4. Fine tuning pre trained models with clinical text such 

as BERT model to understand the clinical context. 

5. Exploring state of the art text mining approaches that 

have not yet used such as attention based neural 

networks model, minwise hashing and many others. 

6. Research on extraction of temporal relations would 

improve if additional datasets with different medical 

specialties and clinical text types. 
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