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ABSTRACT 

This review of the literature covers more than 100 research 

articles from reputed journals, conferences, and workshops 

proceedings and offers a thorough examination of skin lesion 

segmentation and classification techniques from the year 2008 

to the present. Two main parts of the survey are the 

segmentation of skin lesions and the subsequent classification 

of those lesions. It also covers different evaluation measures for 

algorithm and model assessment and provides a comprehensive 

collection of publicly available datasets.  The three main 

techniques of diagnosis are clinical, dermatoscopic, and 

histopathologic. From clinical examination to the development 

of dermatoscopy and histology, it describes the progression of 

diagnostic procedures, stressing the significant contributions 

and difficulties encountered with each approach. Details of all 

the Artificial Intelligence techniques for segmentation and 

classification of skin lesions are summarized. 
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1. INTRODUCTION 

1.1 Global stats 

Cancer is a disease, which is one of the major cause for 

mortality. Between 1990 to 2019 the recorded deaths due to 

cancer is 1,359,777,807, and out them skin cancer alone, both 

Melanoma and Non melanoma cancers inclusive, accounted for 

16,022,388. [9]. The estimated number of new cancer cases in 

USA from all cancer sites for 2023 is 1,958,310. Out of which 

97,610 cases are probable cases of Skin cancer (Melanoma). 

The estimated deaths due to cancer in USA in 2023 is estimated 

to be around 609,820 for all cancer sites and for Melanoma, it 

is estimated to be around 7,990 [10]. Australia and Newzeland 

leads the world in skin cancer cases. The major cause for skin 

cancers, both melanoma and non-melanoma is Ultra violet 

radiation [11]. Statistics above motivates to conduct extensive 

research to understand better the various cancers and methods 

to cure them. Particularly in this work, the focus being skin 

cancer, covering both Melanoma and non-melanoma types. On 

one hand, research on adoption of various computational 

methods to assist early detection segmentation and 

classification assist the physicians to plan the treatment earlier, 

thereby improving the survival rate. Latest trend being usage of 

Artificial Intelligence  (Machine learning and Deep Learning) 

for early detection, segmentation and classification of the 

cancer [12]. On the other hand, research in improved imaging 

techniques, which can help in capturing more better images 

which can be used for detection, segmentation and 

classification of cancers [13]. Research on Identifying the stage 

of the cancer and estimating the survival rate, such as five-year 

survival rate, and understanding the prognosis and predictive 

treatment are other key area which help in curbing the disease 

and improving the survival rate of the patients [14,15]. 

  

1.2 Types of Skin Cancers 

Cancer are basically tumours, which are formed due to the 

growth of cells in an uncontrolled manner. All tumours are not 

cancerous, but tumours can become malignant, which are 

cancerous.   

Skin cancer are of type Melanoma or Non melanoma category. 

Non melanoma cancer is formed in either of Basal cells, or 

Squamous cells or Merkel cells. Melanoma occurs in 

melanocytes. Life expectancy of non-melanoma cancers are 

higher than that of melanoma cancers.Ultra violet radiation is 

one of the main mutagens, which causes DNA 

damage\Mutation in the skin, which trigger the onset of tumour 

formation, as the tumour suppression genes are made inactive 

[16]. 

1.3 Methodology used for survey 

The survey is conducted from publication related to cancer and 

especially for skin cancer and skin diseases. The survey 

focusses on three aspects, preprocessing, segmentation and 

classification of skin lesions using machine learning, deep 

learning and other AI methods.
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1.4 Skin cancer detection workflow 
 

 

 

 

 

 

 

Fig 1: Process for detecting skin cancer 
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1.5 Datasets 

One of the key missing aspects in skin cancer research using 

computational techniques, is adoption of the models/algorithms 

to live clinical practices.  

Majority of the published papers, researchers have used the 

online available datasets. Few of the researchers have also 

directly collected the data from clinics / hospitals. Added to the 

above, the online datasets have images of white skin. Datasets 

of brown / black skin tone, for computational approaches like 

ML and DL are scarcely available online [18]. 

2. LITERATURE SURVEY 

A detailed survey has been conducted by referring to 

publications in the period 2008 to till date. About 100+ 

publication from key journals, conferences and workshops 

proceedings have been considered for survey. The survey 

focuses on two aspects, one segmentation of skin lesion and the 

second one on skin lesion classification. A detailed listing of 

the available public dataset is also provided. Various metrics 

for evaluation of the algorithms and models has been discussed. 

2.1 Clinical, Dermatoscopic and 

Histopathologic diagnosis 

2.1.1 Clinical Diagnosis 
Identifying a given patch on the skin and deciding if the patch 

is a benign or malignant is a crucial and tricky task. Expertise 

is required in taking this decision. Before the arrival of 

dermatoscope, clinical examination with naked eye was the 

only way to detect malignancy. A thumb rule guideline was set 

up by a group of dermatologist in 1985 [3] called ABCDE and 

another one called 7 Point checklist in 1989 [4][5]. A 

comparison of both the rule has been done in [6]. 
2.1.2 Dermatoscopic Diagnosis 
With the advent of dermatoscope [7] the ABCDE rules and the 

7-point checkpoints were reconsidered and modified. Key 

contribution for the dermatoscope development was done in 

[8]. 

Dermatoscopic images in later years become the key input for 

machine learning and deep learning models for skin lesion 

detection, segmentation and classification. 

2.1.3 Histopathologic Diagnosis 
In Histopathology, part of the skin lesion is dissected using 

biopsy and the extracted tissue are processed and observed 

under high magnification microscope. 
The histopathology images are too large in size of the order of 

100K X 100K or sometimes even larger. As there is availability 

of images, researchers have adopted machine learning and deep 

learning approaches to detect the tumour. Since the image are 

of very large size, smaller patches of key interest are cropped 

and passed to Convolution Neural Network models for 

detection of tumour [162, 165]. 

2.2 Pre-processing and Augmentation 

Irrespective of the data is from online or taken from clinics/hospitals, the raw data 

shall have some impediments which hinders the detection, 

segmentation and classification of skin lesions. 

One of the key essential steps in skin lesion detection is 

to remove impediments (unwanted artifacts) in the input 

images. Removal of these impediments helps in 

achieving better accuracy of detection and segmentation 

and in turn classification. 

Some of the key issues in the images of skin lesions available 

online are shown subsequently. The images have different 

types of artifacts which can hinder the detection of the skin 

lesion. 

The list of impediments is as listed: 

 
Fig 2: ABCDE method for melanoma detection 

1.Hair 

2.Bubbles  

3.Ruler Markings  

4.Pen Markings 

5.Dark Boundaries  

These artifacts need to be removed before feeding the image to 

the detection algorithm/model [18]. 

Fig 3: Samples from ISIC 2018 data set 
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Fig 4: Varying Colour Sample ISIC 2018 data set 

Apart from the above artifacts, the data set has other challenges 

too. Within respective skin lesion classes, it is observed 

variations and also between skin lesion classes, and similarities. 

Blood vessels are another challenge need to be addressed 

during skin lesion segmentation [166, 167]. 

One of the impediments is hair and removal of it from the input 

image is essential for better accuracy. A notable review is done, 

on methods used for hair removal using image processing and 

machine learning approaches by [2]. Hairs could actually 

occlude the lesion and it could hamper the accurate detection, 

segmentation of the skin lesion. From the existing literature, 

there are three categories of approaches used by researchers. (1) 

Linear interpolation (2) Non-linear Partial differential equation 

based diffusion algorithms and (3) Exemplar based methods. 

Dullrazor software [20] is one of the early works done in the 

area of hair removal using bilinear interpolation approach. The 

steps used are identifying the dark hair locations by 

morphological closing operation, replacing the hair pixels by 

bilinear interpolation and smoothing the final result by adaptive 

median filter. An improved version was developed by using 

median filter to reduce the effect of the hair on segmentation 

[21].  Researchers have also adopted detection and remove hair 

using morphological operations and thresholding in CIE 

L*u*v* colour space. In these techniques, a hair mask was 

generated by a fixed thresholding procedure on these thin 

structures based on their luminosity [22, 23]. 

The key downside of removal of hair using interpolation 

method, is that the original lesion maybe changed, and post 

removal there could be blurring, the boundaries may get 

altered, the texture could also get changed. 

Another approach for hair removal is non-linear-PDE diffusion 

based inpainting method. The advantage of using non-linear 

diffusion over linear interpolation is that it utilizes 

neighbouring information in a natural manner through non-

linear diffusion, filling large gaps while maintaining a sharp 

boundary [24, 25, 26]. Here as well, the texture information is 

not considered for processing, hence dermoscopic images does 

not perform well in this approach. In this method, both the PDE 

approach and texture information are used for hair removal. In 

inpainting method, for filling missing information, texture 

synthesis methods are used. Though texture-based synthesis is 

used, the results are not very satisfactory [27,28,29]. 

Contrast enhancement adjusts the relative brightness and 

darkness of lesions to improve their visibility. The contrast or 

tone of the skin image can be modified by mapping the grey 

levels in the image to new values through a grey-level 

transform. [30,31,32]. Normalization, median filtering, 

sharpening and histogram equalization are other preprocessing 

approaches applied [33]. 

Augmentation methods are adopted to overcome the bias in the 

dataset [35]. Basic augmentation techniques include vertical 

and horizontal flipping, scaling, adaptive histogram 

equalization, shearing, gaussian noise, additive noise. Further 

with the propose of deep learning, generative adversarial 

networks (GAN) have been very affective in generating 

accurate data [36]. 

2.3 Segmentation 

Before the advent of Deep learning, researchers used Image 

processing and Machine learning approaches for skin lesion 

segmentation and classification respectively. A detailed survey 

of the computing approaches, machine learning and deep 

learning approaches are presented in [1, 168, 169].  

Exact lesion border detection is not a trivial step. Researches 

have used various features for accurately finding the border of 

the lesion. Segmentation can be achieved either by detecting 

the edges, or grouping the pixels to different regions, or 

applying thresholds. In recent trends, artificial intelligence 

approaches are being adopted as well. 

Finding the edges could be achieved either manually by using 

semi-automatic tools, which have tracking facility or edges 

could be detected automatically using algorithms. Researchers 

have used watershed [37] in which post the noise elimination, 

the edges are detected using Sobel operator and then the 

watershed transformation is applied for segmentation. The 

border of melanoma tumour, have a differential structure as 

compared to a normal birth mark on skin, which has a smooth 

border. Researchers have considered these features for 

detecting the border using contour detection algorithms [38, 39, 

40,41, 42]. Canny edge based algorithms [43,44] uses the canny 

algorithm to detect the boundary of the lesion. 

Images can be grouped into regions based on certain attributes 

for segmentation, The pixels in these individual regions have 

matching values for the attribute. Clustering is performed by 

comparing neighbouring pixels, and grouped based on certain 

defined condition. Centroid based clustering algorithms like 

iterative region-based methods in [45,46,47]. Clustering 

approaches like MDCUT [46], a density based clustering 

algorithm, the colour variation in the image is studied and the 

threshold for each colour level is identified. These become the 

thresholds for the regions and these pixels become the seed 

point for the region growing algorithm. The regions so formed 

will separate the image into skin and lesion regions.  

In iterative stochastic region-merging [48], a region adjacency 

graph is formed, by starting with a pixel as a region and 

stochastic region merging is done iteratively. Based on Markov 

Random Field, a region merging likelihood function is used for 

merging the regions using the regional statistics. A modified 

active contour method, using gradient vector is used for 

segmentation in [49]. 

K-means and Fuzzy C-means clustering are one of the popular 

traditional methods for segmentation. In one of the method, K 

means is employed to cluster the pixels to obtain the foreground 

and background region in RGB colour space. This output is 

provided to a Fire fly algorithm to better optimize the 

thresholds used in K means and improves the segmentation 

[50], In another approach, a GrabCut algorithm is used to 

segment the foreground,  and the lesion segment is fine-tuned 

using K means clustering algorithm[53]. Few researchers have 

used Fuzzy algorithms [51], in which Fuzzy C-Means 

algorithm is used for segmentation of the lesion. In few others, 

a Gaussian distribution and Markov Random Field are 

combined, and the Bayesian probability technique is used to 
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determine whether a pixel is part of a specific region. In another 

approach researchers have used K-means clustering for getting 

an initial set of clusters and then suitable set of 10 features are 

calculated for each region and score for region is calculated 

using an ensemble of random forest and support vector 

regression [54]. 

Threshold based approaches either use a global threshold, or 

adaptive threshold. Due to the complexity in dermoscopic 

images, defining a suitable threshold is a very difficult activity. 

An adaptive thresholding approach using Gabor filter and PCA 

is used for segmentation in [55]. Another approach uses 

merging of texture and geometric features for segmentation 

[56]. Detection of anomalous growth of skin lesion using 

threshold-based segmentation algorithm and Fuzzy K-Nearest 

Neighbour classifier are used in [57]. Cross entropy based 

thresholding approach, and the best suitable threshold is 

estimated using a gaussian and gamma distribution for 

segmentation [58]. Histogram based thresholding methods are 

used by few researchers [59, 60]. 

In artificial intelligence based approach many researchers have 

used CNN based networks for skin lesion segmentation and 

classification. A deep CNN-based framework, with two 

encoders for parallel detection and recognition of the skin 

lesions, named Dermo-DOCTOR, is used in [61]. A modified 

version by same author has developed  DermoExper [62], in 

which preprocessing steps, segmentation, rebalancing and 

augmentation are applied. A semantic segmentation of skin 

lesion using encoder and decoder architecture is proposed in 

DSNet publication [63]. Other deep learning based approaches  

are also tried by researchers. They can be grouped based on 

below criteria.  

U-Net architecture is widely used in medical domain. 

Researchers have used it in its original form or modified form. 

Few approaches where the original Unet is used for 

segmentation [66,67,68]. Some with modified Unet 

architecture [69,70] and few customised approaches [71,72]. 

Residual networks use residual blocks, which are basically skip 

connections.  The output one layer is added to the input of a 

future layer, which have been more accurate and faster 

convergence. Some researchers have implemented only on 

encoder [73,74,75]. Similar residual networks implemented in 

both encoder and decoder on in [76,77,78,79,80]. 

Skip connections are very effective when used in encoder-

decoder architectures for segmentation tasks. These 

connections help in retaining the information, like boundaries, 

which would have been lost in a deep network kind of 

architecture due to up sampling and down sampling. 

[81,82,83]. Dense connection approaches are used in couple of 

research where in all the layers output are connected to all other 

layers output for concatenating features [84,85,86]. 

Dilated Convolution or atrous convolution, is a technique that 

expands the kernel (input) by inserting holes between its 

consecutive elements. In simpler terms, it is the same as 

convolution but it involves pixel skipping, so as to cover a 

larger area of the input [87,88]. A spatial separable convolution 

simply divides a kernel into two, smaller kernels. The most 

common case would be to divide a 3×3 kernel into a 3×1 and 

1x3 kernel [89,90]. A Global Convolutional Network, or GCN, 

is a semantic segmentation building block that uses a large 

kernel to help perform classification and localization tasks 

simultaneously [91]. Factorization can be used to break a higher 

dimensional convolution into a sequence of effectively lower 

dimensional convolutions which has a lower computational 

complexity and approximately the same result [92]. 

In order to handle multi scale capabilities, image pyramids, 

with multiple resolution images are passed on to the network 

[93,94]. Researchers have used single resolution image, with 

multiple varying dilated convolutions or multiple filters with 

varying kernel sizes [95,96]. Alternatively, researchers have 

adopted pyramid pooling for handling multi scale images [97]. 

Attention mechanism is adopted to differentiate between 

lesions and normal skin [92,95,98]. Recurrent convolutional 

neural network and Convolutional LSTM approaches are used 

in [99]. Ensemble techniques, wherein researchers have used 

multiple deep learning models to segment the lesions are used 

in [100 87, 101]. Multi task networks, where multiple models 

are used to do segmentation and classification in sequence  

[102, 97, 103,104,105]. GAN Model only be used for 

generating image, but also directly applied to enhance 

segmentation models [81, 88, 106,107]. Here a generator takes 

a dermoscopic image as input, and outputs the segmentation, 

and the discriminator is a CNN which tries to compare the 

generated segmentation output with ground truth data. 

Approaches, by combining preprocessing and post processing 

with CNN, by using feature information to the model, like 

shape, colour, texture, additional segmentation mask, applying 

filters have been explored by few researchers [ 

108,109,110,111,112,113]. Transformers Models have shown 

promising performance in image segmentation as well 

[114,115,116,117]. 

2.4 Classification  

Skin lesion classification approaches can be grouped into two 

categories, machine learning based and deep learning based 

approaches.  

In machine learning based approaches, suitable features are 

very essential for accurate classifica-tion. Lesion features can 

generally be organized into different categories: shape, colour 

variation, texture analysis, and other. Below are listed few 

features which are used for classification of the skin lesion 

while using traditional machine learning techniques. 

Border irregularity features are used in [118,119,120]. Skin 

lesions which are cancerous are asymmetric as compared to a 

benign birth mark. Asymmetry features were extracted and 

used for classification in [121, 122]. Statistical approaches like 

maximum, minimum, mean, and variance of the intensities of 

the pixels inside the lesion segment, skewness, and entropy 

features used in [123, 124]. Histogram based features are used 

in [125,126]. Generalized co-occurrence matrices features are 

used in [127,128]. Texture-based features are explored in 

[129,130,131,132,133]. Post feature extraction, selection of 

suitable feature and dimensionality reduction is also a crucial 

step before classification [134,135,136]. Post a suitable feature 

is selected, classification is done based on the information 

extracted from the features. SVM based classification is one of 

the widely used approach [137,138,139,140,141]. KNN based 

approaches [142,143,144], AdaBoost [145, 146], Decision tree 

method [147,148], Random forest [147 ], LDA [138] ,Naive 

Bayes [148] , K Means clustering [147] are reported in the 

literature. 

Machine learning based approach requires lot of feature 

engineering. Extracting suitable features from dermoscopic 

images is a complex activity. However, deep learning 

approaches do not need the feature engineering step and have 
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also shown higher performance as compared to machine 

learning approaches. Deep Learning based methods are mostly 

based upon CNN architecture. Most of the approaches use a 

pre-trained model and fine tune them with skin lesion datasets.  

Few pre trained models used are MobileNet, DenseNet, 

VGGNet [151] and it variants VGG16 [152,153], VGG19 

[154,155], GoogleNet [156,157], AlexNet[158], ResNet [159], 

Custom architecture are also created [160, 161]. 

2.5 Datatsets 

The dataset from the following sources were used by 

researchers: 

1. International Skin Imaging Collaboration (ISIC) 

Dataset: University of Queensland, Hospital Clinic 

de Barcelona, Medical University of Vienna, 

Memorial Sloan Kettering Cancer Center, Melanoma 

Institute Australia, and the University of Athens 

Medical School. 

2. Non-ISIC Dataset: The Seoul National University 

Hospital, Inje University Hospital, and Hallym 

University Hospital clinical photos were used to 

produce the SNU dataset. The PAD-UFES-20 dataset 

comprises 2298 pictures, 1641 skin lesions, and 1373 

individuals for six distinct diagnoses, including three 

skin disorders and three skin malignancies. 58.4% of 

all skin lesions, including all skin malignancies, have 

been confirmed by biopsy. The University Medical 

Center Groningen (UMCG) Department of 

Dermatology's digital picture library contains 70 

melanoma and 100 naevus photos. These 

photographs are part of the MED-NODE Dataset, 

which was utilized in the creation and testing of the 

MED-NODE system for skin cancer identification 

from macroscopic images. There are 376 light fields 

in the SKINL2 dataset that were collected in 

comparable circumstances. Melanoma / C43 

Melanocytic Nevus / D22 are the two categories that 

were used to categorize the photos based on the type 

of skin lesion and ICD code. The goal of the PH² 

dataset is to enable comparative studies on 

dermoscopic image segmentation and classification 

algorithms through research and benchmarking. 

Hospital Pedro Hispano in Matosinhos, Portugal's 

Dermatology Service is the source of the 

dermoscopic picture database known as PH². 

Creating a framework for evaluating and analyzing 

melanoma risk from dermatological photos captured 

with an ordinary consumer-grade camera is the aim 

of the skin cancer detection project. Vision and 

Image Processing Lab at Waterloo University is 

responsible for maintaining the dataset. 

3. Seven regulated access datasets that need to be paid 

for, have official institutional ar-rangements in place, 

or have ethical clearance, has been listed in Table 1. 

3. CHALLENGES IN EXISTING AND 

FUTURE WORK 

• Processing challenges: Publicly available datasets are 

not uniform and are not captured from same device. 

This leads to images have different varying features. 

A single preprocessing algorithm may not suffice for 

all types of images. Various types of impediments 

would need different types of preprocessing 

algorithms for removal. Impediment removal 

methods when applied, may at time distort the actual 

lesion region, making key features being tampered. 

Choosing a suitable set or preprocessing algorithm 

for all types of impediments, and also making sure 

that actual lesion region is not tampered too much is 

essential. 

• Type of melanoma: Most of the research mostly 

focusses on pigmented melanoma. Research 

opportunities in the area of Non pigmented 

melanoma lesion detection, segmentation and 

classification has to be explored further. 

• Dataset Limitation: Currently the available datasets 

are of white skin. Though skin cancer is not very 

common in brown skin races, research on detection 

of skin cancer in brown skin cases are explorable.  

• Brown skin dataset scarcity: Synthetic brown skin 

lesions generation from existing white skin lesion are 

possible opportunities. The synthetically generated 

brown skin images can be further used as input for 

developing algorithms/models for skin lesion 

detection, segmentation and classification.  

• Other Skin diseases: Detection of non-cancerous skin 

diseases are less explored as compared to research on 

cancerous skin lesions. 

• Unsupervised Learning: Unsupervised learning 

approaches are explored less as compared to 

supervised learning approaches. Unsupervised 

learning approaches avoids the tedious job of 

annotation and labelling. 

• Multi disease model: Single model to handle multiple 

types of skin cancers and non-cancerous skin 

diseases are seldom researched.  

• Dataset creation and Expert annotation: Creation of 

individual dataset by visiting clinics and capturing 

skin lesion images of patients and taking expert 

dermatologist annotation can be explored.  

• Small sized skin lesions: Annotating small lesions 

and detecting, segmentation and classification are not 

accurate in current research. 

• Low contrast images: Handling low contrast images 

are challenging and currently the accuracy of 

algorithms and models for low contrast images are 

not up to mark, and hence newer better approaches 

can be explored.  

• Model Explainabilty: Understanding and interpreting 

the decision made by algorithms and models are very 

important. Clinical adoption is possible only when 

the trust of the model decision is increased. Exploring 

explainable models are essential. 

• Multi-data set hybrid model: Current research 

focusses on usage of individual datasets for training 

and evaluation. Exploring models which can handle 

a combination of datasets from various sources, 

thereby handling more variability could be explored. 

• Multimodal and non dermatoscopic dataset: Limited 

research is being done in images which are non 

dermatoscopic images, like images captured from 

mobiles, histopathologic images, other imaging 

sources. Also combining multiple types of datasets 

can be explored. 
• Prognostic Analysis: Adoption of approaches, 

wherein genomic information, radiomic information, 

histopathologic images, dermatoscopic images, can 

be combined for better analysis of the stage of the 
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cancer and also improve the accuracy of life space 

expectance prediction.  

• Hybrid Model: Ensemble of multiple approaches can 

improvise the results of skin disease detection, 

segmentation and classification.  

• Transfer learning: Foundation models have been the 

trend in recent deep learning approaches. Exploring 

transfer learning using foundation models for 

segmentation can be explored. For instance, transfer 

learning using SAM (Segment Anything Model)  

• Image based Transformer: Transformers have been 

very promising in NLP applications. Recent 

approaches have adopted transformers in image 

based models as well, but limited work done in this 

aspect. 

 

Table 1: Seven regulated access datasets 

Archive Name 

Year of 

dataset 

publication 

Imaging 

modality 

Image 

format 

Number 

of skin 

lesion 

categories 

included 

Number of 

participants 

Number 

of 

images 

ISIC archive 

ISIC 2020 

Hospital 

Clinic 

Barcelona42 

2020 Dermoscopic 
DICOM 

or .jpg 
2 356 7311 

ISIC 2020 

University of 

Queensland42 

2020 Dermoscopic 
DICOM 

or .jpg 

Not 

reported 
304 8449 

ISIC 2020 

Medical 

University 

Vienna42 

2020 Dermoscopic 
DICOM 

or .jpg 
2 432 4374 

ISIC 2020 

Memorial 

Sloan 

Kettering 

Cancer 

Centre42 

2020 Dermoscopic 
DICOM 

or .jpg 
5 523 11 108 

ISIC 2020 

Sydney 

Melanoma 

Diagnosis 

Centre and 

Melanoma 

Institute 

Australia42 

2020 Dermoscopic 
DICOM 

or .jpg 
8 441 1884 

BCN20,000 2019 Dermoscopic .jpg 9 Not reported 12 413 

HAM10,000 2018 Dermoscopic .jpg 8 Not reported 10 015 

2018 JID 

editorial 

images 

2018 Macroscopic .jpg 3 Not reported 100 
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ISIC challenge 

only 

ISIC 2020 

challenge test 

set42 

2020 Dermoscopic 
DICOM 

or .jpg 

Not 

reported 
690 10 982 

ISIC 2019 

challenge test 

set 

2018 and 

2019 
Dermoscopic .jpg 

Not 

reported 
Not reported 8238 

ISIC 2018 

test set (tasks 

1 and 2)26 

2018 Dermoscopic .jpg 
Not 

reported 
Not reported 1000 

Non-ISIC 

datasets 

PAD-UFES 2020 Macroscopic .png 6 1373 2298 

PH2  2013 Dermoscopic .bmp 3 Not reported 200 

Derm7pt 7-

point criteria 

evaluation 

database46 

2018 

Dermoscopic 

and 

macroscopic 

(paired) 

.jpg 15 1011 2013 

MED-NODE 2015 Macroscopic .jpg 2 Not reported 170 

SKINL2 2019 

Light field 

photographs, 

dermoscopic 

photographs 

(paired) 

.png 8 Not reported 814 

SNU dataset 2018 Macroscopic .png 81 
Not 

reported§ 
240 

University of 

Waterloo 

dataset 

Not 

reported 
Macroscopic 

.jpg and 

.png for 

contours 

2 Not reported 206 

Regulated 

access datasets 

Asan 

dataset50** 
2017 Macroscopic 

Not 

reported 
12 4867 17 125 

Hallym 

dataset50 
2017 Not reported 

Not 

reported 
1 106 152 

DERMOFIT 

Image 

Library: 

Edinburgh 

dataset 

Not 

reported 
Not reported 

Not 

reported 
10 Not reported 1300 

IMA205 2018 Not reported 
Not 

reported 

Not 

reported 
Not reported 

Not 

reported 

MoleMapper 

app patient 

photos 

2017 Macroscopic 
Not 

reported 
2 2069 2422 
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4. DISCUSSION 

Overall, the way skin diseases are detected and treated might 

be completely changed by incorpo-rating research findings into 

web portals, mobile health applications, and clinical support 

tools. These applications have the potential to improve patient 

outcomes and save healthcare costs re-lated to skin diseases by 

using technology to improve diagnostic capabilities and enable 

early de-tection. To optimize their influence on patient care, it 

is imperative to guarantee the precision, dependability, and 

accessibility of these instruments. To fully realize the potential 

of these appli-cations in clinical practice, additional research 

and development is required to address issues in-cluding 

algorithm robustness, validation, and regulatory 

considerations. 

5. CONCLUSION 

In conclusion, there are many different and intricate difficulties 

in the field of skin lesion detec-tion, segmentation, and 

classification. These difficulties include methodological, 

technological, and dataset-related aspects. It will take 

interdisciplinary cooperation and the investigation of novel 

strategies to overcome these challenges. In order to address 

current issues, this paper offers a thorough analysis of skin 

lesion analysis techniques and suggests possible directions for 

further research. The goal is to use deep learning and machine 

learning approaches to improve the effi-ciency and accuracy of 

skin lesion recognition and classification, which will ultimately 

help with early skin condition diagnosis and treatment. 
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