
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.40, September 2024

41

Enhanced Model for Mining Software Repositories

P.C. Nwosu
Dept. of Physical Sciences

Rhema University Aba,
Abia State, Nigeria

F.E. Onuodu
Dept. of Computer Science

University of Port Harcourt, Rivers
State, Nigeria

U.A. Okengwu
Dept. of Computer Science

University of Port Harcourt, Rivers
State, Nigeria

ABSTRACT

This study presented Enhanced Model for Mining Software

Repositories using Supervised Machine Learning technique.

The work adopted Object Oriented Analysis and Design

(OOAD) methodology for the system design and was

implemented using PHP Hypertext Pre-processor scripting

language for the purpose of enabling flexibility and user-

friendliness in mining source codes from repositories. The

database for the model was created using MySQL. The

enhanced model utilized K-Nearest Neighbor (k-NN), a

supervised machine learning algorithm for data classification

to eliminate voluminous comments from source codes in order

to reduce bulkiness. The results and performance evaluation of

the existing and enhanced models were illustrated. The pre-

defined parameters for both models comprised of the number

of iterations for mining, the time taken to generate the codes in

seconds and number of generated lines of codes. Seven

iterations were carried out for both models in which the existing

model generated a total of 56 lines of codes in 2.322 seconds,

while the developed model generated a total of 93 lines of well-

defined lines of codes in 0.017 seconds. Therefore, the results

obtained clearly showed that the model performed much better

than the existing model in terms of speed, accuracy and

extraction of well defined codes. The model could be beneficial

to data miners, programmers, software engineers, project

managers of large industrial environments as well as

researchers because relevant information from the study can be

applied to problem-solving.

Keywords

Software Repositories, Source Code, Data Mining, Machine

Learning, KNN

1. INTRODUCTION

Poor code readability is identified as a major issue in mining

software repositories because readable codes are easier to

understand, modify, maintain and reuse. Based on the ideas of

developers, source code readability is directly related with code

maintenance which is a very important feature with which

software quality is measured [16]. A software repository which

is as well referred to as Code Repository is a collective storage

location for software resources and their artifacts which

provides access to source codes to potential users for either

personal use to develop a new project, contribute to other

people’s project or collaborate in a large project as a team.

Among many other benefits, it supports code reuse and

collaboration among programmers which are highly promoted

in software engineering by providing remote access to source

code modules. In addition, a code repository is also an archive

where large amounts of source code for software applications

are accessed. These repositories are used by developers of

open-source projects and other collaborative projects in

managing different changes by different individuals in assigned

tasks referred to as version control.

[16] described Mining Software Repository as one among the

remarkable and main expanding area in software engineering.

In all engineering professions, precise measurement is a basic

requirement; software engineering inclusive. Engineers as well

as researchers attempt to numerically demonstrate the

efficiency of software using different tools just for the purpose

of software quality assessment. In order to measure software

quality, several evaluation metrics have been presented and

evaluated. A lot of applications are equally provided for

gathering metrics from program descriptions.

The essential collection of tools allows users the opportunity to

select the most suitable tool that meets their requirements.

Nevertheless, it has created the assumption that most of these

tools carry out the task of measuring, analyzing and executing

the same metrics using the same approach. At the inception of

mining software repository, scholars barely had access to

software repositories because the few that were available then

were hosted privately by enterprises but nowadays users can

boast of unlimited access to code repositories as a result of

availability of several public repositories with open access like

SourceForge, Bitbucket, GitHub, RhodeCode, GitLab, SCM-

Manager etc. Those in the field of research presently have a

wealth of data to mine from and reach significant conclusions.

Software engineering collaborative documents or artifacts are

gathered and stored in software repositories. Similarly,

communications among programmers and their teams are

archived in mailing lists, newsgroups and personal archives,

while different versions of modifications made to source codes

are recorded in version controls like Concurrent Versions

System [9].

Research in the field of mining software repositories is

primarily focused on determining as well as creating new tools

and approaches for discovering methods in which software

repository mining can contribute to understanding software

development process and progress, to promote predictions

concerning the development of software and to effectively use

the discovered information to make plans for prospective

development [2].

Software developers should have the ability to explore code

repository, determine essential libraries and discover who

created them and ways of using them. Library authors have the

necessity of monitoring the usage of their Application

Programming Interface (API). These entail a considerable

effort in providing efficient code exploration and browsing

tools, nevertheless, Google Corporation has immensely

benefitted from this effort, enhancing the efficiency of software

developers. Unlimited access to software repositories promotes

wide-range of code sharing and code reuse. A number of people

may disagree about this model that depends so much on the

extreme scalability of the Google build system, makes it very

simple to add dependency and lowers the motivation for

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.40, September 2024

42

software developers to create reliable and well considered APIs

[12].

In software engineering, data mining approaches like

classification, clustering and association rule are all concerned

with finding valuable traits and relationships in data. Thus, it is

used for solving software engineering issues like defective or

susceptible systems, pattern reused, or modifications in source

code modules. Extracting and getting important information

from this type of data eliminates error and allows software

developers to carry out timely project delivery. Mining

structures software repositories has recorded huge success with

different things including source codes, execution traces and

version control but software repositories are also made up of

unorganized data like specifications documents, plain text in

bug reports, archived mailing list, comments in source code,

identifiers etc. Mining software repository researches have

been able to estimate that a very large percentage of all the data

archived in software repositories is unorganized, which poses

various difficulties due to the fact that such data are usually

noisy, incomplete, unlabeled and unclear [17].

Approximately every sector of life such as education, security,

transportation, engineering, science, healthcare, energy,

entertainment etc depends on the smooth operation of superior

quality software. Regrettably, software development is a

rigorous, time-consuming and expensive process because

software developers have to deal with the intrinsic complexity

of software still keeping bugs off as well as timely delivery of

exceptionally efficient software products to the users. So, there

exists continuous need for improvements in software tools that

enables highly functional and maintainable software. Novel

approaches are regularly required so as to minimize software

complexity to enable developers to create enhanced software

products [1].

2. REVIEW OF RELATED WORKS

[16] presented Mining Software Repositories for Software

Metrics. The authors presented a theoretical model for

extracting information from software repositories for software

metrics in order to produce the measure of software

performance, productivity and readability (i.e. software

metrics) for Industrial Environments. The proposed model was

divided into three phases - the beginning phase, which describe

in-depth organization of software repositories and decide the

repository selection; the implementation phase, which deals

with the retrieval of source code from repositories and

presented standard measure coupled with its authentication

with retrieved data and finally the reporting phase, which

integrates the final outcome obtained from the presented

metrics and its evaluation with industry benchmark by carrying

out a review from software developers handling on open source

projects. However, the developed model could not

automatically assign a single comment per hundred lines of

codes.

[18] presented the SmartSHARK, an ecosystem that allows

research that can be replicated and reproduced with focus on

mining software repository. It was opined that mining software

repository serves as the basis for various practical software

engineering practices. Gathering and analyzing intricate data

could be very difficult, particularly when the involved data

needs to be shared in order to facilitate repeatable research and

open science practices. A major setback on the study was that

the proposed Smart-Shark framework data was not extended to

a large number of software projects.

[11] worked on Mining Patterns in Source Code Using Tree-

Mining Algorithm. From the researcher's perspective, finding

consistency in source codes is highly important to software

developers, in both academic and industrial environments since

it could offer essential information to provide assistance in

diverse activities like understanding of source codes, code

refactoring and fault localization. Furthermore, a novel model

for extracting attributes in source code that was built on

FREQT tree extraction algorithm codenamed FREQTALS was

presented. Basically, some control measures that effectively

facilitates the discovery of more important traits were put in

place; which was followed by showing the way to effectively

incorporate them into the FREQT algorithm. Illustrating the

effectiveness of the control measures, the researchers

collaborated with software engineers and engaged in a case

study that enabled the identification of several useful attributes

in a Java code repository. Nevertheless, the surveyed FREQT

algorithm approach was not applied using any machine

learning prototype that could provide significant improvement

to the proposed study.

[5] presented Deploying Smart Program Understanding on a

Large Code Base. The researchers posited that software

engineers are confronted with the duty of categorizing large

files and functions with no assistance. The proposed technique

for tackling the challenge referred to as FEAT does automatic

mining of source code artifacts with hierarchical agglomerative

clustering. The clustering technique employed in the model

applied a novel hybridized distance that incorporates written

and structural elements mechanically mined from software

codes as well as comments. The model was applied on Software

Heritage, a huge open source repository composed of around

sixty-five million free software projects. Incorporation of

FEAT and Software Heritage program was aimed at offering

very theoretical method to engage in search for software

artifacts according to program topoi, thereby permitting the

utilization of normal text in queries. Although the testing

revealed that the approach was appropriate for gaining

knowledge about large free software projects of about two

thousand (2, 000) functions and one hundred and fifty (150)

files that made it suitable for applying it in open-source

projects. However, semantic categorization could not be

utilized on every source codes to automatically discover very

extensive duplicates and mining of text documents to discover

unknown relationships among test cases.

[4] presented Discovering Program Topoi via Hierarchical

Agglomerative Clustering. The researchers stressed that

managing source codes in a more theoretical manner, more

rapidly like human beings has gotten attention from software

engineers; although regrettably, no any standard technique or

application that accurately offer much assistance in handling

huge source codes archives. Consequently an efficient remedy

to the problem was presented for automatic mining program

topoi that provides well organized listing of function names

related with a directory of significant words. The study was

extended to the area of program understanding based primarily

on transforming raw input data into numerical form suitable for

machine learning algorithm and automatic discovery of key

features software components through analysis of source code

and other artifacts. The presented model employed

unsupervised machine learning algorithm to simplify the

deployment and utilization. It exploited text mining and

analysis of the structure of codes to direct the classification

task. The proposed system was implementation a generic

software analysis program and empirical analysis were

conducted using several free software projects. During the

evaluation, the proposed model was analyzed within the

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.40, September 2024

43

context of a number of viewpoints including the grouping

process, extensibility of the method as well the efficiency of the

model. Nevertheless, a serious setback in the work points to the

fact that the built system had issue with cost-benefit as well as

evaluation standard.

[3] carried out research on Emerging Topics in Mining

Software Repositories. The researchers presented an overview

and a research argument this domain over these past period and

additionally ascertained utilized machine learning approaches,

present operational subjects and finally the potential challenges

for the enhancement of decision-making process of

organizations. Moreover, other emerging issues in software

repository were pointed out including project connected with

novel technology such as energy use in portable and wearable

gadgets and security issues due to weakness; and software

developmental process like constant integration, and integrated

project repositories counterfeiting. Ways for applying data

mining in mining software repositories were analyzed and more

light was thrown on data samples, the models and the

experimental test methods in practice. It was discovered that

the software archives record huge amounts of data, even though

there exist no typical tools for gathering data or mine particular

information from repositories are available.

 [10] worked on Exploring the Applicability of Low-Shot

Learning in Mining Software Repositories. The researchers

explored the applications of low-shot learning in extracting

software artifact. The researchers suggest that if issues of

categorization are considerately matched with the suitable deep

learning model, it definitely becomes likely to realize

significant outcome with considerably little training samples

than what are normally exploited for deep learning but it does

not suggest that deep learning model is the appropriate

application for all task. Nonetheless, for tasks involving deep

learning models, exploiting a low-shot approach could support

the employment of them whenever little training samples

would ordinarily not permit their use.

[20] worked on Overview of Different Approaches to Solving

Problems of Data Mining. The paper dealt with important

activities in the evaluation of huge volume of data coupled with

comparing different approached to ascertain the outcome. The

researcher opined that data miming can be applied to the

transformation of raw data and solving pre-processing problem.

The k-Nearest Neighborhood algorithm and the Decision Tree

algorithm were utilized for data classification and regression in

specified domain. The results analyses indicates that the

solution tree developed for given subject areas was highly

effective but fails with increase in the volume of data. The

model developed for k-nearest neighbour method is also

effective but the operating time slightly increased with increase

in the volumes of data but it is still very fast. Therefore, it can

be deduces that both approaches are appropriate for

employment on specific topics, with extended correctness and

speed. The k-nearest neighbor classifier moderately maintains

reduce extensibility, while the decision tree method can be

extended with no significant rise in training time, hence, the

Decision Trees algorithm provides more satisfactory result than

the k-Nearest Neighborhood algorithm.

[19] presented Accelerating Source Code Analysis at Massive

Scale. An approach that decreases the total execution time for

source code extraction function carried out in extremely huge

repositories was presented, particularly the ones associated

with analysis that involves control and data flow. The main

purpose was to study code extraction activities in order to

determine and eliminate unimportant data from source codes

before the mining task is executed. The system was evaluated

with 16 classical control and data-flow analyses that are usual

components of mining tasks and seven million (7 million)

Control Flow Graph (CFG). The observation was that greater

number of Reduced Control Flow Graph (RCFG) depictions of

programs in the data samples showed similarities in relation

with nodes and edges. This causes a remarkable survey to

ascertain if the resemblance could be applied to executing

extraction procedure just on distinctive RCFG and recycle the

results. The outcome revealed that the method could realize an

average of forty percent decrease execution time and the

viability of the proposed method. Even though the similarity

determined in the RCFG could not be investigated to ascertain

if it could be used execute the procedure just on distinctive CFG

to produce superior quality outcomes.

[8] worked on Mining Software Repositories for Adaptive

Change Commits Using Machine Learning Techniques. The

researchers examined the version information of free software

in order to automate the categorization of version merges into

one of two different groups, which were the adaptive commits

and non-adaptive commits. The commits gathered the version

information of three free software and eight different codes

edits measure associated with different things such as the

number of edited statement of codes, functions, modules and

files. On the basis of these edits measures, a machine learning

method to determine if a merge conformed to the changes or

not was developed. Based on the result, it was deduced that

code edits measure could be suggestive of tailored maintenance

tasks. Additionally, the categorization result indicated that the

developed machine learning algorithm showed about 75%

forecasting accuracy in marked modification information. This

showed that the technique was capable of automatic processing

the evaluation of version information of software products and

determined the particular code commits that were connected to

tailored maintenance activities. It was observed that the

algorithm could provided a better platform for building

improved algorithm with forecasting ability on tailored

commits devoid of the necessity of physical efforts. Although,

the adopted algorithm could not predict the efficiency of the

tailored commits from modification logs that were not

classified.

[15] worked on A Novel Scheme for Improving Accuracy of

KNN Classification Algorithm Based on the New Weighting

Technique and Stepwise Feature Selection. The researchers

proposed a new system to enhance the correctness of k-Nearest

Neighbor categorization tool using the latest weighting method

and stepwise feature selection. First, a stepwise selection

technique was applied to remove inappropriate attributes and

choose very interrelated attributes with the class group.

Subsequently, the weighting technique was applied in order to

grant weight value to each of the data in the training dataset

according to neighbor groups and the Euclidean distances. The

weighting method offers top priority to data samples with

neighbors having close Euclidean distance in the same

category, which could efficiently enhance the accuracy of

categorization of the system. The correctness level of the

presented model was evaluated and examined using the

conventional K-Nearest Neighbor technique and other related

study employing of five actual UCI data sets. The outcome of

the evaluation determined that the presented model efficiency

was far better than the conventional K-Nearest Neighbor

method with a record of about 10% improvement on accuracy.

This indicated that the algorithm significantly improved the

classification performance of the traditional K-NN method. But

the experiments were not conducted on various real-world

applications.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.40, September 2024

44

3. METHODOLOGY

The Object Oriented Analysis and Design (OOAD)

methodology was employed in this research because it makes

implementation simple; it is also very efficient and supports

reusability. The OOAD software development methodology

employs a repetitive and object-oriented building approach

which breaks down a whole system into smaller segment or

modules. It is a widely used scientific approach for analysis and

design from the implementation of an object-oriented model all

through the entire system development procedure. OOAD

offers a modern software engineering practice that is

excellently carried out to meet the system's goals.

3.1 Object Oriented Analysis

The system was analyzed using the architecture in Figure 6. K-

Nearest Neighbour algorithm was introduced in the system to

handle data classification in order to appropriately identify

comments in source code for possible removal; this was to

ensure improvement in readability of source code.

3.1.1 K-Nearest Neighbour Algorithm

K-Nearest Neighbour algorithm is the basic and easiest

classification method. With little or no previous information

concerning the distribution of data, the algorithm classifies

every sample together based on closeness of data with similar

attributes. One of the most crucial elements in the KNN method

is the k value. There is no exact value for k, and the appropriate

value depends on the problem's space and data distribution [7].

In the application of k-Nearest Neighbour algorithm, an item is

categorized using majority vote of its neighbors, every item is

allotted to the most common group amongst the nearest

neighbors (k is typically a small positive integer). For example,

If k = 1, the item is just allocated to the class of its nearest

neighbours [13].

3.1.2 The Traditional K-Nearest Neighbour

Step-1: Start.

Step-2: Choose the number k of the neighbours.

Step-3: Compute the euclidean distance of k number

 of neighbors.

Step-4: Take the k nearest neighbors based on the

 calculated euclidean distance.

Step-5: Among these k neighbours, count the number of the

data samples in each group.

Step-6: Assign a new data points to that group with the

 maximum of number of neighbours.

Step-7: End.

3.1.3 The K-Nearest Neigbhour Algorithm

 for the developed system

Step1: Start

Step2: Initialize the system

Step3: Activate the proposed model Step4: Input User

 Request (R)

Step5: Read R using K-NN function

Step6: Increment R

Step7: R =R + 1

Step8: input set of classes in the program to mine software

repository

Step9: input set of 4 datasets type (e.g. null method)

Step10: refactoring_count = 0

Step11: repeat

Step12: classes for code files = set of classes in program

Step13: while!empty (classes) do

Step14: class = classes.pick()

Step15: if fitness_function_improves () then

Step16: refactoring_count++

Step17: update system output

Step18: else

Step19: refactoring.undo()

Step 20: end

3. 2 System Design

The various steps taken in the design of the model for mining

source codes in software repositories was discussed in this

section. The designs discussed in this section include the

interface design, the functional design, input/output

specifications and the use-case design.

3.2.1 Interface Design

The interface design involves the specification of programming

language and other tools that were employed in the

development of the user interface of the system.

Figure 1: Interface Design of the System

3.2.2 Functional Design

The functional design of the system indicates the flow of

information within the system. It shows the internal mechanism

of the system; that is, how the system works. It was used to

simplify the design of the system and further assure that every

segment of the system is assigned a single task and that the task

is carried out without any negative impact on other modules.

Interaction could exist between software components,

hardware components, peripherals, users or any of them

combined.

Sign-in

Mine Source Code

DESIGN

SPECIFICATION

(i) Coding: PHP

(ii) Scripting:

JavaScript/CSS/HTML

(iii) Type: Simulator

DESIGN

SPECIFICATION

(i) Coding: PHP

(ii) Scripting:
JavaScript/CSS/HTML

(iii) Type: Simulator

DESIGN

SPECIFICATION

(i) Coding: Java

GUI Builder

(ii) Scripting: Java
Script/CSS/HTML

(iii) Type: Simulator

INTERFACE OF THE MODEL

User input

Sign-up

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.40, September 2024

45

Figure 2: Functional Design of the System

3.2.3 The Use-Case Design

The Use-Case design process involves a dynamic context

which describes interactions of the system with its users and

environment. Figure 3.5 shows the use-case design of the

system.

Figure 3: Use-case Design

3.3 The Architecture of the System

The architecture of the model for mining source codes

repositories is illustrated in Figure 4. The red dotted line shows

the introduction of the k-nearest neighbour algorithm which

served the purpose of identifying comments for possible

removal from source codes in order to reduce bulkiness and

improve readability, thereby enhancing the model.

Figure 4: Architecture of the System

4. CONCLUSION

Enhanced model for mining repositories was developed and

implemented for the purpose of enabling flexibility and user-

friendliness in mining source codes. The developed model

utilized the K-Nearest Neighbor (k-NN) algorithm, a

supervised learning technique and a flexible interface to reduce

bulk comment lines in mined source codes from repositories.

The system demonstrated a very good performance in mining

source codes from code repositories.

The research could further be extended by integrating a

different classification algorithm with the K-NN algorithm to

have a hybridized model. This could provide more excellent

approach for indexing and classifying data in order to place

each document on a proper footing based on a considerable

standard. This could significantly provide better classification

and offer greater improvement on the system since better

predictions can be made.

5. RECOMMENDATION

The developed model could be beneficial to data miners,

software developers, technical personnel, project managers of

large industrial environments and researcher in the areas of data

mining and software engineering. This is because; the

beneficiaries can utilize relevant information from the study in

solving complex issues relating to data mining.

6. REFERENCES

[1] Allamanis, M. (2019). The Adverse Effects of Code

Duplication in Machine Learning Models of Code.

Proceedings of the ACM SIGPLAN International

Symposium on New Ideas, New Paradigms, and

Reflections on Programming and Software, 143-153.

[2] Chaturvedi K., Singh V., and Singh P. (2013). Tools in

Mining Software Repositories. Proceedings of the 13th

Results

display

Updating of Mined

Source Codes for

User

Processing of

User Mining

Request

Results

Request is made

by the registered

user to mine

source codes

from software

repositories

Processing Stage

of the System

System

Initialization

Sign-up

Sign-in

User Mining

Request

Input (Xi)

Synchronization of

User Mining

Request using k-

NN Technique

Launch

Initialize

System

Mine Source

Code from

Repository

View

Extracted

Source Code

User

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.40, September 2024

46

International Conference on Computational Science and Its

Applications, IEEE Press, 1, 89 – 98.

[3] Güemes-Peña, D., López-Nozal, C., Marticorena-Sánchez,

R., and Maudes-Raedo, J. (2018). Emerging Topics in

Mining Software Repositories. Progress in Artificial

Intelligence, 7(3), 237–247.

[4] Ieva, C., Gotlieb, A., Kaci, S. and Lazaar, L. (2018).

Discovering Program Topoi via Agglomerative Clustering.

Proceedings of the Thirty-Second IAAI/AAAI Conference

on Innovative Applications of Artificial Intelligence, IEEE

Transactions on Reliability, 69(3), 758-770.

[5] Ieva C, Gotlieb A., Kaci S. and Lazaar L. (2019). Deploying

Smart Program Understanding on a Large Code Base.

Proceeding of the 1st IEEE International Conference on

Artificial Intelligence Testing (AITest), San Francisco East

Bay, CA, USA. 73 - 80.

[6] Kim, K. (2021). Normalized Class Coherence Change-

Based KNN for Classification of Imbalanced Data. Pattern

Recognition, 120, 108126.

[7] Kuhkan M. (2016). A Method to Improve the Accuracy of

K-Nearest Neighbor Algorithm. International Journal of

Computer Engineering and Information Technology, 8(6),

90-95.

[8] Meqdadi, O. and Alhindawi, N. (2019). Mining Software

Repositories for Adaptive Change Commits Using Machine

Learning Techniques. Information and Software

Technology, 109, 80-91.

[9] Olatunji S. O., Idrees S. U., Al-Ghamdi Y. S. and Al-

Ghamdi J. S. A. (2010). Mining Software Repositories: A

Comparative Analysis. International Journal of Computer

Science and Security (IJCSNS), 10(8), 161–174.

[10] Ott, J., Atchison, A. and Linstead, E. J. (2019). Exploring

the Applicability of Low-Shot Learning in Mining

Software Repositories. Journal of Big Data 6(35), 1-10.

[11] Pham H. S., Nijssen S. and Mens K. (2019). Mining

Patterns in Source Code Using Tree Mining Algorithms.

Proceedings of the 22nd International Conference on

Discovery Science, Split, Croatia. Lecture Notes in

Artificial Intelligence, 11828, 471–480.

[12] Potvin, R. and Levenberg, J. (2016). Why Google Stores

Billions of Lines of Code in a Single Repository.

Communications of the ACM, 59(7), 78-87.

[13] Raikwal, J. S. and Saxena, K. (2012). Performance

Evaluation of SVM and K-Nearest Neighbor Algorithm

over Medical Dataset. International Journal of Computer

Applications, 50(14), 35-39.

[14] Ram-Kumar, R. P., Polepaka, S., Lazarus S. F. and

Krishna, D. V. (2019). An Insight on Machine Learning

Algorithms and Its Applications. International Journal of

Innovative Technology and Exploring Engineering

(IJITEE), 8(11S2), 432-436.

[15] Siddiqui and Ahmad (2019). Mining Software

Repositories for Software Metrics (MSR-SM):

Conceptual Framework. International Journal of

Innovative Technology and Exploring Engineering

(IJITEE), 8(10), 4173-4177.

[16] Sheikhi, S. and Kheirabadi, M. T. (2020). A Novel Scheme

for Improving Accuracy of KNN Classification Algorithm

Based on the New Weighting Technique and Stepwise

Feature Selection. Journal of Information Technology

Management, 12(4), 90-103.

[17] Thomas S. W., Hassan A. E. and Blostein D. (2014).

Mining Unstructured Software Repositories. Evolving

Software Systems, 139-162.

[18] Trautsch, A., Trautsch, F., Herbold, S., Ledel, B., and

Grabowski, J. (2020). The Smart-Shark Ecosystem for

Software Repository Mining. Proceeding of the 42nd

International Conference on Software Engineering

(ICSE). ACM, New York, USA, 24-28.

[19] Upadhyaya, G. and Rajan, H. (2018). On Accelerating

Source Code Analysis at Massive Scale, IEEE

Transactions on Software Engineering, 44(7), 669-688.

[20] Vadim K. (2018). Overview of Different Approaches to

Solving Problems of Data Mining. Procedia Computer

Science, 123, 234–239.

IJCATM : www.ijcaonline.org

