
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.38, September 2024

7

Implementing an Effective Infrastructure Monitoring

Solution with Prometheus and Grafana

Pragathi B.C.
Department of Computer
Science and Engineering

R V College of Engineering
Bengaluru, India

Hrithik Maddirala
Department of Computer
Science and Engineering

R V College of Engineering
Bengaluru, India

Sneha M., PhD
Department of Computer
Science and Engineering

R V College of Engineering
Bengaluru, India

ABSTRACT

This paper investigates the implementation of a robust

monitoring solution using Prometheus, Grafana, and Node

Exporter in a Kubernetes environment. Motivated by the need

for real-time insights and proactive management of Kubernetes

clusters, the study delves into the cause of infrastructure

monitoring challenges and explores the methodology employed

to address them. Through a meticulous deployment process,

Prometheus, functioning as the central monitoring component,

adopts a pull-based approach to collect metrics from

Kubernetes nodes and pods. Meanwhile, Grafana complements

Prometheus by offering powerful visualization capabilities,

facilitating the creation of dynamic dashboards for monitoring

system performance and resource utilization. Node Exporter

further enhances the monitoring system by providing detailed

system metrics, including CPU usage, memory utilization, and

disk I/O, at the node level. The integration of these tools

enables organizations to gain comprehensive insights into their

Kubernetes infrastructure, facilitating timely anomaly

detection, efficient resource allocation, and proactive

management. The study presents compelling results

demonstrating the effectiveness of the monitoring solution in

improving infrastructure visibility, enhancing operational

efficiency, and ensuring the reliability of Kubernetes

deployments.

Keywords

Prometheus, Grafana, Node Exporter, Kubernetes, Monitoring,

Infrastructure.

1. INTRODUCTION
In contemporary IT landscapes, the necessity for robust

infrastructure monitoring solutions is paramount [1]. With the

exponential growth of digital systems and the increasing

complexity of distributed architectures, organizations rely

heavily on efficient monitoring tools to ensure the reliability,

performance, and security of their infrastructure.This paper

delves into the implementation of an effective monitoring

solution using a combination of Prometheus, Grafana, and

NetData. These tools have gained widespread adoption in the

industry due to their versatility, scalability, and comprehensive

feature sets.

Prometheus stands out as a leading open-source monitoring and

alerting toolkit, renowned for its ability to collect metrics from

diverse sources, its powerful querying language (PromQL), and

its seamless integration with Grafana for visualization and

alerting [2].Grafana complements Prometheus by providing

rich visualization capabilities, intuitive dashboards, and

extensive customization options. Its user-friendly interface

empowers administrators and engineers to gain valuable

insights into the performance and health of their infrastructure

[3].NetData offers real-time monitoring and troubleshooting

capabilities, excelling in its ability to provide granular insights

into system-level metrics with minimal overhead. Its

lightweight architecture and web-based dashboard make it a

popular choice for monitoring individual hosts and applications

[4].

By leveraging the strengths of these tools in concert,

organizations can establish a comprehensive monitoring

solution that addresses the diverse needs of modern IT

environments. This paper will explore the implementation

process, highlight best practices, and provide insights into

optimizing the performance and effectiveness of the

monitoring stack.

2. LITERATURE REVIEW
Abirami et al. in [5] present a comprehensive strategy for

streamlining the deployment and monitoring of cloud-native

applications on AWS using Kubernetes, Prometheus, and

Grafana. By automating the deployment process, the authors

aim to eliminate the time-consuming and error-prone nature of

manual deployment, thereby enhancing efficiency and cost-

effectiveness. The paper highlights the integration of a

centralized log management system, which consolidates logs

from various deployments, facilitating easier troubleshooting

and comprehensive analysis. Additionally, the automation of

monitoring resources, including alerts and dashboards, ensures

consistent oversight across different deployments. Through

case studies, the authors demonstrate the significant benefits of

this approach, such as reduced deployment time, lower

operational costs, and improved management and monitoring

capabilities for cloud-native applications.

Abirami et al. in [6] present a comprehensive approach for

monitoring and alerting in horizontal auto-scaling of

Kubernetes pods using Prometheus. The proposed method

leverages a combination of tools, including Kubernetes, Helm,

Prometheus, and Grafana, to address the challenges of

achieving zero downtime during cloud application

deployments. The paper emphasizes the integration and

optimization of these tools to provide a robust solution for

identifying and alerting on deployment errors. Case studies

demonstrate the effectiveness of this approach, highlighting

significant improvements in deployment reliability and

operational agility, which contribute to faster time-to-market

and cultural shifts in business operations .

mailto:pragathibc.cs20@rvce.edu.in
mailto:pragathibc.cs20@rvce.edu.in

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.38, September 2024

8

Chen, Xian, and Liu in [7] present a monitoring system for the

OpenStack cloud platform using Prometheus, an open-source

monitoring tool. By integrating Prometheus with OpenStack,

they efficiently collect and visualize real-time monitoring data

using Grafana, enhancing the reliability and stability of the

cloud platform. The paper details the implementation of this

comprehensive and intelligent monitoring system, emphasizing

its role in maintaining system performance. Testing results

demonstrate significant improvements in the reliability and

stability of OpenStack, highlighting the effectiveness of their

approach in cloud environments.

Mart, Negru, Pop, and Castiglione in [8] present a novel

approach for automatic anomaly detection in Kubernetes

clusters using Prometheus. Leveraging the built-in monitoring

capabilities of Kubernetes, their method focuses on preemptive

detection and alerting of anomalies in system metrics, aiming

to reduce reliance on human intervention. The paper highlights

the integration of Prometheus for real-time monitoring and

emphasizes the importance of early anomaly detection to

prevent potential defects. Through analysis of existing

solutions and the introduction of their own, the authors

demonstrate the benefits of automated anomaly detection, such

as improved system reliability and reduced downtime in

Kubernetes-managed environments.

Saputra et al. in [9] present a comprehensive approach for real-

time server monitoring and notification by integrating

Prometheus, Grafana, and Telegram. This method leverages

Prometheus for data collection through exporter nodes, storing

the data in a time series database, and visualizing it using

Grafana. Telegram is utilized to deliver immediate notifications

upon server overload detection. The study underscores the

system's efficiency in real-time issue resolution, as

demonstrated by excellent performance in displaying metrics

and executing server targets and dashboards. User

questionnaires indicate an 85.33% approval for its efficacy in

server monitoring. Additionally, performance assessments

reveal that notifications are dispatched in less than 30 seconds

during server issues, contingent on internet quality. These

findings highlight the system's significant contribution to

maintaining server performance and reliability, ensuring

prompt administrator response to potential problems.

Sukhija and Bautista in [10] present a framework for

monitoring and analyzing high performance computing

environments utilizing Kubernetes and Prometheus. The

proposed system aims to address alert fatigue by ensuring

actionable alerts and minimizing redundant notifications,

particularly in the context of large and diverse computational

centers like NERSC at LBNL. The paper emphasizes the

integration of technologies such as Grafana and predictive

platforms to manage the complexity of next-generation

systems. Highlighting the architecture of the Operations

Monitoring and Notification Infrastructure (OMNI), the

authors detail how this infrastructure will support the upcoming

Perlmutter HPC system and future deployments. Case studies

underscore the framework's ability to scale, centralize service

orchestration, analyze streaming data, and effectively correlate

data to pinpoint core issues, enhancing operational efficiency

and problem resolution.

Di Stefano et al. in [11] explore the integration of Prometheus

and AIOps for orchestrating Cloud-native applications within

the Ananke framework. By leveraging DevOps methodologies

and AI-enabled strategies, the authors aim to enhance

automation and intelligent management of cloud environments.

The paper focuses on the integration of Ananke-managed

clusters and applications with Prometheus for efficient metric

storage and analysis. It introduces algorithms for anomaly

detection and time series forecasting within the AIOps

Prometheus Framework, emphasizing the role of predictive

models in system orchestration. A case study demonstrates the

application of an auto-scaling strategy using the Facebook

Prophet model to predict traffic peaks for web applications,

showcasing the practical benefits of the proposed approach.

Sharma in [12] presents a strategy for managing multi-cloud

deployments on Kubernetes with Istio, Prometheus, and

Grafana, as outlined in the paper presented at the 2022 8th

International Conference on Advanced Computing and

Communication Systems (ICACCS). The paper underscores

the paradigm shift towards cloud-native architectures,

emphasizing the move from monolithic to microservices-based

approaches and the adoption of agile methodologies. By

leveraging a multi-cloud environment, organizations can

mitigate single-vendor dependency issues and enhance

reliability and availability. The adoption of multi-cloud

architectures enables organizations to harness the strengths of

various cloud providers, facilitating distributed computing

resources, minimizing downtime, and ensuring high data

availability. Through the integration of Kubernetes, Istio,

Prometheus, and Grafana, the proposed approach offers

enhanced management and monitoring capabilities across

multi-cloud infrastructures, catering to the evolving needs of

modern businesses in a dynamic cloud landscape.

Mehdi et al. in [13] present a comprehensive exploration of

Grafana's capabilities in real-time monitoring and

visualization, as showcased in their paper. Grafana emerges as

a robust and widely embraced open-source tool tailored to meet

the demands of contemporary monitoring ecosystems. With its

rich array of features, organizations harness Grafana's potential

to craft dynamic and adaptable dashboards, facilitating the

continuous monitoring and analysis of data streams from

various origins. Noteworthy is Grafana's prowess in seamlessly

integrating disparate data sources, whether spanning servers,

databases, IoT devices, or business applications, thus offering

a unified platform for holistic insights into infrastructure,

application performance, and business metrics. The

accessibility of Grafana's interface caters to users of diverse

technical proficiencies, empowering them to configure

dashboards effortlessly and curate visualizations according to

their monitoring requisites. Such versatility positions Grafana

as a pivotal asset across domains such as IT operations,

DevOps, business intelligence, and IoT monitoring, all while

maintaining a focus on efficiency, performance optimization,

and scalability.

Siddiqui et al. in [14] present a comprehensive exploration of

integration strategies, best practices, and emerging trends in the

realm of comprehensive monitoring and observability, with a

primary focus on leveraging Jenkins and Grafana. Rooted in

the dynamic landscape of modern software development, the

paper delves into the historical context and prevailing adoption

trends of these pivotal tools, setting the stage for a deep dive

into fundamental monitoring and observability concepts.

Emphasizing the critical distinction between monitoring and

observability, the authors underscore the importance of

capturing key metrics to quantify system performance and

behavior, enabling informed decision-making and proactive

issue resolution. Drawing from real-world scenarios and prior

research, the paper elucidates various integration strategies in a

step-by-step manner, offering practical guidance for

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.38, September 2024

9

organizations to seamlessly incorporate Jenkins and Grafana

into their workflows. Central to the discussion is the

recognition of Jenkins and Grafana as enablers of software

excellence, addressing the evolving demands of continuous

monitoring and observability in today's digital landscape.

Liu et al. in [15] present a comprehensive investigation into

cloud-native monitoring systems centered around Prometheus,

an open-source monitoring ecosystem. In the context of the

burgeoning adoption of cloud-native technologies like

microservices and containerization in enterprise settings, the

paper delves into the challenges posed by the swift evolution of

microservices applications, particularly in maintaining system

stability. The authors propose a monitoring and alerting system

tailored to address these challenges, designed to accommodate

distributed large-scale cluster monitoring and multi-tenant

management. By providing an integrated monitoring solution

spanning IT infrastructure, microservices, and containers, the

system offers enhanced visibility into system health and

performance. The practical deployment of this system by China

Mobile Group in real production environments underscores its

efficacy in swiftly identifying issues within business systems,

thereby ensuring high availability services and facilitating

proactive maintenance efforts.

Dewo et al. in [16] present a case study conducted at Astra

Polytechnic School, focusing on the development of an IT

infrastructure monitoring application using Grafana and

Prometheus. In the contemporary landscape of digital

transformation, maintaining an optimal IT infrastructure is

paramount for businesses to ensure system stability and

operational efficiency. The absence of real-time monitoring

tools often leads to prolonged response times in addressing

infrastructure issues, typically reliant on user-reported

complaints. This paper addresses this challenge by proposing a

solution for comprehensive infrastructure monitoring across

network peripherals, servers, and in-house application systems.

Employing an iterative development approach, the study

utilizes Prometheus for data collection of specific metrics and

Grafana for real-time visualization of gathered data. The

resulting web-based centralized dashboard provides

stakeholders with vital insights into the health of the school's

IT infrastructure, enabling prompt identification and resolution

of potential issues to prevent service disruptions.

Kirešová et al. in [17] present a comprehensive examination of

utilizing Grafana as a powerful visualization tool for

measurements, showcased through a range of parameters

including particulate matter, volatile organic compounds,

temperature, humidity, pressure, and wind speed. The paper

underscores Grafana's intuitive interface and its adaptability

across diverse research domains, facilitating clear and

insightful data visualization. By demonstrating its effectiveness

in processing vast datasets and enabling easy selection of time

periods for analysis, the authors advocate for Grafana's broader

application in research endeavors requiring efficient data

visualization and analysis.

Manate, Fortiş, and Moore in [18] present an innovative

approach in their paper, where they focused on the burgeoning

Internet of Things (IoT) landscape. The authors propose the

development of a multi-agent system capable of effectively

managing the diverse array of data types inherent to IoT

expansion. Their methodology prioritizes the establishment of

semantic links between data sources and consumers while

streamlining Big Data collection and processing. Through a

thorough assessment of existing agent-oriented methodologies,

the paper advocates for a flexible approach that transcends

specific programming languages or frameworks, thereby

ensuring adaptability within the dynamic IoT domain.

3. METHODOLOGY
The infrastructure is a Kubernetes cluster consisting of a master

node responsible for managing the cluster's state and resources,

along with twelve worker nodes where containerized

applications are deployed and executed. This distributed

architecture enables efficient resource utilization, scalability,

and fault tolerance Monitoring a Kubernetes cluster is essential

for ensuring its reliability, performance, and security.

3.1 Methodology for setting up

prometheus monitoring in the cluster
Prometheus can be installed as a standalone service or as a

Docker container, but in a Kubernetes environment, it's

typically deployed as a Kubernetes application using Helm

charts or YAML manifests. Once installed, Prometheus runs as

a server within the Kubernetes cluster, continuously scraping

metrics from various targets (e.g., nodes, pods, services) based

on configured scrape jobs.

Step 1: Install Prometheus using Helm charts or YAML

manifests. Helm is a package manager for Kubernetes that

simplifies the deployment process by providing pre-configured

charts for various applications, including Prometheus.

Step 2: Next we customize Prometheus configuration to suit our

monitoring requirements. This includes defining scrape targets,

configuring retention policies, and setting up alerting rules.

Figure 1. Prometheus configuration file

The above figure 1 defines global configurations for scrape and

evaluation intervals and specifies two scrape configurations for

monitoring Kubernetes nodes and pods respectively using

Kubernetes service discovery.

Step 3: Next we configure Prometheus to dynamically discover

and monitor Kubernetes services, endpoints, and pods using

Kubernetes service discovery mechanisms or custom service

discovery configurations.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.38, September 2024

10

Figure 2. Prometheus service file

This configuration in Fig 2 instructs Prometheus to discover

services labeled with app=your-application-label.

Prometheus exposes its metrics on port 9090 by default. This is

the port where Prometheus server accepts HTTP requests for

metric scraping and querying. When Prometheus is deployed in

a Kubernetes environment as described above, we can access it

through a service endpoint, which forwards requests to the

Prometheus pods running on port 9090.

3.2 Hosting prometheus as a service
To make Prometheus metrics accessible within a Kubernetes

cluster, we expose Prometheus as a service. This allows other

components within the cluster to discover and access

Prometheus metrics without the need for port forwarding.

For this we define a Kubernetes Service using a YAML

manifest. Below figure 3 shows a part of the service manifest

for exposing Prometheus metrics:

Figure 3. Service manifest yaml

In figure 3,

● metadata.name: Specifies the name of the service (in

this case, "prometheus").

● spec.selector.app: Selects pods with the label app:

prometheus, indicating which pods should be

targeted by the service.

● spec.ports: Defines the ports to be exposed by the

service.

● port: Specifies the port number on which the service

listens (9090 in this case).

● targetPort: Specifies the port to which traffic should

be forwarded (also 9090, as Prometheus listens on

this port by default).

● spec.type: Sets the type of service. In this example,

ClusterIP is used to expose the service internally

within the cluster.

After creating the service, other components within the

Kubernetes cluster can access Prometheus metrics by querying

the service's cluster IP address and port (e.g.,

http://prometheus:9090/metrics). This enables us to seamlessly

integrate with other monitoring tools, such as Grafana, which

can use Prometheus as a data source to visualize and analyze

metrics.

3.3 PromQL the query language
In order to access the metrics on the prometheus dashboard

hosted on the local host on port 9090 we use a query language

called PromQL.PromQL (Prometheus Query Language) is a

powerful querying language used to retrieve and manipulate

metric data stored in Prometheus. It supports various functions

and operators for querying and aggregating metric data. Some

key features of PromQL include:

PromQL, the Prometheus Query Language, empowers users

with a suite of powerful functionalities for metric analysis and

exploration. Instant queries provide the ability to fetch the

value of a metric precisely at a defined point in time, offering

real-time insights into system metrics. In contrast, range

queries extend this capability by enabling retrieval of time

series data over specified time intervals, facilitating historical

analysis and trend identification. Aggregation functions offer

the means to compute aggregate values across multiple time

series, allowing for statistical analysis and summarization of

metric data. Vector matching, a core feature of PromQL,

enables the combination of time series data based on labels and

label matching rules, facilitating complex queries involving

multiple metrics and dimensions. Moreover, operators such as

arithmetic, comparison, and logical operators empower users to

manipulate and filter metric data, enabling advanced data

analysis and visualization to glean actionable insights from

Prometheus-monitored environments.

Figure 4. A PromQL query

This query in Fig 4 selects the total CPU usage metric for the

"idle" mode from the node_cpu_seconds_total metric family,

filtered by the node's IP address and the port where Node

Exporter is running.

PromQL provides a rich set of features for querying and

analyzing Prometheus metric data, making it a flexible and

powerful tool for monitoring and troubleshooting in

Kubernetes environments.

3.4 Alerting with Prometheus
Alerting with Prometheus is a critical aspect of ensuring the

reliability and availability of systems in a Kubernetes

environment. Prometheus provides a robust alerting

mechanism that allows users to define alerting rules based on

specific conditions and thresholds, triggering notifications

when those conditions are met. These alerts can be configured

to notify administrators or other monitoring systems via various

channels such as email, Slack, PagerDuty, or custom

integrations.

To set up alerting in Prometheus, users define alerting rules

using Prometheus's Alerting Rules language. These rules

specify conditions that, when satisfied, trigger alerts. For

example, an alerting rule might monitor the CPU usage of a

Kubernetes pod and trigger an alert if the CPU exceeds a certain

threshold for a specified duration. These rules are defined in

Prometheus's configuration file or loaded dynamically from

external sources using service discovery mechanisms.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.38, September 2024

11

Once defined, Prometheus continuously evaluates these

alerting rules based on the configured evaluation interval.

When an alerting rule's condition is met, Prometheus generates

an alert instance with details such as the alert name, severity,

labels, and annotations. These alert instances are then sent to

Prometheus's integrated Alertmanager component for further

processing.

Figure 5. A PromQL query

In Figure 5, the example rule triggers an alert when the CPU

usage on a node exceeds 80% for more than 5

minutes.Prometheus Alertmanager is responsible for handling

alert notifications, deduplicating alerts, grouping similar alerts,

and sending notifications to the appropriate recipients. It

provides powerful features for managing alert notifications,

including routing alerts to different notification channels based

on predefined routing rules, silencing alerts during

maintenance windows, and suppressing flapping alerts to

reduce noise.

By leveraging Prometheus's alerting capabilities, organizations

can proactively monitor their Kubernetes infrastructure,

identify and respond to potential issues in real-time, and ensure

the continued availability and performance of critical systems

and applications. With its flexible and extensible alerting

framework, Prometheus empowers users to build sophisticated

monitoring and alerting solutions tailored to their specific

requirements and use cases.

3.5 Node exporter integration for

extensive system monitoring

Node Exporter when integrated with Prometheus will enable us

to collect a wide range of system metrics that Prometheus can't

collect directly from Kubernetes APIs or other sources. By

collecting these metrics, Node Exporter complements

Prometheus's monitoring capabilities, allowing users to gain

visibility into the performance and health of the underlying

infrastructure.

The compiled architecture is as follows .The Node Exporter

runs as a daemon or service on each host or node in the

Kubernetes cluster, exposing an HTTP endpoint (/metrics) that

Prometheus scrapes at regular intervals. When Prometheus

scrapes the Node Exporter endpoint, it retrieves a variety of

system metrics in the Prometheus exposition format, which is

a text-based format containing key-value pairs representing

metric names, labels, and values. Prometheus then stores these

metrics in its time-series database for further analysis,

visualization, and alerting.

These metrics, provided by Node Exporter, cover essential

aspects of system performance and resource utilization,

including CPU usage, memory utilization, disk space usage and

I/O statistics, network interface statistics, filesystem metrics,

and system-level metrics such as uptime and load averages. By

exposing these metrics, Node Exporter enables administrators

to gain comprehensive insights into the health and behavior of

individual nodes within a Kubernetes cluster. This visibility

allows for proactive monitoring, efficient troubleshooting, and

optimization of resource allocation, ensuring the reliability,

availability, and performance of the underlying infrastructure.

3.6 End to End visualization using

Grafana
Grafana serves as a powerful visualization and monitoring tool

that seamlessly integrates with Prometheus, enhancing the

monitoring capabilities of Kubernetes environments. The

integration between Grafana and Prometheus enables users to

create rich, interactive dashboards that visualize Prometheus

metrics in real-time, facilitating comprehensive monitoring,

analysis, and troubleshooting.

The integration between Grafana and Prometheus typically

follows a client-server architecture. Prometheus serves as the

data source, continuously collecting and storing metrics from

various targets within the Kubernetes cluster. Grafana, on the

other hand, acts as the visualization layer, retrieving metric data

from Prometheus and rendering it into visually appealing

dashboards.

To integrate Prometheus with Grafana, we have to configure

Grafana to connect to Prometheus as a data source. This

involves specifying the URL of the Prometheus server and

configuring authentication credentials if required. Once

connected, Grafana can query Prometheus for metric data and

display it in dashboards.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.38, September 2024

12

Figure 6. Overall architecture of the monitoring system

3.7 Overall integrated monitoring

system

The integrated monitoring system as shown in Figure 6,

leveraging the combination of Prometheus, Node Exporter, and

Grafana, orchestrates a comprehensive approach to monitoring

within Kubernetes environments. The architecture is composed

of several interconnected components that collectively gather,

store, visualize, and analyze system and application metrics.

At the core of the system lies Prometheus, functioning as the

primary data collection and storage engine. Prometheus scrapes

metrics from various targets, including Kubernetes nodes,

pods, and services, utilizing the flexible service discovery

mechanisms. These metrics are then stored in Prometheus's

time-series database, facilitating historical analysis and trend

identification.

Node Exporter complements Prometheus by providing system-

level metrics from individual nodes within the Kubernetes

cluster. Running as a daemon on each node, Node Exporter

exposes metrics related to CPU usage, memory utilization, disk

I/O, network activity, and more. These metrics are scraped by

Prometheus and integrated into the centralized monitoring

system, enhancing visibility into the underlying infrastructure's

health and performance.

Grafana serves as the visualization and monitoring frontend,

offering a user-friendly interface for creating customizable

dashboards and visualizations. Integrated with Prometheus as a

data source, Grafana retrieves metric data and renders it into

interactive dashboards, enabling real-time monitoring and

analysis. Grafana's extensibility allows for the integration of

additional data sources, visualizations, and extensions, further

enhancing its functionality and adaptability to diverse

monitoring requirements.

This integrated monitoring system provides a centralized and

holistic view of the Kubernetes environment, empowering

administrators to monitor, analyze, and troubleshoot system

and application performance effectively. With rich

visualization capabilities, real-time monitoring, and advanced

features for alerting and analysis, the system enables proactive

management and optimization of infrastructure resources,

ensuring reliability, availability, and performance across the

cluster.

4. EXPERIMENTAL RESULT AND

ANALYSIS
In this section, we present the experimental results obtained

from the integration of Prometheus, Node Exporter, and

Grafana for monitoring a Kubernetes cluster.

Figure 7. PromQL query for CPU metrics

The query in Fig 7 sums the rate of CPU seconds used over the

past minute, grouped by mode (user, system, idle, etc.). We use

it to understand the overall CPU usage across all cores and

differentiating between user and system CPU time.

Prometheus collected CPU usage metrics from all nodes at 15-

second intervals. The data showed that during peak load

periods, the average CPU utilization across the cluster reached

75%, with some nodes hitting up to 90%. These high utilization

rates were visualized in Grafana, enabling us to identify nodes

that consistently operated near their capacity limits.

Node Exporter provided detailed memory usage metrics, which

indicated that average memory utilization across the cluster

was around 65%. Several nodes experienced memory pressure,

with usage exceeding 80%, particularly during intensive data

processing tasks. Grafana dashboards highlighted these trends,

allowing for timely memory allocation adjustments and

optimization.

Figure 8. PromQL query for disk metrics

This query in Fig 8 calculates the per-second rate of completed

write I/O operations over the past minute. Disk I/O metrics

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.38, September 2024

13

revealed that certain nodes experienced high I/O operations per

second (IOPS) during database write operations. The peak

IOPS reached 1500 on some nodes, indicating potential

bottlenecks. This insight prompted the investigation of storage

configurations and led to the implementation of more efficient

disk usage practices.

Figure 9. A prometheus graph

Figure 9 shows the httpd server load [21] .Network metrics

showed significant variance in network throughput between

nodes. The average network bandwidth utilization was 50

Mbps, with peaks up to 200 Mbps during data synchronization

tasks. Grafana visualizations helped identify nodes with

consistently high network traffic, suggesting the need for

network optimization or load balancing adjustments.

Prometheus alerting rules were configured to trigger alerts for

high CPU usage (above 85% for more than 5 minutes), high

memory utilization (above 80% for more than 10 minutes), and

disk I/O latency (above 50ms for more than 2 minutes). During

the testing period, these alerts proved effective in identifying

and notifying administrators of potential issues.

Alert Analysis:

● CPU Alerts: Five high CPU usage alerts were

triggered during peak load testing. Each alert allowed

administrators to take preemptive actions, such as

redistributing workloads, before system performance

degraded significantly.

● Memory Alerts: Three high memory utilization alerts

were triggered, leading to the discovery of memory

leaks in specific applications. These alerts prompted

immediate fixes and prevented potential system

crashes.

● Disk I/O Alerts: Two alerts for high disk I/O latency

helped identify suboptimal disk configurations,

leading to timely improvements in storage

performance.

Grafana dashboards provided comprehensive visualizations of

all collected metrics, enabling detailed analysis and quick

identification of performance issues.

Figure 10. A grafana dashboard

As shown in Figure 10, the Grafana dashboard [22] provides a

comprehensive view of the system metrics.

Grafana’s real-time capabilities allowed administrators to

monitor the cluster's state continuously. The dashboards

displayed live updates of CPU, memory, disk, and network

metrics, facilitating immediate response to anomalies.

The ability to review historical data enabled trend analysis and

capacity planning. For example, weekly and monthly trends in

resource utilization were analyzed to forecast future resource

needs and plan for scalability.

Custom dashboards tailored to specific applications and

services provided focused insights, helping teams optimize

performance and resource allocation based on their unique

requirements.

5.1 Comparison between Prometheus and

NetData

In this section, we compare Prometheus and NetData, two

popular open-source monitoring solutions, across various

parameters to understand their strengths, weaknesses, and use

cases.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.38, September 2024

14

Table 1. Comparison of the tech stack

This comparison in the above table Table 1 highlights the key

differences between Prometheus and NetData [19][20],

including their architecture, metrics collection, storage

duration, visualization capabilities, alerting mechanisms,

performance, scalability, resource usage, and use cases. Both

tools have unique strengths and can be chosen based on specific

monitoring requirements.

For organizations needing detailed, long-term metrics with

advanced alerting and visualization, Prometheus paired with

Grafana is an excellent choice. On the other hand, for real-time

monitoring and immediate troubleshooting, NetData provides

a user-friendly and efficient solution. In some cases, using both

tools together can provide a comprehensive monitoring

solution that leverages the strengths of both systems.

5. CONCLUSION
The implementation of a monitoring solution using

Prometheus, Grafana, and Node Exporter in a Kubernetes

environment provides comprehensive insights into the

performance and health of the infrastructure. By leveraging

Prometheus's pull-based model, Grafana's visualization

capabilities, and Node Exporter's detailed system metrics,

organizations can monitor key aspects of their Kubernetes

clusters, including resource utilization, container health, and

network activity.

Prometheus serves as the core monitoring component,

collecting metrics from various sources, including Kubernetes

nodes and pods, and storing them in a time-series database.

With its flexible query language, PromQL, and robust alerting

system, Prometheus enables organizations to analyze historical

data trends, set up automated alerts for anomaly detection, and

ensure proactive monitoring of critical components.

Grafana complements Prometheus by providing intuitive

dashboards and visualizations, allowing users to create

customized views of their monitoring data. Through Grafana's

rich set of plugins and integrations, organizations can create

dynamic dashboards that provide insights into application

performance, infrastructure health, and business metrics.

Node Exporter enhances the monitoring solution by providing

detailed system metrics, including CPU usage, memory

utilization, disk I/O, and network activity, for individual nodes

in the Kubernetes cluster. By exposing these metrics in a format

compatible with Prometheus, Node Exporter enables

organizations to monitor the underlying infrastructure and

diagnose performance issues at the node level.

Together, Prometheus, Grafana, and Node Exporter form a

powerful monitoring solution that empowers organizations to

gain visibility into their Kubernetes environments, identify

potential bottlenecks, and optimize resource allocation. By

implementing this monitoring system, organizations can ensure

the reliability, scalability, and efficiency of their Kubernetes

deployments, ultimately enhancing the overall performance

and availability of their applications.

6. REFERENCES

[1] Kim, Dong, et al. "Infrastructure Monitoring: A

Comprehensive Survey." IEEE Communications Surveys

& Tutorials, vol. 22, no. 1, 2020, pp. 596-632.

[2] Soundararajan, Vijay. "Prometheus: An Open-Source

Systems Monitoring and Alerting Toolkit." USENIX

;login:, vol. 41, no. 4, 2016, pp. 27-33.

[3] Torkington, Nathan. "Grafana: The Open Source

Dashboarding and Visualization Tool." ;login:, vol. 41,

no. 1, 2016, pp. 29-31.

[4] NetData. "NetData: Real-time Performance Monitoring,

Done Right!" 2022, https://www.netdata.cloud/.

[5] T. Abirami, S. Mapari, P. Jayadharshini, L. Krishnasamy

and R. R. Vigneshwaran, "Streamlined Deployment and

Monitoring of Cloud-Native Applications on AWS with

Kubernetes Prometheus Grafana," 2023 International

Conference on Advances in Computation,

Communication and Information Technology

(ICAICCIT), Faridabad, India, 2023, pp. 1149-1155,

doi:10.1109/ICAICCIT60255.2023.10465818.

[6] T. Abirami, C. Vasuki, P. Jayadharshini and R. R.

Vigneshwaran, "Monitoring and Alerting for Horizontal

Auto-Scaling Pods in Kubernetes Using Prometheus,"

2023 International Conference on Computer Science and

Emerging Technologies (CSET), Bangalore, India, 2023,

pp. 1-8, doi: 10.1109/CSET58993.2023.10346811.

[7] L. Chen, M. Xian and J. Liu, "Monitoring System of

OpenStack Cloud Platform Based on Prometheus," 2020

International Conference on Computer Vision, Image and

Deep Learning (CVIDL), Chongqing, China, 2020, pp.

206-209, doi: 10.1109/CVIDL51233.2020.0-100.

[8] O. Mart, C. Negru, F. Pop and A. Castiglione,

"Observability in Kubernetes Cluster: Automatic

Anomalies Detection using Prometheus," 2020 IEEE 22nd

International Conference on High Performance

Computing and Communications; IEEE 18th International

Conference on Smart City; IEEE 6th International

Conference on Data Science and Systems

(HPCC/SmartCity/DSS), Yanuca Island, Cuvu, Fiji, 2020,

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.38, September 2024

15

pp. 565-570, doi: 10.1109/HPCC-SmartCity-

DSS50907.2020.00071.

[9] M. Yudha Erian Saputra, Noprianto, S. Noor Arief, V. Nur

Wijayaningrum and Y. W. Syaifudin, "Real-Time Server

Monitoring and Notification System with Prometheus,

Grafana, and Telegram Integration," 2024 ASU

International Conference in Emerging Technologies for

Sustainability and Intelligent Systems (ICETSIS),

Manama, Bahrain, 2024, pp. 1808-1813, doi:

10.1109/ICETSIS61505.2024.10459488.

[10] N. Sukhija and E. Bautista, "Towards a Framework for

Monitoring and Analyzing High Performance Computing

Environments Using Kubernetes and Prometheus," 2019

IEEE SmartWorld, Ubiquitous Intelligence & Computing,

Advanced & Trusted Computing, Scalable Computing &

Communications, Cloud & Big Data Computing, Internet

of People and Smart City

Innovation(SmartWorld/SCALCOM/UIC/ATC/CBDCo

m/IOP/SCI), Leicester, UK, 2019, pp. 257-262,

doi:10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-

SCI.2019.00087.

[11] A. Di Stefano, A. Di Stefano, G. Morana and D. Zito,

"Prometheus and AIOps for the orchestration of Cloud-

native applications in Ananke," 2021 IEEE 30th

International Conference on Enabling Technologies:

Infrastructure for Collaborative Enterprises (WETICE),

Bayonne, France, 2021, pp. 27-32, doi:

10.1109/WETICE53228.2021.00017.

[12] V. Sharma, "Managing Multi-Cloud Deployments on

Kubernetes with Istio, Prometheus and Grafana," 2022 8th

International Conference on Advanced Computing and

Communication Systems (ICACCS), Coimbatore, India,

2022, pp. 525-529, doi:

10.1109/ICACCS54159.2022.9785124.

[13] A. Mehdi, M. K. Bali, S. I. Abbas and M. Singh,

""Unleashing the Potential of Grafana: A Comprehensive

Study on Real-Time Monitoring and Visualization","

2023 14th International Conference on Computing

Communication and Networking Technologies

(ICCCNT), Delhi, India, 2023, pp. 1-8, doi:

10.1109/ICCCNT56998.2023.10306699.

[14] I. Siddiqui, A. Pandey, S. Jain, H. Kothadia, R. Agrawal

and N. Chankhore, "Comprehensive Monitoring and

Observability with Jenkins and Grafana: A Review of

Integration Strategies, Best Practices, and Emerging

Trends," 2023 7th International Symposium on

Multidisciplinary Studies and Innovative Technologies

(ISMSIT), Ankara, Turkiye, 2023, pp. 1-5, doi:

10.1109/ISMSIT58785.2023.10304904.

[15] Yajun Liu, Zhitao Yu, Qian Wang, Hong Mei, Guolin

Song, Haiou Li, "Research on cloud-native monitoring

system based on Prometheus," Proc. SPIE 13107, Fourth

International Conference on Sensors and Information

Technology (ICSI 2024), 131071B (6 May 2024);

https://doi.org/10.1117/12.3029320

[16] K. Trikusuma Dewo, V. Yasin, T. Budiman, A.

Zulkarnain Sianipar and A. Budi Yulianto, "IT

Infrastructure Dashboard Monitoring Application

Development Using Grafana And Promotheus, a Case

Study at Astra Polytechnic School," 2023 International

Conference of Computer Science and Information

Technology (ICOSNIKOM), Binjia, Indonesia, 2023, pp.

1-5, doi: 10.1109/ICoSNIKOM60230.2023.10364485.

[17] S. Kirešová, M. Guzan, B. Fecko, O. Somka, V. Rusyn

and R. Yatsiuk, "Grafana as a Visualization Tool for

Measurements," 2023 IEEE 5th International Conference

on Modern Electrical and Energy System (MEES),

Kremenchuk, Ukraine, 2023, pp. 1-5, doi:

10.1109/MEES61502.2023.10402486.

[18] B. Manate, F. Fortiş and P. Moore, "Applying the

Prometheus Methodology for an Internet of Things

Architecture," 2014 IEEE/ACM 7th International

Conference on Utility and Cloud Computing, London,

UK, 2014, pp. 435-442, doi: 10.1109/UCC.2014.55.

[19] "Prometheus Documentation," Prometheus,

https://prometheus.io/docs/introduction/overview/

[Accessed: 05-06-2024].

[20] "NetData Documentation," NetData,

https://learn.netdata.cloud/docs/overview [Accessed:

May 05, 2024].

[21] Prometheus graph data,Prometheus Grafana Dashboard:

How To Visualize Prometheus Data with

Grafana,https://www.openlogic.com/blog/how-visualize-

prometheus-data-grafana, Jan 22 ,2019[Accessed: May

05, 2024]

[22] Grafana Dashboard Demo , Overview of the Grafana

Dashboard with SQL,

https://www.sqlshack.com/overview-of-the-grafana-

dashboard-with-sql/ ,June 2 , 2020[Accessed: May 05,

2024].

IJCATM : www.ijcaonline.org

