
International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.37, August 2024

Symbolic Execution-based Code Coverage Framework
for Augmented Software Testing

Rachel Glockenmeier
Dakota State University
820 N. Washington Ave.

Madison, SD, USA 57042

Varghese Vaidyan, PhD
Dakota State University
820 N. Washington Ave.

Madison, SD, USA 57042

Yong Wang, PhD
Dakota State University
820 N. Washington Ave.

Madison, SD, USA 57042

ABSTRACT
Although extensive research has been done on automated software
comprehension, no analysis framework exists that is free of limita-
tions and constraints to address the challenge of comprehending
software without manually investigating it. This introduces sev-
eral challenges. One important task to software researchers is to
identify all the sets of paths inside a target program. Answering
this will offer further information about the target program and al-
low for understanding, and ultimately further security and quality
analysis. Introducing a comprehensive framework for code cover-
age analysis, a notable gap in the existing works, is addressed by
offering empirical evidence and an analysis framework to evalu-
ate the impacts of enhancements to symbolic execution techniques
in target programs. Using angr as the symbolic execution engine,
several code exploration approaches based on prior research and
angr’s capabilities are implemented. To analyze the implications
of these changes on code coverage, the proposed approach per-
forms a comparative investigation over a wide variety of binary
programs, accounting for varying complexity levels and memory
restrictions. The experimental findings show a wide coverage range
ranging from 0.3185% to 16.7093%, depending on the testing cir-
cumstances. By developing a benchmark for code coverage under
symbolic execution, the framework not only elucidates the inter-
action of testing variables, but also offers a full analytical frame-
work for assessing coverage expectations in respective contexts.

General Terms
software analysis, code coverage

Keywords
symbolic execution, angr, AEG

1. INTRODUCTION
Despite extensive research on automated software comprehension,
no tool exists without caveats and limitations to address the chal-
lenge of understanding software without manual study. There are
still many challenges facing researchers attempting to perform this
work. One of the main challenges is to identify the full set of paths
within a target program. The answer to this question can then be
used to determine further information about the target program. For

example, this research is the first step in automating exploit devel-
opment for heap vulnerabilities by using the paths within a program
to find the allocation primitives.
To use the set of program paths discovered with symbolic execu-
tion, the amount of code coverage that can be achieved with sym-
bolic execution strategies must be understood. The metric of code
coverage allows for an approximation of what percentage of paths
within the target program were able to be discovered with sym-
bolic execution, and ultimately, the lower bound for how complete
the analysis using these paths can possibly be.
There are many works attempting to use and create tools using sym-
bolic execution with improvements for the specific applications in
related areas research [3, 4, 6]. However, none of the works com-
pare different search strategies based on the code coverage that they
can achieve. The results of this work will enable other researchers
to use these code coverage metrics as a starting point for tool de-
velopment. These results will also be used as the underpinning of
further research planned to build a tool that uses the paths that can
be extracted from a target program to find heap primitives. To com-
plete this work and other work that relies of the coverage of sym-
bolic execution, the results of this experiment are required to un-
derstand what the maximum possible performance of such a tool
could be.
To address the specific goal of determining the code coverage that
can be achieved with symbolic execution, this work contributes the
following:

—An analysis of what coverage can be expected using symbolic
execution on a binary under different test conditions

—An analysis platform to evaluate code coverage for binaries

2. BACKGROUND
The concept of symbolic execution has been studied since its first
major finding in the 1970s and is a powerful static analysis tech-
nique [11]. Symbolic execution is a technique for analyzing pro-
grams to determine which inputs cause effects in the later portions
of the program. This is done by allowing an interpreter to use sym-
bolic values for arguments or inputs and maintaining these values
as the interpreter traces through the program. Over the years there
has been work to improve the technique and make it more appli-
cable to real world software and to attempt to address challenges
with the technique [5]. The most common of these challenges in-

1

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.37, August 2024

clude state explosion, constraint solving limitations, representing
different memory types, and complex software environments with
external dependencies [9].Symbolic execution has applicability to
several domains including software security [1].
Symbolic execution can be done in several ways depending on how
the engine treats different conditions that it encounters. Some of the
policies that determine how the engine will behave include:

—State merging from different execution paths.
—How program loops are handled (including while and for loops).
—Whether function summaries are used.
—How program paths are determined to be infeasible and when

they are discarded [12].

2.1 Challenges with Symbolic Execution
Despite complexities, symbolic execution remains a powerful way
to understand software, and there are many attempting to use and
overcome the challenges with symbolic execution [2]. Of particular
interest to this line of work are the strategies to overcome state
explosion when attempting to find feasible execution paths within a
program. State explosion is the first challenge cited in many works,
as well as one that many papers attempt to find solutions for. When
attempting to symbolically execute a complex program with many
loops, it becomes difficult (or impossible) to track and explore all
possible states for the program due quantity.

2.2 Symbolic Execution Path Detection
Within symbolic execution, differing search strategies can be used
to find paths:

—Depth-first search (DFS)
—Breadth-first search (BFS)
—Random path selection
—Coverage optimized or subpath-guided search by using edge

weights to prioritize under-explored paths
—Shortest-distance search
—Goal-based path search – This strategy can refer to many differ-

ent search algorithms that have more specific goals in mind. For
example, the buggy-first path search which, is introduced as a
concept for prioritizing paths where there are more likely to be
bugs, such as those with complex pointer arithmetic [15].

2.3 angr
The most popular tool for symbolic execution is angr. This Python
tool was developed by UC Santa Barbara and published in 2016.
angr allows for static and dynamic symbolic execution [13]. Python
has been found to be suitable in many applications due to the con-
figurable libraries [16, 17]. Python is suitable in this work because
angr is a highly configurable python library that allows a developer
to have control over aspects of the constraint solver, state manager,
and most importantly for the proposed work, the path search al-
gorithm. By default, angr’s execution engine uses a breadth-first
search, but angr has several path search strategies that can be used
by changing the path exploration technique [8].

2.4 angrD
angrD is an example of a symbolic execution tool that is built on
top of angr [8]. It is similar to many other tools in this area of inves-
tigation because it is built on top of the engine that angr provides to

improve vulnerability detection. For example, to detect heap over-
flow vulnerabilities, angrD stores the associated addresses for allo-
cation functions, and checks this list as additional allocations are
made.

3. RELATED TOOLS
There are several tools that are built on the concept of symbolic ex-
ecution. Some of the ways that these tools differ is discussed in the
Background section(Section 2) through examining attempted solu-
tions to avoid challenges with symbolic execution. There are many
tools that have been written using symbolic execution, but this sec-
tion serves to highlight some of the most well-known and recent
tools. Many of the tools developed to use symbolic execution, fo-
cus on discovering a specific path or the feasibility of a given con-
straint, rather than code exploration. The tools selected below are
tools attempting to improve the code coverage through symbolic or
concolic execution.

3.1 MAYHEM
MAYHEM applies symbolic execution to security challenges and
Automated Exploit Generation (AEG). This tool focuses on find-
ing exploitable bugs by prioritizing search paths based on those
that involve symbolic memory (pointers or memory addresses). In
this work, Mayhem is successfully used to detect vulnerabilities in
Windows and Linux software [6].

3.2 KLEE
KLEE uses path metrics to bias symbolic execution toward explor-
ing paths that are under-explored. obtaining better coverage. The
weight of each state is determined by how recently the code was
explored and the distance between the current point and unexplored
instructions [3].

3.3 EXE (Execution generated Executions)
EXE is a tool to find bugs in software by generating test cases caus-
ing the program to crash. As the tool runs, it uses symbolic execu-
tion to determine when input values are symbolic. When symbolic
expressions are found, EXE forks and constrains that argument to
execute as true in one execution and false in the forked execution
and continues until a path ends or fails. From these failure cases,
EXE is able to use a constraint solver to locate the full path and
generate a test case for the failure [4].

3.4 SAGE (Scalable Automated Guided Execution)
SAGE is a tool utilizing symbolic execution to perform whitebox
fuzzing. Symbolic execution is a limiting factor in terms of the
speed and depth into the code that can be achieved. To combat
this limitation, SAGE implements a search algorithm which negates
each constraint along the path to generate test cases. Traditional
search methods only negate a small number of constraints, which
leads to fewer test cases and poorer fuzzing results [10].

4. SYMEXCOV ARTIFACT
To achieve the goal of determining the code coverage that can be
achieved with symbolic execution, the design science methodology
utilizing a single-case experiment mechanism has been selected to
study, perform, and validate this work. The artifact, named SymEx-
Cov, will follow the path outlined in Figure 1 below. The following

2

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.37, August 2024

sub-sections provide additional details on the most notable of these
phases including the design and evaluation of the artifact.

Fig. 1. Design diagram for research artifact

4.1 Artifact Design and Development
To address the research goals from Section 1, an artifact was de-
veloped. This artifact is written in Python utilizing the angr library.
At a high level, the artifact uses symbolic execution (through angr)
to traverse as much of the code as possible and keep track of the
addresses within the code that have been reached.
angr implements many exploration techniques that can be selected
to modify the way that angr behaves. Each of these exploration
techniques are designed to improve the performance of angr for
specific use cases. To achieve the goal of understanding the cover-
age that can be achieved with different search biases, the following
set of exploration techniques were selected:

—Default – angr’s default exploration technique is a version of a
breadth-first search (BFS). As angr steps through the program, it
collects states encountered as active states and attempts to step
each of these active states at the same time.

—DFS – DFS focuses on getting as deep into the code as possible
before expanding the search out. To do this, only one active state
is kept at a time (placing all other states as deferred states until
the one active state is completed).

—Stochastic – Stochastic exploration is commonly referred to as
the “random” technique. This technique keeps only one path as
the active path at a time. For each path, the basic blocks are as-
signed a random weight that is used as a probability distribution

for determining the likelihood that a state still exists after a fork
in the path occurs.

—Loopseer – Loopseer’s strategy tries to ensure that execution
does not spend an inordinate amount of time within the same
loop. To do this, it keeps track of the number of passes that have
been made within the same loop and stashes the state for later
evaluation if too much time is being spent on the same loop.

—Oppologist – Oppologist helps to handle cases where angr en-
counters an unsupported operation. In these cases, it can con-
cretize the arguments to the unsupported instruction and use
angr’s unicorn engine to emulate the unknown instruction so the
execution of the binary can continue beyond this operation.

—Lengthlimiter – This technique allows specifying a maximum
path length before marking that path as complete and continuing
to other paths.

—Spiller – Spiller keeps track of the system memory usage and
offloads some active states to disk when memory usage is high.
These states can be resumed when some active states have com-
pleted execution [7, 14].

This set is a subset of exploration techniques available within angr.
Some techniques that were not selected for this study are not ap-
plicable for this work. This is because they are intended to find
whether a single path exists between an entry function and a spe-
cific sink function or if a specific condition can be satisfied. In this
work, the focus was on attempting to measure code coverage, so
the goal was to reach all the code, not find a specific portion of the
code.

Algorithm 1 FindBasicBlocksDFS
project← angr.Project(binary)
state← project.entryState()
simgr ← project.simulationManager(state)
simgr.useTechnique(angr.exploreTechniques.DFS())

while simgr.active ̸= ∅ do
simgr.step()
for each activeState ∈ simgr.active do

currentAddr ← activeState.addr()
if currentAddr ∋ entireSet then

entireSet.add(currentAddr)
end if

end for
end while

For each exploration technique listed above, a function was cre-
ated within the artifact to symbolically execute the binary under
test. Algorithm 1 shows the method for symbolically executing and
finding all of the addresses reached for the DFS exploration tech-
nique. This algorithm first initializes the angr project and state, then
sets up the simulationManager with the information needed to sym-
bolically execute the binary, including setting the starting state and
the execution technique that will be used. After the initialization is
complete, the simulationManager is used to maintain all states and
context as the binary is symbolically executed. The step() function
is used to progress execution through the binary. The exact func-
tionality of stepping will vary based on the execution technique em-
ployed, but this function is responsible for progressing each active
state forward and adding newly discovered states to the appropriate
stash. As execution is stepped through the binary, this algorithm

3

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.37, August 2024

keeps track of the addresses for the basic blocks that have been
reached for determining coverage during the evaluation phase.
Algorithm 1 is a specific example. However, other techniques were
similar, replacing the portion where the exploration technique is set
as well as any setup required for the specific technique being used.

4.2 Artifact Evaluation
To evaluate the artifact created, two experiments were performed.
In the first experiment, all exploration techniques were run for each
binary within the test suite using a fixed amount of memory for each
test. In the second experiment, one of the binaries from the test suite
was selected and run for each exploration technique, but with a
variable amount of memory to understand the impact of memory on
code coverage. Each test requires running the artifact to completion
or memory exhaustion for each of the execution techniques selected
across the relevant binaries.
This effort aims to determine the code coverage possible with sym-
bolic execution. More specifically, code coverage for this work
refers to the number of basic blocks (code segments in which there
are no branches present) that can be reached with symbolic execu-
tion relative to the total number of basic blocks that exist within the
binary under test.
To determine the total number of basic blocks, and establish a base-
line to compare against, angr’s Control Flow Graph (CFG) func-
tionality is used (specifically CFGFast). A CFG is a graph cre-
ated for the binary where basic blocks are represented as nodes on
the graph, and the edges are the control transitions between these
blocks. As a result, collecting the address contained within each
node of the CFG gives the set of basic blocks present within a bi-
nary.

Algorithm 2 CalculateCodeCoverage
for each binary ∈ binaries do

project← angr.Project(binary)
cfgAddrSet← project.CFGFast()

for each technique ∈ explorationTechniques do
explorationSet← addrsFromAngrExecution
commonAddrs← cfgAddrSet ∩ explorationSet

percentCoverage← 100 |commonAddrs|
|cfgAddrSet|

end for
end for

Algorithm 2 shows the calculation of code coverage for each of the
test cases. For each case, the set of addresses found from symbolic
execution was compared against the set collected from the CFG.
The coverage calculation shown divides the number of addresses
that are in both sets by the total number of addresses within the set
from the CFG. This number is then multiplied by 100 to determine
the percentage of the code that was reached.

5. IMPLEMENTATION AND RESULTS
The following section provides details on the specific configura-

tion under which this work was executed as well as the results of
the experiments performed.
Two experiments were performed using the created artifact. The
first set of experiments were performed across a set of diverse bi-
naries with a fixed amount of memory available to the artifact. The
second set of experiments were performed with a single binary us-
ing varying amounts of memory across test cases.

5.1 Setup
To evaluate the artifact developed (Section 4.2), a suite of test bi-
naries was compiled. For the purposes of this work, the binaries
needed to meet the requirements below:

—Binaries compiled for an x86 system architecture given that angr
is more feature-rich for this architecture.

—Publicly available or easy to obtain binaries.
—Binaries with varying complexity to ensure that simple and more

realistic test software was represented.

The set of test binaries used was binutils for the Ubuntu version
within the test setup. The set of binaries used: addr2line, ar, as,
c++filt, dwp, elfedit, gold, gprof, ld, ld.bfd, ld.gold, nm, objcopy,
objdump, ranlib, readelf, size, strings, and strip.
The experiments run in this work each used a virtual machine con-
figured with the system attributes in Table 1 below.

Table 1. Experimental Setup
Operating system

Ubuntu 23.04 Desktop AMD64 (Lunar Lobster)
RAM

Experiment 1 - 16 GB for each test
Experiment 2 - 2, 4, 8, 16, 32, 64, 128, and 256 GB

CPU Count
8 Cores

System software
Python 3.11 (including development headers)
angr v9.2.76 (released October 2023)
Additional dependencies for angr (make, C compiler,

archinfo, pyvex, cle, claripy, and ailment)
Test software

Experiment 1 - Entire test suite described above
Experiment 2 - objcopy binary for each test

Ultimately, the experimentation setup facilitated the ability to col-
lect data from each of the binaries in the test suite. Each binary was
run through the artifact several times in order to evaluate every bi-
nary against all of the exploration techniques within angr that were
selected to be a part of the artifact.

5.2 Results
The collection of results for each of the binaries tested can be dis-
played as average coverage across the different binaries or explo-
ration technique, as shown in Table 2 and Table 3, allowing a dis-
cussion of the results in a more generic sense across differing bina-
ries and software complexities.

Table 2. Average Code Coverage (Percent) Per Binary
Binary Number of Basic Blocks Average Coverage (%)
strings 949 16.7093
ar 2015 9.4080
objcopy 7572 3.2695
strip 7572 1.9866
objdump 16549 1.4882
readelf 32603 0.3185

The contents of Tables 4, 5, and 6 are the results for the objcopy
binary across all of the different memory limits and a sampling
of the techniques available that are representative of the different
kinds of results seen across all methods. The objcopy binary was

4

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.37, August 2024

Table 3. Average Code Coverage (Percent) By
Exploration Technique

Exploration Technique Average Code Coverage (%)
DFS 5.1735
default 5.1981
random 7.9506
loopseer 5.2431
oppologist 5.1981
lenlimiter 5.1981
spiller 4.7483

selected for this experiment because it was one of the binaries with
medium complexity from the initial test suite based on the number
of basic blocks present.

Table 4. Code Coverage (Percent) For Loopseer Technique
Memory (GB) Basic Blocks Reached Code Coverage (%)
2 120 1.5715
4 120 1.5715
8 120 1.5715
16 120 1.5715
32 120 1.5715
64 120 1.5715
128 120 1.5715
256 120 1.5715

Table 5. Code Coverage (Percent) For Oppologist Technique
Memory (GB) Basic Blocks Reached Code Coverage (%)
2 282 3.7110
4 295 3.8827
8 322 4.2393
16 322 4.2393
32 322 4.2393
64 381 5.0184
128 381 5.0184
256 381 5.0184

Table 6. Code Coverage (Percent) For Spiller Technique
Memory (GB) Basic Blocks Reached Code Coverage (%)
2 349 4.5958
4 260 3.4204
8 244 3.1695
16 336 4.4374
32 355 4.6751
64 469 6.1806
128 396 5.2165
256 431 5.6920

Table 7 and Figure 2 are based on the full table of results for exper-
iment 2, but have the results across each memory limit averaged to
show the impact of the memory limit on the code coverage possible
regardless of the exploration technique used.

Table 7. Average Code Coverage (Percent)
By Memory Limit

Memory (GB) Average Code Coverage (%)
2 3.0658
4 2.9714
8 3.0884
16 3.2695
32 3.3035
64 3.8528
128 3.7147
256 3.7827

0 50 100 150 200 250

3

3.2

3.4

3.6

3.8

Memory Limit (in Gigabytes)

C
od

e
C

ov
er

ag
e

(P
er

ce
nt

)

Fig. 2. Coverage as a Function of Memory

6. DISCUSSION OF RESULTS
These results give a baseline for understanding roughly what code
coverage can be expected by employing symbolic execution. In ad-
dition, this artifact can be utilized against another binary sample
to help understand what coverage they can expect and what the
highest performing exploration technique or potential benefit to in-
creasing the memory limit is for specific use case.
Looking broadly at the results for experiment 1, there was not an
execution technique that performed best across all binaries used.
The highest performer varied across the different binaries tested.
This is likely the result of having selected a diverse set of binaries
with differing functionality and complexity. For example, a binary
with very long code paths will perform worse than one with shorter
paths when using lengthlimiter to limit the depth of the search per-
formed but will likely have higher coverage with DFS.
Table 2 highlights the relationship between the average code cov-
erage that was achieved for each binary and the complexity of the
binary. Unsurprisingly, the amount of coverage that was possible
to achieve was inversely proportional to the complexity of the bi-
nary. There are several factors that make this the expected outcome.
First, as the number of basic blocks increases within a program, so
does the likelihood that there are difficult conditions for symbolic
execution to deal with, such as nested loops and complex state re-
quirements to keep track of. Additionally, the tests for this exper-
iment were run under the conditions stated for the experimental
setup. Most notably, the RAM was limited to 16 GB, which bi-
ases the results against the more complicated programs. Symbolic
execution requires significant memory resources, and in nearly all

5

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.37, August 2024

the test cases, the evaluation of the binary was stopped when the
system ran out of RAM, rather than the execution completing.
Table 3 displays the coverage that was achieved for each of the
techniques chosen averaged, to avoid biasing the results by the
complexity of the binary that was under test. The data shows
that the average coverage achieved by this metric varied between
4.7483% and 7.9749% depending on the exploration technique,
with random/stochastic exploration having the highest amount of
coverage and the spiller technique having the lowest. Despite the
range of coverage that was achieved, all these coverage numbers
are low relative to what would be required to use symbolic execu-
tion as a complete solution or the underlying method for another
exhaustive tool.
The second experiment was performed to understand the effects
that memory limits have on code coverage achieved. The results
in Tables 4, 6, and 5 show data collected in Experiment 2 and
highlight the behavior of individual exploration techniques across
memory limits. The expectation was that as the memory limit was
increased, the code coverage achieved would also increase until the
point that state explosion was achieved. The experiment showed
that for the binary under test state explosion occurs early enough
in the exploration for some techniques that modifying the memory
limits did not have an effect on coverage. An example of this is the
DFS exploration technique. For each of the memory limits tested,
the DFS technique achieves the same coverage.
The results for the spiller technique, Table 6, have the highest
amount of variation from the expected results. It is likely that this
behavior is because as spiller brings a state back to active, as mem-
ory usage allows, it is randomly choosing which state should be re-
activated and that has a larger effect on coverage than the memory
available to the process. Further study would need to be performed
to understand the spiller technique’s behavior more clearly.
Table 7 and Figure 2 are representations of the average coverage for
a memory limit (across exploration techniques). These diagrams
show some expected and unexpected behavior that was observed
during this experiment. These results show that generally as the
memory limit is increased, the coverage increases. However, unex-
pectedly the increase in coverage does not fit a logarithmic curve
because there are points where an increase in memory did not re-
sult in an increase in coverage, such as the data when testing with
64GB. It is possible that with more exploration techniques and ad-
ditional binaries, this data could be better fit to a logarithmic curve.
While it was expected that the data would fit a logarithmic curve,
and adding memory would have diminishing increases in coverage
as more memory was added, the hope was that there could be more
significant gains in coverage achieved by increasing the limits from
Experiment 1 than what was achieved in Experiment 2. Similar to
Experiment 1, in Experiment 2 the coverage achieved could be var-
ied by choosing different memory limits or exploration techniques,
but ultimately these coverage results are still low and cannot be
used directly as the basis for a tool requiring high code coverage.

7. CONCLUSIONS
The outcomes of this investigation provide an analysis framework
for utilizing symbolic execution in tool development. The empiri-
cal findings provide insights into the complex relationship of code
complexity and coverage, the coverage performance for different
angr execution techniques, and general angr code coverage capa-
bilities. This approach delivers unique insights into the predictive
potential of symbolic execution inside selected application domains
by providing a baseline data and toolkit for producing tailored data.

Future work includes a larger study, with additional memory re-
sources to provide more information on the coverage capabilities
for more complex binaries, and additional tooling using symbolic
execution as the underlying engine. For example, this research
could be used as the basis for further research that would require
a high level of code coverage to be accurate. Such as tooling to
automatically detect heap primitives within a target binary for ap-
plication in the space of automated heap exploitation.

8. REFERENCES

[1] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Ed-
ward J. Schwartz, Maverick Woo, and David Brumley. Au-
tomatic exploit generation. Commun. ACM, 57(2):74–84, feb
2014.

[2] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil
Demetrescu, and Irene Finocchi. A survey of symbolic exe-
cution techniques. ACM Comput. Surv., 51(3), May 2018.

[3] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE:
Unassisted and automatic generation of High-Coverage tests
for complex systems programs. In 8th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 08),
San Diego, CA, dec 2008. USENIX Association.

[4] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L.
Dill, and Dawson R. Engler. Exe: Automatically generating
inputs of death. ACM Trans. Inf. Syst. Secur., 12(2), dec 2008.

[5] Cristian Cadar and Koushik Sen. Symbolic execution for
software testing: Three decades later. Commun. ACM,
56(2):82–90, feb 2013.

[6] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and
David Brumley. Unleashing mayhem on binary code. In 2012
IEEE Symposium on Security and Privacy, pages 380–394,
2012.

[7] Simulation managers. https://docs.angr.io/en/latest/core-
concepts/pathgroups.htmlexploration-techniques.

[8] Xueshuai Ge, Tieming Liu, Yaobin Xie, and Yuanyuan Zhang.
A vulnerability automation exploitation method based on
symbolic execution. In International Conference on Electron-
ing Information Engineering and Data Processing (EIEDP
2023), volume 12700 of Society of Photo-Optical Instrumen-
tation Engineers (SPIE) Conference Series, May 2023.

[9] Xueshuai Ge, Tieming Liu, Yaobin Xie, and Yuanyuan Zhang.
A survey of automatic exploitation of binary vulnerabilities.
In Xiaohao Cai and Badrul Hisham bin Ahmad, editors, Inter-
national Conference on Computer Network Security and Soft-
ware Engineering (CNSSE 2023), volume 12714 of Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, Jun 2023.

[10] Patrice Godefroid, Michael Y. Levin, and David Molnar.
Sage: Whitebox fuzzing for security testing. Commun. ACM,
55(3):40–44, mar 2012.

[11] James C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, jul 1976.

[12] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and
George Candea. Efficient state merging in symbolic execu-
tion. SIGPLAN Not., 47(6):193–204, Jun 2012.

[13] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick
Stephens, Mario Polino, Andrew Dutcher, John Grosen, Siji
Feng, Christophe Hauser, Christopher Kruegel, and Giovanni
Vigna. Sok: (state of) the art of war: Offensive techniques in

6

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.37, August 2024

binary analysis. In 2016 IEEE Symposium on Security and
Privacy (SP), pages 138–157, 2016.

[14] Api reference. https://docs.angr.io/en/latest/api.htmlangr.sim
manager.SimulationManager.

[15] Haoxin Tu. Boosting symbolic execution for heap-based
vulnerability detection and exploit generation. In 2023
IEEE/ACM 45th International Conference on Software Engi-
neering: Companion Proceedings (ICSE-Companion), pages
218–220, 2023.

[16] Varghese Vaidyan and Bhaskar Rimal. Hybrid quantum arti-
ficial intelligence electromagnetic spectrum analysis frame-
work for transportation system security. Journal of Hardware
and System Security, December 2023.

[17] Varghese Mathew Vaidyan and Akhilesh Tyagi. Hybrid
classical-quantum artificial intelligence models for electro-
magnetic control system processor fault analysis. In 2022
IEEE IAS Global Conference on Emerging Technologies
(GlobConET), pages 798–803, 2022.

7

	Introduction
	Background
	Challenges with Symbolic Execution
	Symbolic Execution Path Detection
	angr
	angrD

	Related Tools
	MAYHEM
	KLEE
	EXE (Execution generated Executions)
	SAGE (Scalable Automated Guided Execution)

	SymExCov Artifact
	Artifact Design and Development
	Artifact Evaluation

	Implementation and Results
	Setup
	Results

	Discussion of Results
	Conclusions
	References

