
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.37, August 2024

19

Efficiency Evaluation of Huffman, Lempel-Ziv, And Run-

Length Algorithms in Lossless Image Compression for

Optimizing Storage and Transmission Efficiency

Selumun Agber
Department of Comp. Sc.
 Benue State University

Onuche Gideon Atabo
Department of Comp Sc.

Kogi State Collge of Education,
Ankpa

Samuel Isah Odoh
Faculty of Computing

Federal University, Lafia

Ijeoma Rufina Godwin
Department of Comp Sc.

Benue State University

Barka Piyinkir Ndahi
Department of Comp Sc.
University of Maiduguri

Beatrice O. Akumba
Department of Comp Sc.
Benue State University

ABSTRACT

The usage of digital data has become increasingly common

today, ranging from simple text documents to complex audio

and image data. As the volume of data grows, the need for

efficient storage solutions becomes crucial, as smaller storage

reduces costs. While human memory is the cheapest storage, it

is not compatible with computer data storage needs. This study

investigates lossless image compression algorithms, which

enable the exact reconstruction of original images from their

compressed forms. Image compression is vital for reducing

storage space and expediting data transmission over the

Internet. This research focuses on a comparative analysis of

three prominent algorithms: Lempel-Ziv, Run-length, and

Huffman compression. The performance of these algorithms is

evaluated based on their compression ratios, with their

respective advantages and disadvantages discussed. The

findings reveal that the Huffman algorithm is the most effective

for compressing JPEG, PNG, and BMP image formats.

Although the Lempel-Ziv algorithm is also suitable for these

formats, it is less efficient than Huffman. This study

underscores the importance of selecting appropriate

compression algorithms to optimize storage and transmission

efficiency.

General Terms

Lossless Image Compression, Data Compression, Huffman

Compression Algorithm, Lempel-Ziv Compression

Algorithm, Run-length Compression Algorithm

Keywords

Image Compression Algorithms, Storage Optimization, Data

Transmission Efficiency, compression ratio, image

compression

1. INTRODUCTION

The usage of digital data has become increasingly common

today. Digital data can range from simple text data such as

document files to complicated audio data and image data. As

the amount of this data increases, the need to store them in a

smaller space becomes more crucial. The smaller the storage,

the cheaper the cost. The cheapest storage is human memory

but since humans and computers are essentially different

entities, data stored in human memory cannot be used all the

time. That is why digital data is usually stored in storage

mediums such as hard disks, compact disks, and flash memory

[1].

These storage mediums have space limitations and data is

meant to be stored for a long time. Due to those reasons, data

compression becomes mandatory before storing data into those

storage mediums. Data is compressed to save storage space and

reduce data transmission and storage. Compression reduces the

need for storage mediums, which saves money, and at the same

time increases the speed in reading and writing data on storage

mediums. Compression on data and transmission storage will

reduce the amount of time to move the data from one place to

another [2].

Digital image compression is a field that studies methods for

reducing the total number of bits required to represent an

image. This can be achieved by eliminating various types of

redundancy that exist in the pixel values. Digital images

become popular for transferring visual information. There are

many advantages to using these images over traditional camera

film images. The digital cameras produce instant images, which

can be viewed without the delay of waiting for film processing.

But these images are large in size [3].

The compression technique helps to reduce the cost of storage

and efficient transmission of digital images. The compression

techniques are mainly classified into two. Lossy and lossless

compression techniques. Lossy methods are suitable for natural

images such as photographs in applications where minor

(sometimes imperceptible) loss of fidelity is acceptable to

achieve a substantial reduction in bit rate. The lossy

compression that produces imperceptible differences may be

called visually lossless. Lossless compression is preferred for

archival purposes and often for medical imaging, technical

drawings, clip art, comics etc. The difference is that lossless

data compression retains the original data when it is

decompressed, while lossy data compression only retains an

approximation of the original data [4].

Hence, over the years, there exists a challenge of achieving the

right compression algorithm on a particular image as well as

achieving the best image quality. Thus, this paper is targeted at

solving these two challenges. In addition, some image

compression methods use extra memory having a size

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.37, August 2024

20

proportional to the size of the dataset thereby consuming the

available memory resources this result to error such as out of

memory in execution time. This tends to affect the space

efficiency of the lossless compression algorithm. Comparative

analysis on Lempel-Ziv-Markov chain (also known as LZMA),

Run-length encoding (also known as RLE), and Huffman

encoding algorithm will enable programmers as well as

individuals or organizations to apply the most effective and

efficient lossless image compression algorithm on a particular

problem.

2. LITERATURE REVIEW
In today's era, internet communication and information

exchange, encompassing activities like sending emails and text

messages via online platforms such as messaging apps, have

become indispensable. When transmitting data, certain critical

factors like message or file size require careful handling due to

their importance. Additionally, the time taken for transmission

is directly correlated with the size of the file; smaller files take

less time. Compression techniques are utilized to reduce file

size without compromising quality.

[5], in their study, focused on applying two lossless

compression methods, namely Huffman encoding and run-

length encoding, to images to enhance their suitability for

information security measures like steganography and

cryptography. The researchers aimed to decrease image sizes

using these techniques and evaluated their performance based

on parameters like compression ratio, compressed file size, and

compression and decompression time. Consequently, from the

standpoint of compression and decompression time, Huffman

encoding proves to be less time-consuming than run-length

encoding. Regarding compressed file size, Huffman encoding

yields superior results. However, when considering the

compression ratio parameter, run-length encoding

demonstrates better outcomes.

The process of representing data with fewer bits is known as

data compression. Lossless or lossy data compression is

possible. Numerous techniques have been developed and

implemented to carry out lossless or lossy compression. While

lossy compression only permits an approximation of the

original data to be generated, lossless compression makes it

straightforward to reconstruct the original data from the

compressed data. Data that needs to be compressed might be

categorized as text, audio, picture, or even video material.

Numerous studies are being conducted in the field of image

compression [6].

In their investigation, [6], reviewed a number of publications in

the field of data compression as well as methods for lossless

picture compression. Additionally, they examined a few

schemes that combine two or more schemes or a single strategy

to compress an image. When the methods were used separately

as opposed to in combination, the compression ratio in the

suggested methodology was better than that of LZW, Huffman,

and other methods. In summary, lossless image compression

results in a small compression ratio yet preserves the original

image quality after decompression.

The amount of image data generated in our daily lives is

growing, making it more difficult to store and send. Because

lossless image compression can lower the quantity of image

data without sacrificing quality, it becomes significant for

certain areas that require high fidelity [7]. The researchers

suggested an enhanced lossless image compression algorithm

that, in theory, combines linear prediction, integer wavelet

transform (IWT) with output coefficient processing, and

Huffman coding to provide an approximately quadruple

compression in order to address the challenge of increasing the

lossless image compression ratio. The primary contribution of

their technique is a new hybrid transform that takes advantage

of a new prediction template and an IWT coefficient

processing. The suggested approach works better than state-of-

the-art algorithms, according on the testing results on three

distinct image sets. Up to 72.36%, the compression ratios are

increased by at least 6.22%. At a reasonable compression

speed, their approach is better suited for compressing photos

with intricate textures and higher resolutions.

In the research carried out by [8], titled "Image Compression

Using Run Length Encoding and Lempel Ziev Welch Method,"

involved utilizing various input images with diverse

orientations and data sets. They assessed the compression

achieved by each algorithm on every image and compared the

results based on compression ratio. They also made

enhancements to the conventional Run Length Encoding (RLE)

algorithm to improve its efficiency, resulting in what they

termed Optimized RLE. It was observed that Optimized RLE

outperformed standard RLE notably, particularly when dealing

with portrait images. While Lempel Ziv Welch (LZW)

demonstrated superior compression compared to RLE, the

execution time for the LZW algorithm was considerably

longer.

[9], in their reviewed evaluated various lossless compression

algorithms in terms of their effectiveness for high-resolution

image compression. The Discrete Wavelet Transform (DWT)

algorithm was highlighted for producing lossless images with

decent compression ratios across different image types,

especially high-resolution ones, while maintaining simple

execution. The Discrete Cosine Transform (DCT) algorithm

also demonstrates satisfactory compression but may encounter

complexity issues, especially with larger high-resolution image

sets. Huffman and Run Length Encoding (RLE) algorithms

offer higher compression ratios but lack stability and reliability,

particularly with increasing image resolution. The Lempel Ziv

Welch (LZW) algorithm, though producing binary images,

requires modifications for lossless compression and color

image generation. Hence, the study concluded that the DWT

algorithm stands out for its simplicity and effectiveness in

lossless compression of high-resolution images, while other

algorithms may require modifications to achieve similar results

without complexity.

[10], presented the performance evaluation of the four lossless

compression algorithms. The accelerometer data is used as an

input to the four lossless algorithms such as Delta encoding,

Run Length, Huffman and Lempel-Ziv. Additionally, the

accelerometer data is used to calculate a number of

measurement parameters, including the compression ratio,

space saving, compression factor, compression gain, and

elapsed time. According to the performance study, Lempel Ziv

compression offers a better compression ratio of about 4:1,

which reduces redundant data by removing statistical

redundancy. Thus, by lowering the data redundancy, the

Lempel-Ziv method's efficiency is increased. Additionally, the

Lempel ziv compression approach can save 76.9% of the

available space. However, the Lempel-Ziv method is a

sophisticated algorithm that requires a significant amount of

compression time during code execution. In contrast to Run

Length and Huffman, the Delta encoding provides somewhat

better measuring parameters.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.37, August 2024

21

3. METHODOLOGY
This section outlines the approaches adopted and the tools used

in the comparative analysis of Lempel Ziv- Welch, Huffman

encoding and Run-length Algorithms.

3.1 Lempel Ziv-Welch Algorithm
A brief implementation of Lempel Ziv-Welch has been shown

below in tables 1

Table 1. Algorithm for Lempel Ziv-Welch

3.2 Performance Analysis of Lempel-Ziv

Compression Algorithm
Lempel Ziv’s algorithm is a dictionary-based compression

algorithm that maintains an explicit dictionary. This dictionary

has to be built both at the encoding and decoding side and they

must follow the same rules to ensure that they use an identical

dictionary. LZ78 algorithm has the ability to capture patterns

and hold them indefinitely but it also has a serious drawback.

The dictionary keeps growing forever without bound. There are

various methods to limit dictionary size; the easiest way is to

stop adding entries and continue like a static dictionary coder

or to throw the dictionary away and start from scratch after a

certain number of entries has been reached. LZW is a general

compression algorithm capable of working on almost any type

of data. LZW compression creates a table of strings commonly

occurring in the data being compressed, and replaces the actual

data with references into the table. The table is formed during

compression at the same time which the data is encoded and

during decompression at the same time as the data decoded.

The Lempel-Ziv-Welch (LZW) compression algorithm is

widely used because it achieves an excellent compromise

between compression performance and speed.

3.3 Huffman Encoding Algorithm
A brief implementation of the Huffman encoding algorithm has

been shown below in table 2

Table 2. Algorithm for Huffman Encoding

3.4 Performance analysis of Huffman

Compression Algorithm
The technique works by creating a binary tree of nodes. These

can be stored in a regular array, the size of which depends on

the number of symbols, n. A node can be either a leaf node or

an internal node. Initially, all nodes are leaf nodes, which

contain the symbol itself, the weight (frequency of appearance)

of the symbol and optionally, a link to a parent node which

makes it easy to read the code (in reverse) starting from a leaf

node. Internal nodes contain symbol weight, links to two child

nodes and the optional link to a parent node. As a common

convention, bit '0' represents following the left child and bit '1’

represents following the right child. A finished tree has up to n

leaf nodes and n-1 internal nodes. A Huffman tree that omits

unused symbols produces the most of optimal code lengths.

The process essentially begins with the leaf nodes containing

the probabilities of the symbol they represent, and then a new

node whose children are the 2 nodes with probability is created

such that the new node's probability is equal to the sum of the

children's probability. With the previous 2 nodes merged into

one node (thus not considering them anymore), and with the

new node being now considered, the procedure is repeated until

only one node remains, the Huffman tree. Huffman`s procedure

creates the optimal code for a set of symbols and probabilities’

subject to the constraints that the symbols be coded one at a

time After the code has been created coding or Decoding. Is

accomplished in a simple look up table manner. The code itself

is an instantaneous uniquely decodable block code. It is called

a block code because each source symbol is mapped into a fixed

sequence of code symbols.

Apart from the knowledge base that is a major characteristic of

any expert system for storing rules and facts about the object,

the proposed system makes use of a conventional database

table. This table serve for the of storing information about

patients whose health status has been diagnosed and the test

result thereof, this can be useful in further researches, for

example one may decide to query out from the database the

number of patients with mouth diseases to assess the rate of the

pandemic, or to use the previous results of patients as Case base

reasoning for further diagnosis or treatment.

3.5 Run-length encoding Algorithm
A brief implementation of the run-length Algorithm has

been shown below in table 3

* PSEUDOCODE

 1 Initialize table with single character

strings

 2 P = first input character

 3 WHILE not end of input stream

 4 C = next input character

 5 IF P + C is in the string table

 6 P = P + C

 7 ELSE

 8 output the code for P

 9 add P + C to the string table

 10 P = C

 11 END WHILE

 12 output code for P

1. Create a leaf node for each symbol and add it

to the priority queue.

2. While there is more than one node in the

queue:

1. Remove the node of highest priority

(lowest probability) twice to get two

nodes.

2. Create a new internal node with these

two nodes as children and with

probability equal to the sum of the two

nodes' probabilities.

3. Add the new node to the queue.

3. The remaining node is the root node and the

tree is complete.

https://rosettacode.org/wiki/Priority_queue

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.37, August 2024

22

Table 3. Run-length Algorithm

3.6 Performance analysis of Run-length

Compression Algorithm
Run Length Encoding (RLE) is a simple and popular data

compression algorithm. It is based on the idea to replace a long

sequence of the same symbol by a shorter sequence and is a

good introduction into the data compression field for

newcomers. The RLE algorithm performs a lossless

compression of input data based on sequence of identical values

(runs). In this algorithm is represents explicitly by a pair (v, l)

where v is the value and l is the length of the value. The basic

problem that degrades the performance of run length encoding

technique is sometimes a data may contain a very large

sequence of consecutive ones or zeros. In such sequences as the

largest sequence of consecutive ones/zeros decides the number

of bits to represent the length of the run. As a result, the length

of the run in all other sequences is also represented by the same

number of bits. This in turn increases the size of memory stack

and decreases the transmission speed of data.

3.7 Tool Used
MATLAB: Also known as Matrix laboratory is a multipurpose

application used in programming, performing mathematical

operations and statistical analysis; was used to implement the

lossless compression algorithm, plot the graph of the

compression ratios obtained from the application to illustrate

the comparative analysis of Lempel-Ziv, Huffman Encoding,

and Run length algorithms.

3.8 Approach Used
The MATLAB software was used to import images of different

extensions (i.e. JPG, BMP, and PNG) from the system in order

to analyze the compression algorithm. The imported image (i.e.

the original image) was then converted into byte and the system

stores the value obtained from the image, the selected

algorithms were then implemented on the original images

which compressed the original images and the result of the

compressed image was also stored. After executing the

algorithms, the size of both the original and the compressed

image was collected on all image formats (i.e. JPG, BMP, and

PNG). The compression ratio was obtained by dividing the size

of the compressed image by the size of the original image. And

the result of the compression ratio was used to plot a

corresponding graph for each of the afore-mentioned image

formats.

4. RESULTS
This section present results and discussion obtained from the

algorithms explained in chapter three. It also presents the

graphical comparison of the lossless image compression

algorithms. In the previous section, we have discussed the

implementation of the lossless compression algorithms

considered for this study. In this chapter we have presented

practical results of the experiments. According to the

theoretical study, we have conducted and compared the size

efficiency of the various lossless algorithms on all the different

image formats, and also a graphical comparison is presented.

The simulated experiments were carried out five times (on

different image) for each file format. This is because of the

variable conditions that may affect the running of the

experiment. The size of all image file formats of all algorithms

was then taken for evaluation. Evaluating the geometric mean

of the various simulation of each image file format makes it

easier for any algorithm to be rated high or low on that

particular file format, rather than evaluating the algorithm on

the score of just one experimental run. Thereby making the

overall rating a better indication of the performance.

The table below shows the result obtained from the Joint

Photographic Experts Group (JPG) for all three algorithms with

their various compression ratios. And their geometric mean

was also taken for all the five images that were collected.

Table 4. Simulation Results for JPG Image

Image

Comp

ressed

Run

Ori

gina

l

Size

Run

Comp

ressed

Size

LZ

W

Ori

gina

l

Size

LZW

Comp

ressed

Size

HU

FF

Ori

gina

l

Size

HUFF

Comp

ressed

Size

A 235

591

2767 206

15

7447 851

00

6120

M 332

266

4159 334

88

12737 916

00

6120

APC 258

890

4

6402 240

000

25905 113

600

6120

Antho

ny

447

405

7024 450

00

18897 753

00

6120

Beaut

y

394

587

18805 504

32

30957 113

100

6120

From the simulated result obtained on table 4 for the .JPG

images, for each of the algorithms, the respective compression

ratio is as shown on table 5.

Table 5. Compression Ratios of the Simulated Result for JPG

Image Run-

Length

LZW HUFF

A 0.0117 0.3612 0.0719

M 0.0125 0.3808 0.0668

APC 0.0025 0.1079 0.0539

Anthony 0.0157 0.4199 0.0813

Beauty 0.0477 0.6138 0.0541

Average 0.01802 0.3767 0.0656

1. Pick the first character from source string.

2. Append the picked character to the destination

string.

3. Count the number of subsequent occurrences

of the picked character and append the count

to destination string.

4. Pick the next character and repeat steps 2 3

and 4 if end of string is NOT reached.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.37, August 2024

23

From the result obtained in table 5, below is a bar graph

showing the compression ratios of all the algorithms (i.e.

Huffman, Lempel-Ziv, and Run-length) on figure 1.

Figure 1. Graph of JPG image Compression ratio analysis

The graph on figure 1 explains the compression ratio of the

various algorithms on JPG image file format. The result on the

also shows that the Lempel-Ziv algorithm compresses JPG

images more followed by the Huffman algorithm and then the

Run-length algorithm.

The table 6 shows the result obtained from the portable network

graphics (PNG), for all three algorithms with their various

compression ratios. And their geometric mean was also taken

for all the five images that were collected.

Table 6: Simulation Results for PNG Image

Image Run Original

Size

Run

Compressed

Size

LZW

Original Size

LZW

Compressed

Size

HUFF

Original Size

HUFF

Compressed

Size

B 125964 4415 61504 12011 176800 2040

AB 426912 4965 38950 15465 73200 6120

Revolution 1273359 15198 178848 36681 87700 6120

Apps 1904414 4939 160000 18127 112500 6120

PDP 102868 3989 50176 10460 176800 2040

From the simulated result obtained on table 6 for the .PNG

images, for each of the algorithms, the respective compression

ratio is as shown on table 7.

Table 7. Compression Ratios of the Simulated Result for

PNG

Image Run-Length LZW HUFF

B 0.0350 0.1953 0.0115

AB 0.0116 0.3970 0.0836

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.37, August 2024

24

Revolution 0.0119 0.2051 0.0698

Apps 0.0026 0.1133 0.0544

PDP 0.0388 0.2085 0.0115

Average 0.0120 0.2238 0.04616

From the result obtained in table 7, below is a bar graph

showing the compression ratios of all the algorithms (i.e.

Huffman, Lempel-Ziv, and Run-length).

Figure 2. Graph of PNG image Compression ratio analysis

The graph above explains the compression ratio of the various

algorithms on portable network graphics (PNG) image file

format. The result shows that the Lempel-Ziv algorithm

compresses portable network graphics (PNG) images more

followed by the Huffman algorithm and then the Run-length

algorithm.

The table below shows the result obtained from the portable

network graphics (BMP), for all three algorithms with their

various compression ratios. And their geometric mean was also

taken for all the five images that were collected.

Table 8: Simulation Results for BMP Image

Image Run Original

Size

Run

Compressed

Size

LZW

Original Size

LZW

Compressed

Size

HUFF

Original Size

HUFF

Compressed

Size

C 212366 5550 20584 13683 77100 6120

Word2 59498 1348 5022 3206 126300 6120

Land1 195972 3768 5022 3116 112000 6120

Land1 195972 3768 19200 9712 107500 6120

Tiger11 199714 5494 19200 13111 79400 6120

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.37, August 2024

25

From the simulated result obtained on table 8 for the .BMP

images, for each of the algorithms, the respective compression

ratio is as shown on table 9.

Table 9. Compression Ratios of the Simulated Result for BMP

Image Run-Length LZW HUFF

C 0.0794 0.6647 0.0261

Word2 0.0485 0.6384 0.0239

Land1 0.0546 0.3342 0.0244

Land1 0.0569 0.5058 0.0192

Tiger11 0.0771 0.6829 0.0276

Average 0.0633 0.5652 0.0242

From the result obtained in table 9, below is a bar graph

showing the compression ratios of all the algorithms (i.e.

Huffman, Lempel-Ziv, and Run-length).

Figure 3. Graph of BMP image Compression ratio analysis

The graph above explains the compression ratio of the various

algorithms on portable network graphics (BMP) image file

format. The result shows that the Lempel-Ziv algorithm

compresses portable network graphics (BMP) images more

followed by the Huffman algorithm and then the Run-length

algorithm.

5. CONCLUSION
Lossless image compression algorithm is a class of data

compression algorithm that allows the original image to be

perfectly reconstructed from the compressed image. Image

compression algorithms are important because they can be used

to reduce the amount of space needed to store data. Using

compressed images can free up valuable space on any storage

device, or media. Also, the amount of time it takes to send

something over the Internet depends on the size of the

transmitted image. Compressing image before sending them

over the Internet can reduce the number of resources needed by

a considerable margin. This study made an analysis of the

Lempel-Ziv, Run-length, and Huffman compression

algorithms using images. The performance of these algorithms

based on their respective compression ratios was compared.

Discussion was carried out concerning their advantages and

disadvantages. This study has shown that the Huffman

algorithm is the best and suitable algorithm for the compression

of joint photographic experts’ group (JPEG), Portable network

graphics (PNG), and bitmap (BMP) image format. The

Lempel-Ziv encoding algorithm is also suitable for joint

photographic experts’ group (JPEG), Portable network

graphics (PNG) formats, and bitmap (BMP) image format; it is

not as efficient as the Lempel-Ziv algorithm. Further work can

be done on the comparative analysis of lossless algorithms for

best performance image quality of both the original and the

compressed images. Also, more study can be done to determine

the time complexities of the lossless algorithm. More Study can

also be done to determine the peak signal to noise ratio (PSNR)

of the algorithms.

6. ACKNOWLEDGMENTS
Our thanks to the experts who have contributed towards

development of the template.

7. REFERENCES
[1] M. Al-khassaweneh and O. AlShorman, “Frei-Chen bases

based lossy digital image compression technique,” Appl.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.37, August 2024

26

Comput. Informatics, vol. 20, no. 1–2, pp. 105–118, 2024,

doi: 10.1016/j.aci.2019.12.004.

[2] E. W. Abood et al., “Provably secure and efficient audio

compression based on compressive sensing,” Int. J. Electr.

Comput. Eng., vol. 13, no. 1, pp. 335–346, 2023, doi:

10.11591/ijece.v13i1.pp335-346.

[3] Z. Lu, “Analyzing the Trade-offs in Lossless Image

Compression Techniques:Insights for Computer Science

Research,” Sci. Technol. Eng. Chem. Environ. Prot., vol.

1, no. 7, pp. 1–5, 2024, doi: 10.61173/99t0ga22.

[4] A. Ijaz, “Fine-Tuning Audio Compression : Algorithmic

Implementation and Performance Metrics,” vol. 6, no. 1,

pp. 220–236, 2024.

[5] W. A. Awadh, A. S. Alasady, and A. K. Hamoud, “Hybrid

information security system via combination of

compression, cryptography, and image steganography,”

Int. J. Electr. Comput. Eng., vol. 12, no. 6, pp. 6574–6584,

2022, doi: 10.11591/ijece.v12i6.pp6574-6584.

[6] R. N. Hussain, A, Al-Fayad A, Image Compression

Techniques : A Survey in Lossless and. 2018.

[7] Y. Hu, W. Yang, Z. Ma, and J. Liu, “Learning End-to-End

Lossy Image Compression: A Benchmark,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 44, no. 8, pp. 4194–4211,

2022, doi: 10.1109/TPAMI.2021.3065339.

[8] A. Birajdar, H. Agarwal, M. Bolia, and V. Gupte, “Image

Compression Using Run Length Encoding and Lempel

Ziev Welch Method,” 2019 Glob. Conf. Adv. Technol.

GCAT 2019, pp. 1–6, 2019, doi:

10.1109/GCAT47503.2019.8978408.

[9] M. A. Rahman, M. Hamada, and J. Shin, “The impact of

state-of-the-art techniques for lossless still image

compression,” Electron., vol. 10, no. 3, pp. 1–40, 2021,

doi: 10.3390/electronics10030360.

[10] A. Gopinath and M. Ravisankar, “Comparison of Lossless

Data Compression Techniques,” Proc. 5th Int. Conf.

Inven. Comput. Technol. ICICT 2020, pp. 628–633, 2020,

doi: 10.1109/ICICT48043.2020.9112516.

IJCATM : www.ijcaonline.org

