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ABSTRACT
Detecting exoplanets is a crucial research area because understand-
ing exoplanets can help researchers discover new aspects of space
and potentially lead to the development of new technologies that
benefit humanity. There are several methods for detecting exoplan-
ets, but achieving higher accuracy remains a significant challenge.
The field of artificial intelligence (AI), particularly neural networks
and convolutional neural networks (CNNs), plays a vital role in en-
hancing the accuracy of exoplanet detection. Various researchers
have proposed and utilized numerous techniques employing arti-
ficial intelligence and neural network methods to detect exoplan-
ets with improved precision. This paper presents a review of vari-
ous exoplanet detection techniques using AI and neural networks,
highlighting the approaches proposed and examined by different
researchers (inclusion of the required tables and figures, accompa-
nied by appropriate citations and references). By leveraging these
advanced computational techniques, researchers can analyze vast
astronomical datasets more efficiently and identify exoplanets with
greater reliability. This integration of artificial intelligence and neu-
ral networks in exoplanet detection not only accelerates discoveries
but also broadens our understanding of planetary systems beyond
our solar system.
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1. INTRODUCTION
An exoplanet, also known as an extrasolar planet, is a planet that
orbits a star outside our solar system. These planets exhibit a wide
range of sizes, compositions, and orbital characteristics. Some ex-
oplanets resemble Earth with rocky surfaces and the potential to
harbor liquid water, while others are gas giants like Jupiter or ice
giants similar to Neptune. Planet detection has emerged as a signifi-
cant research focus in astrophysics [13, 14]. Detecting these planets
is essential for several reasons. Studying these planets allows scien-

tists to gain insights into the formation and evolution of planetary
systems. By examining a diverse array of planetary systems, re-
searchers can refine and test theories about planet formation and the
dynamics of different types of planetary systems. Identifying exo-
planets within the habitable zone—the region around a star where
conditions might be suitable for liquid water—is particularly im-
portant for discovering environments that could support life. This,
in turn, provides valuable information about the conditions nec-
essary for life and the potential for its existence elsewhere in the
universe. Additionally, finding Earth-like exoplanets helps us as-
sess the uniqueness or prevalence of our own planet, offering clues
about the factors that contribute to a planet’s habitability. In sum-
mary, the detection of exoplanets is vital because it deepens our
understanding of the universe, aids in the search for extraterrestrial
life, drives technological and scientific advancements, and offers
profound insights into our place in the cosmos.
Exoplanet detection employs various methods, each with unique
strengths, to identify and analyze planets outside our solar system.
The transit method, used by missions like Kepler and TESS, detects
dimming of starlight as a planet passes in front, revealing its size
and orbit. Radial velocity measures a star’s wobble due to a planet’s
gravitational pull, providing mass information, with instruments
like HARPS. Direct imaging captures actual images of exoplanets,
suitable for large, distant planets, while gravitational microlensing
uses a star’s gravitational field to magnify background light, detect-
ing distant, low-mass planets. Astrometry and timing variations of-
fer precise measurements of stellar movements and event timings to
infer planet presence, with missions like Gaia enhancing detection
accuracy. To date, over 4,000 exoplanets have been identified us-
ing various techniques, including the radial velocity method [8, 15,
16], astrometry [8, 17, 18], direct imaging [8, 19, 20], and gravita-
tional microlensing [8, 21, 22]. However, the majority of confirmed
exoplanets have been discovered using the transit method [23, 24].
Artificial Intelligence (AI) refers to the simulation of human-like
intelligence in machines, allowing them to perform tasks that tra-
ditionally require human cognition. Neural Networks are compu-
tational models inspired by the human brain, composed of inter-
connected nodes organized in layers, where each connection has
a weighted strength. Convolutional Neural Networks (CNNs) are
a specialized type of neural network designed for processing grid-
like data such as images, employing convolutional layers to extract
features effectively. Machine Learning (ML) involves developing
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algorithms that enable computers to learn and make predictions or
decisions based on data patterns, rather than explicit programming.
Deep Learning, a subset of Machine Learning, utilizes deep neural
networks with multiple layers to automatically learn hierarchical
representations of data, achieving remarkable performance in tasks
like image and speech recognition. These technologies collectively
revolutionize various fields by enhancing capabilities in tasks rang-
ing from data analysis to complex decision-making processes.
Artificial Intelligence (AI), machine learning (ML), deep learning,
neural networks, and convolutional neural networks (CNNs) sig-
nificantly enhance exoplanet detection by automating and improv-
ing the analysis of vast astronomical datasets. Artificial intelligence
and machine learning algorithms can efficiently sift through large
volumes of data, identifying patterns and anomalies indicative of
exoplanetary presence. Deep learning, particularly through neural
networks, excels at recognizing complex and non-linear relation-
ships in light curves, which are crucial for detecting the subtle dim-
ming events caused by transiting exoplanets. CNNs, a specialized
type of neural network, are particularly effective in processing and
analyzing the intricate data patterns in light curves and images, im-
proving the accuracy of exoplanet identification. These advanced
computational techniques enable the extraction of relevant features
from noisy data, significantly reducing false positives and enhanc-
ing detection reliability. Furthermore, they facilitate the study of
exoplanetary atmospheres by analyzing transit spectroscopy data,
revealing chemical compositions and potential habitability. Over-
all, the integration of AI, ML, deep learning, and neural networks
in exoplanet detection accelerates discoveries and broadens our un-
derstanding of planetary systems beyond our solar system.
Recent findings [1, 2, 3, 4, 5, 7] indicate that convolutional neu-
ral networks (CNNs) offer an efficient, automated method for clas-
sifying exoplanet candidates. Utilizing a CNN can significantly
decrease the time required by human reviewers and help identify
promising candidates that might have been overlooked, especially
in low signal-to-noise (S/N) environments where false positives are
common.
This review paper examines several recent advanced exoplanet de-
tection methods developed by other researchers using artificial in-
telligence (AI) and neural networks (NN). This study aims to aid
researchers in comprehending the application of artificial intelli-
gence and neural network in exoplanet detection. Additionally, it
serves as a comprehensive guide for novice researchers, providing
insights into the research techniques, data, and training methods
employed in this field.

2. A CASE STUDY OF EXOPLANET DETECTION
BY REDUCING ARTIFICIAL NEURAL
NETWORK COMPLEXITY

Koning et al. (2019) [6] proposed and evaluated two methods utiliz-
ing a convolutional neural network (CNN) with a reduced number
of parameters. They applied these methods to the time-varying data
of stars to automatically classify and detect exoplanets. The results
demonstrated satisfactory accuracy despite the parameter reduction
in the CNN.
The dataset used here includes all observed stellar light patterns
corresponding to Kepler Threshold Crossing Events (TCEs) within
the Kepler Data Release 24 (DR24). These events are transit-like
occurrences resembling potential exoplanet transits. The dataset
encompasses 15,740 TCEs with four distinct training labels: Planet
Candidate (PC), astrophysical false positive (AFP), non-transiting
phenomena (NTP), and unknown (UNK). TCEs labeled as UNK,
whose transit nature (exoplanetary or otherwise) is indeterminate,

were excluded from their dataset. All stellar light patterns were
sourced from the Mikulski Archive for Space Telescopes website
and are formatted in Flexible Image Transport System (FITS) for-
mat.
They used two methods. First method is Decreased Depth Network
(DDN) and second method is Decreasing Depth and Multi-Scale
Network (DDMSN). Figure 1 has shown the overview of the net-
work configuration per experiment for this research [6].
The first method involves reducing the depth of the original model.
This results in a modified model known as the Decreased Depth
Network (DDN), which reduces the number of convolutional and
max pooling layer blocks from five to three for a broader perspec-
tive. Additionally, each block now consists of only one convolu-
tional layer before a max pooling layer, down from two in the orig-
inal configuration. This reduction applies to both the global and
local perspectives. In this adjusted architecture, all convolutional
layers employ a kernel size of 5. Each view begins with 16 fea-
ture maps generated through convolution, followed by max pool-
ing with a stride of 2 in each layer. The global view uses a pooling
window size of 5, while the local view employs a size of 7. Sub-
sequently, the resulting feature maps from both views are concate-
nated and passed through two fully connected layers, reduced from
four in the original design, each containing 128 neurons. The final
prediction is produced using a sigmoid unit.
The second method combines a reduction in the number of lay-
ers in AstroNet with a simplified representation of the global view
known as the Gaussian view, achieved through a Gaussian pyra-
mid . This pyramid decomposes the high-resolution temporal sig-
nal of the light curve into multiple progressively lower-resolution
versions, each corresponding to a level of the pyramid. In our exper-
iments, a 5-level pyramid was used, and only the lowest-resolution
level was utilized as input for the network.
Named Decreasing Depth and Multi-Scale Network (DDMSN),
this approach also involves reducing the number of convolutional
and max pooling layers, while keeping the configuration of fully
connected layers unchanged. The Gaussian view serves as the ex-
clusive input, undergoing two sequences of two convolutional lay-
ers followed by one max pooling layer, before passing through four
fully connected layers of size 512 to make predictions. All convo-
lutional layers use a kernel size of 5, starting with 16 initial feature
maps, and employing a pooling window size of 7 with a stride of 2.
The models were set up to train on eight training partitions and were
validated during training on a separate validation partition using the
train.py script. Training proceeded for 10,000 steps, where each
step processed a batch of 64 samples.
In the DDN experiment, the results indicate that the accuracy de-
creased by only 0.6 percent compared to the original AstroNet con-
figuration (95.62% versus 96.25%), when a dropout rate of 0.3 was
applied. Concurrently, the training time was reduced by 60 per-
cent. However, employing dropout does slightly increase the train-
ing time compared to our implementation without dropout, which
reduces training time by 65 percent. The results from the DDMSN
experiment demonstrate a substantial reduction in training time,
reaching 85 percent compared to the baseline, and nearly three
times faster than the DDN experiment setup when no dropout is uti-
lized. Despite a slightly lower classification performance of 94.54
percent compared to DDN, this remains acceptable given the sig-
nificant time savings during training. Introducing a dropout rate of
0.1 or 0.2 increases accuracy by 0.2 percent in this configuration.
However, this improvement comes with an almost twofold increase
in training time, which makes this addition less attractive compared
to the DDN experiment.
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Fig. 1. Overview of network configurations per experiment [6]

3. IDENTIFYING EXOPLANETS WITH DEEP
LEARNING II: TWO NEW SUPER-EARTHS
UNCOVERED BY A NEURAL NETWORK IN K2
DATA

Dattilio et al. (2019) [7] identified two new exoplanets by using
deep learning. They adapted a neural network originally designed
to identify exoplanets in the Kepler field to work with different K2
campaigns, which span various galactic environments. They devel-
oped a convolutional neural network, named AstroNet-K2, to deter-
mine whether a potential exoplanet signal is genuine or a false pos-
itive. AstroNet-K2 achieved a remarkable 98% accuracy on their
test set for classifying exoplanets and false positives. It success-
fully identified and validated two previously unknown exoplanets.
This method represents a significant step towards the automatic de-
tection of new exoplanets in K2 data and understanding how exo-
planet populations vary based on their galactic origins. Their work
focuses on creating an automated system for identifying planet can-
didates in K2 data using deep learning, a modern machine learning
technique. They expanded on the work of Shallue and Vanderburg
(2018) [2], which distinguished planet candidates from false posi-
tives in Kepler data, to classify these signals in the K2 mission data.
Building on Shallue and Vanderburg’s (2018) [2] supervised convo-
lutional neural network architecture, they made several key modifi-
cations to improve its performance with the qualitatively different
K2 dataset.
Here, supervised learning was utilized by the neural network,
meaning a labeled set of examples, called a training set, was pro-
vided for it to learn from. Advantage was taken of the work done by
the team over the past four years as K2 data was released to the pub-
lic. During that time, light curves were routinely produced, transits
were searched for, and likely planet candidates were identified to
support a wide variety of scientific objectives [25, 26].
The training set consists of three main parts: “Identifying Thresh-
old Crossing Events,” “Labeling Threshold Crossing Events,” and
“Preparing Input Representations.”
Part 1, “Identifying Threshold Crossing Events,” involves two key
functions: producing light curves and conducting transit searches.
The training set includes potential planet signals known as “Thresh-
old Crossing Events” (TCEs), which are periodic signals indicating
a decrease in star brightness detected by an algorithm searching
for transiting exoplanets in a light curve. The first step in identi-

fying TCEs is to generate searchable light curves. This is done by
producing systematics-corrected light curves and selecting the best
photometric apertures for each K2 target, followed by searching
these targets for periodic dipping signals.
Part 2 involves triage and vetting. The transit search identified
51,711 TCEs, with the majority (31,575) manually categorized to
create the labeled training set for the neural network. The objective
was to classify TCEs into two categories: planet candidates and
false positives. This labeling process involved two steps: a rapid
triage to quickly review large numbers of TCEs, followed by de-
tailed vetting of the subset most likely to be true transit signals.
Triage was conducted on most TCEs detected by the transit search.
Early in the K2 mission, every TCE identified by the transit search
was examined closely. Following triage, signals classified as planet
candidates underwent more detailed analysis using a variety of di-
agnostics. To ensure consistency in the training set, a set of rules
was established to guide the determination of which signals were
included as candidates in the final training set.
After identifying and labeling each TCE, they were processed into
standardized input representations (Part 3 of the training set) to be
used by the neural network. Here, the neural network architecture
was based on the AstroNet model [2], which is implemented in
TensorFlow, an open-source machine learning framework [27].
The initial approach involved training the original AstroNet archi-
tecture using the new K2 input data and training set labels. How-
ever, this initial training attempt did not converge. As a result,
the neural network architecture and training parameters were op-
timized by using the Kepler data set and the Autovetter training
labels from Shallue and Vanderburg (2018) [2].
The neural network’s performance was assessed using various
metrics. To reduce small variations between models, an averaged
model was used for evaluation. This involved training ten sepa-
rate models with identical parameters and averaging their final pre-
dictions for each TCE. All metrics in this section were calculated
based on the test set.
In this research, using the averaged neural network model, re-
searchers identified two new exoplanets in K2 data. Both exoplan-
ets are categorized as super-Earths orbiting G-dwarf stars. The neu-
ral network efficiently sifted through a large collection of previ-
ously unclassified potential planet signals. It successfully flagged
several signals that had been overlooked by the existing planet de-
tection pipeline, identifying them as promising planet candidates.
Follow-up observations confirmed EPIC 246151543 b and EPIC
246078672 b as genuine exoplanets. These newly discovered plan-
ets orbit closely around their host stars and fall in size between
Earth and Neptune. This study made use of NASA’s Astrophysics
Data System and the NASA Exoplanet Archive, managed by the
California Institute of Technology under contract with NASA’s Ex-
oplanet Exploration Program.

4. EXOPLANET DETECTION USING MACHINE
LEARNING

Malik et al. (2022) [8] have introduced a novel machine learning
approach for exoplanet detection using the transit method. By lever-
aging the time series analysis library TSFRESH to analyze light
curves, they extracted 789 features from each curve, encompass-
ing detailed information about their characteristics. These features
were subsequently employed to train a gradient boosting classifier
using the machine learning tool LIGHTGBM.
Here, a binary classifier was developed to categorize each time se-
ries photometry, known as a light curve, into either ’planet candi-
date’ or ’non-candidate’ classes. Classical machine learning tech-
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niques were employed in their approach. TSFRESH, a Python-
based library for scalable hypothesis testing and feature extraction
from time series data, was utilized. The methodology was inspired
by feature engineering approaches commonly employed in time se-
ries prediction projects.
The model underwent training and testing on three types of
datasets. The initial stage included simulated data using K2 pho-
tometry as a baseline with additional injected transits. Subse-
quently, training was conducted on Kepler data, followed by TESS
photometry. Each stage was subdivided into three parts: processing
and labeling the training data, feature extraction from each light
curve using TSFRESH, and model training.
The K2 Campaign 7 photometry was obtained from the Mikul-
ski Archive for Space Telescopes (MAST) and calibrated follow-
ing Vanderburg and Johnson (2014) [29]. Transit signals were ran-
domly injected into half of the processed light curves. They utilized
the publicly available dataset used in Shallue and Vanderburg’s
work (2018) [2]. For TESS data, publicly available data from Yu
et al. (2019) [5] were employed in their model, AstroNet-Vetting.
Following the processing of the light curves, features were ex-
tracted in the subsequent step, encapsulating the characteristics of
each light curve and serving as input for our classification model
during both training and inference. The PYTHON framework TS-
FRESH (Christ et al. 2018) [28] was utilized to extract typical time
series features, such as the count of values exceeding the mean and
the coefficients from the one-dimensional discrete Fourier trans-
form. For all datasets used, the light curves were resampled to an
hourly frequency. These resampled time series were then directly
employed with various time series analysis tools. TSFRESH’s effi-
cient feature extraction setting, which extracted approximately 790
generalized time series features that was applied.
The machine learning method employed in this study operates ef-
fectively with a global perspective of the light curve. Its training
process is swift, suggesting it can be readily adapted to new data
sources. The identical model setup and code are applicable to data
from various sources like Kepler, K2, and TESS, requiring hy-
perparameter optimization just once. This approach automatically
identifies the most significant features, facilitating a deeper under-
standing of the data and the underlying physical processes.
This approach was evaluated using K2 campaign 7 data with artifi-
cially injected transit signals, demonstrating competitiveness with
the traditional box least-squares fitting method. It delivered results
comparable to state-of-the-art deep learning models, yet with sig-
nificantly higher computational efficiency and without requiring
folded or secondary views of the light curves. For Kepler data, the
method achieved an AUC of 0.948, indicating that 94.8% of true
planet signals were ranked above non-planet signals. The recall rate
was 0.96, meaning 96% of real planets were correctly classified.
When applied to Transiting Exoplanet Survey Satellite data, the
method classified light curves with an accuracy of 0.98 and identi-
fied planets with a recall of 0.82 and a precision of 0.63.

5. SEARCHING FOR EXOPLANETS USING
ARTIFICIAL INTELLIGENCE

Pearson et al. (2018) [9] introduced a novel approach for identi-
fying exoplanet candidates in extensive planetary search initiatives
using a neural network. Their convolutional neural network excels
at identifying Earth-like exoplanets in noisy time series data with
improved accuracy. Their deep network analysis of Kepler light
curves has validated the method, successfully detecting periodic
transits that match the actual period without requiring any model
fitting.

In this research, simulated training data were utilized to train the
deep networks to predict single planetary transits in noisy photo-
metric data. The simulated data closely resemble what is expected
from an actual planetary search survey. After training the deep net-
works, they were employed to assess the probability of potential
planetary signals in new, unseen data.
Here, a total of 311,040 transit and non-transit samples were gen-
erated to train the deep nets. The training data were computed from
a discretely sampled nine-dimensional hypergrid in the parameter
space used in this study. The parameters limited transit duration to a
range between 30 minutes and 4 hours, covering 1/12 to 2/3 of the
time domain. These parameters were chosen to mimic data from
real search surveys by encompassing a variety of possible system-
atic shapes and transit sizes.
Each model was trained using 311,040 samples, processed in
batches of 128 over 30 epochs to learn the transit features. The
validation/ test dataset was not used for training any model. This
validation set, comprising 933,120 samples, spans a wider range of
noise compared to the training data.

Fig. 2. The comparison of the classification of different transit detection
algorithms have been done: a fully connected neural network (MLP), CNN,
fully connected network with wavelet-transformed input (wavelet MLP), an
SVM and a BLS. The ROC plot shows the cumulative distribution of true
positives and false negatives as the discrimination threshold is varied. The
discrimination threshold and the probability output from the deep nets are
used to classify the input. BLS and SVM are non-probabilistic algorithms
so an artificial score has been made up based on the accuracy of the transit
depth and mid-transit time such that we can compare it to our other models.
All of the test data has been used to calculate the ROC plot and report the
area under each curve in the legend. A perfect classifier has an area of 1. [9]

An ROC plot has been employed to compare the results of each
transit detection algorithm. This plot demonstrates the performance
of a classifier, which outputs a probability indicating whether a
sample belongs to a specific class. This probability is often rounded
to indicate transit or non-transit detection (0 or 1). The ROC plot
modifies the classification by adjusting the threshold at which the
probabilities are rounded. The true positive rate (TPR), also known
as the probability of detection, can be used to determine the false
negative rate by calculating 1-TPR.
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Fig. 3. The sensitivity of the deep nets to data beyond the range trained
on this research was evaluated by generating 77,760 light curves for each
noise value. The findings indicated that the transit depth size does not affect
accuracy; rather, the accuracy of each detection algorithm is determined by
the ratio of transit depth to noise. This plot allows for estimating the number
of light curves needed to reliably detect a planet below the noise level by
binning the data together. [9]

The sensitivity of their algorithms was examined to understand the
detection limits and robustness in discovering new planets. The test
dataset was utilized to assess accuracy under different levels of
noise. Figure 3 illustrates the accuracy of their deep learning al-
gorithms on data with varying noise amplitudes.
Exoplanet transits exhibit diverse shapes, making simple templates
insufficient to capture the nuanced details, particularly when sig-
nals are below the noise level or strong systematics are present.
In this study, researchers employed an artificial neural network to
learn the photometric characteristics of transiting exoplanets. Deep
machine learning can process millions of light curves in seconds.
The discriminative nature of neural networks allows for a qualita-
tive assessment of candidate signals, indicating the likelihood of
finding a transit within a subset of the time series. For planet sig-
nals that are smaller than the noise, they devised a method to detect
periodic transits using a phase folding technique, which provides
constraints when fitting for the orbital period. They validated their
deep networks on Kepler mission light curves, detecting periodic
transits consistent with the true period without model fitting. Ad-
ditionally, they tested various methods to improve planet detection
rates, including 1D convolutional networks and feature transfor-
mations like wavelets, and found significant improvements with
CNNs. Machine learning techniques offer an intelligent platform
capable of learning subtle features from large datasets more effi-
ciently than humans. Their study also suggests that machine learn-
ing will enhance the characterization of exoplanets in future analy-
ses of large astronomical datasets.

6. CLASSIFYING EXOPLANET CANDIDATES
WITH CONVOLUTIONAL NEURAL
NETWORKS: APPLICATION TO THE NEXT
GENERATION TRANSIT SURVEY

Chaushev et al. (2019) [10] introduced the first use of a Convo-
lutional Neural Network (CNN) for analyzing data from the Next

Generation Transit Survey (NGTS) [30], demonstrating its effec-
tiveness in classifying exoplanet candidates detected by ORION,
an implementation of the box least squares (BLS) detection algo-
rithm [31].
For training the network, they compared the performance using
both real data with injected planetary transits and entirely simulated
data, examining how these different data compositions impacted
the network’s effectiveness. They have also shown a strong cor-
relation between the CNN’s rankings and the classifications from
their extensive database produced by expert human reviewers. Ad-
ditionally, they expanded on previous research by examining the
optimal size and composition of the training data set for the neural
network. Through the use of transit injections, they discovered that
the number of human-labeled light curves needed for training could
be reduced without compromising the quality of the results.
In this work, both fully simulated data and injections of simulated
transits into real data were considered when training the CNN. Ad-
ditionally, the effect of varying the composition of the non-planet
class data set was examined. This was achieved by including in-
jections of artificial false positives, such as eclipsing binaries, as
well as true planet and false positive signals that were deliberately
phase-folded on an incorrect period. To create the planet class for
the network’s training, validation, and test data sets, a sample of
light curves was initially selected by filtering out those contain-
ing ORION candidates. This process minimized the likelihood of
real transits or false positive signals remaining in the data, which
could potentially confuse the network with the injected signals. The
ELLC package [32] was utilized to perform the transit injections.
A set of 100,000 pure noise light curves, modeled on the obser-
vational properties of the NGTS survey, was generated. The time
sampling of each light curve was determined by first defining a cor-
responding pseudo-field. For each field, the baseline length of night
was selected from a uniform distribution ranging from 7 to 9 hours.
The duration of darkness at Cerro Paranal, between astronomical
dusk and dawn throughout the year, was modeled using a sinusoid
function, with a random phase chosen to correspond to the epoch
when observations began. Starting with a rising field visible for 30
minutes at the end of the first night, which rose 4 minutes earlier
each successive night, the nights were stepped through to construct
a time series, with the maximum length of night set by the chosen
baseline.
For input representation, The method of Shallue an Vanderburg
(2018) [2] was adopted and expanded to include local views of any
secondary transits in addition to the primary event.
Firstly, global view input representations of the entire light-curve
flux series were generated. The light curves were phase folded
based on their orbital periods, disregarding the transit epoch, to
allow the transit event to be centered at any phase value. This ad-
justment aimed to enhance the network’s resilience to uncertainties
in ephemerides for ORION candidates and showed improved per-
formance during initial tests. Subsequently, the light curves were
divided into uniformly spaced bins. The views of the light curves
were normalized so that the maximum depth was set to 1 and the
median (baseline) value to 0. The global views of the centroid series
were generated similarly to the flux views, with the exception that
performed normalization by maximum depth was omitted. Instead,
following Ansdell et al. (2018) [1], normalization was performed
using the standard deviation of the centroid series scaled by that of
the flux series, calculated from out-of-transit regions across the en-
tire dataset. Local views of the flux and centroid series were created
similarly to the global views, but rather than using the entire light
curves, they focused on windows encompassing phase 0 and 0.5,
spanning three times the average transit duration of confirmed ex-
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oplanet populations (3.23 hours). The events were randomly offset
from the window center, up to a maximum of 2/3 of the center-to-
edge span. Additionally, the orbital period was provided as an aux-
iliary scalar input to investigate whether the network could utilize
it to filter out spurious signals caused by the observation window
function of the NGTS survey.
Secondly, the normalization of the maximum depth of the flux se-
ries views is enabled to enhance the network’s ability to interpret
the data. However, in this process, information concerning the ac-
tual transit depth is lost. To retain this information, the maximum
depth normalization factor is introduced as an auxiliary input.
Finally, the inclusion of the stellar host radius enables differenti-
ation between genuine exoplanetary transits and those resembling
exoplanets.
Figure 4 illustrates the CNN architecture employed in this study,
adapted from ASTRONET (Shallue and Vanderburg, 2018) [2].
A neural network was trained using 100,000 fully simulated NGTS
light curves, evaluating its performance across four key metrics.
The first metric, AUC (Area under the ROC curve), quantifies the
probability that a randomly selected planet receives a higher score
than a randomly selected false positive. Accuracy, the second met-
ric, measures the proportion of correct classifications made by the
network. Precision, the third metric, denotes the ratio of correctly
classified planets to all candidates classified as planets. Lastly, Re-
call, the fourth metric, signifies the fraction of actual planets iden-
tified by the network.
On unseen test data, the network achieved impressive metrics: an
AUC score of 98.82%, accuracy of 95.31%, precision of 99.18%,
and recall of 91.34%. These results highlight the network’s robust
performance on simulated data, suggesting its capability to effec-
tively execute the classification task.
The NGTS dataset utilized in this study comprises 91 fields, over
890,000 light curves, and detects transit events in more than 58,500
targets. Each target is processed by ORION, which identifies up to
5 distinct detections at various periods and epochs, corresponding
to the top 5 peaks in the BLS periodogram. Each peak represents a
candidate classified using PlaNET. For comprehensive evaluation,
candidates with periods exceeding 15.0 days were included in the
performance assessment, despite their exclusion from the training
data.
This research work focused on examining how variations in the
training dataset affect performance. Previous studies have typi-
cally used confirmed planets, as well as promising and rejected
candidates identified through the vetting process, in their train-
ing datasets. Here, artificial planetary transit injections and false
positive signals are also employed by the researchers. For the
non-planetary class, various combinations of four false positive
categories are considered: candidates identified as false positives
through vetting (OFP), injections of stellar binary eclipses (EB),
light curves lacking strong periodic transit signals (NP), and sig-
nals from transits and eclipsing binaries folded at incorrect periods
(WP).
The findings of this study indicate that models trained using all four
categories of false positives within the non-planetary class perform
nearly as effectively as models trained exclusively on candidates
identified as false positives through vetting. They achieve AUC val-
ues of approximately 76.5% and 77.9%, respectively, based on vet-
ting labels. This suggests that future efforts could potentially ex-
pand training datasets by reducing reliance on vetted candidate la-
bels. The preferred model, NP/EB/OFP/WF, demonstrates an AUC
of (76.5 ± 0.4)%, accuracy of (74.6 ± 1.1)%, precision of (0.98 ±
0.02)%, and recall of (63.0 ± 2.0)% on vetting labels.

Fig. 4. Architecture of the best CNN model used in the research of Chau-
shev et al. (2019) [10]. The network inputs undergo sequential blocks of
convolutional and max pooling layers. Global views, local views, and aux-
iliary scalars are stacked and processed through adjacent columns. The out-
puts from these columns are integrated before passing through fully con-
nected layers. Convolutional layers are labeled as Conv-kernel size-number
of feature maps, max pooling layers as MAXPOOL-window length-stride
length, and fully connected layers as FC-number of units. The final output
from the sigmoid layer represents the predicted probability of each light
curve containing a transiting exoplanet. [10]

7. CONCLUSION
The modern world increasingly relies on Artificial Intelligence
(AI) and Neural Network (NN) applications, facilitating efficient
problem-solving with enhanced speed and performance. The detec-
tion of exoplanets also benefits from these technologies, reducing
workload and time. This review paper introduces efficient meth-
ods for exoplanet detection using artificial intelligence and neural
network techniques. It provides readers with valuable insights and
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research guidelines, aiding in understanding current methodologies
and fostering the development of new approaches for exoplanet de-
tection through artificial intelligence and neural networks.
This review paper demonstrates that the use of AI and neural net-
work methods can effectively detect exoplanets and provide accu-
rate information about them. Conducting research in artificial in-
telligence, neural networks, machine learning, and deep learning
requires significant study, effort, and dedication. Similarly, exo-
planet research is a complex task. Therefore, successfully imple-
menting exoplanet detection through artificial intelligence, neural
networks, deep learning, machine learning, and related fields ne-
cessitates considerable effort and time.
New researchers in this field may need to study various research
papers to grasp the intricate details of the research process. This re-
view paper aims to assist researchers by providing insights into ef-
fective neural network design, training, input representation, tools,
software, programming languages, data, and evaluation processes.
By leveraging this information, researchers can develop more effi-
cient methods for identifying exoplanets.
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