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ABSTRACT 

This article presents a methodology for identifying anomalies 

and generating alerts during the management of photovoltaic 

plants. The approach is mainly based on the analysis of AC 

power from inverters, eliminating the need for additional 

instrumentation. The methodology can be enhanced with solar 

irradiance data, enabling more precise anomaly detection and 

alert generation based on the Performance Ratio (PR) concept. 

The autoencoder technique was employed to detect anomalies 

in inverters using custom models based on equipment size, 

region, as well as specific times of day and year. Alert 

generation considers the quantity of detected anomalies and PR 

variation over a 30-day period. To validate the results, plants 

with previously recorded shading and 5k inverters in the 

regions of Santa Catarina and São Paulo (Brazil) were used. 

The obtained results demonstrated excellent performance in 

plant management, allowing for the analysis of anomaly 

recurrence and alert level variations over time.  

General Terms 

Anomaly Detection; Pattern Recognition; Photovoltaic Fault 

Detection; Machine Learning. 

Keywords 
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1. INTRODUCTION 
In recent years, photovoltaic (PV) technology has emerged as 

a key solution for renewable energy production, distinguished 

by its sustainability and ability to meet the growing demand for 

clean energy. However, the effectiveness of these systems is 

significantly impacted by non-ideal operational conditions such 

as shading, panel soiling, and component failures, which can 

reduce energy production and compromise system efficiency. 

Early and accurate detection of these anomalies is essential to 

maintain optimized operation and ensure the economic 

viability of solar energy investments. 

The topic of fault classification and detection in photovoltaic 

(PV) systems is quite broad. The many of recent approaches 

address practical issues related to the analysis and processing 

of data available from plants commissioned by the project 

partner company. The managed plants vary in size, from 

residential to large corporate installations. Not all plants are 

instrumented, with only certain electrical parameters available 

from inverters, and in some cases, irradiance data provided by 

pyranometers. In some units, this information was obtained 

from satellite monitoring services, however this information is 

not always recorded at the required time. 

In this context, the present article aims to develop a robust 

methodology that integrates advanced machine learning 

techniques with solar irradiation data analysis to generate 

accurate alerts and detect anomalies in photovoltaic systems. 

By using an autoencoder to model inverter behavior and 

incorporating solar irradiation data, an innovative approach is 

proposed that not only identifies anomalies with high precision 

but also provides a scalable and adaptable tool for continuous 

monitoring of solar plants of different sizes, regions, and 

specific times of day and year. 

2. Literature Review 
Recent studies in the field of PV system monitoring and 

diagnostics have applied advanced machine learning 

techniques, such as autoencoders, to efficiently identify faults 

and anomalies. For instance, Barraz et al. emphasize in [1] the 

importance of retraining pre-trained models to optimize 

anomaly detection in PV systems. Similarly, Miraftabzadeh et 

al. validate in [2] the effectiveness of autoencoders in 

monitoring photovoltaic plants without requiring additional 

equipment data. Additionally, the integration of these systems 

with cloud-based and container-based architectures, as 

explored by Doukha et al. in [3], provides a scalable and 

efficient infrastructure for deploying deep learning 

applications, facilitating the implementation and management 

of distributed PV systems. 

Therefore, the research focused on identifying references that 

address anomaly detection with limited input data, particularly 
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the generated AC power which was consistently available from 

the inverters. 

In this regard, [4] examines analytical data methods for fault 

detection and classification in grid-connected PV systems. It 

emphasizes the importance of reliable monitoring of PV 

installations to ensure their long-term reliability and 

performance. The study discusses techniques based on 

electrical signature, numerical methods (machine learning), 

and statistical analysis for fault diagnosis, highlighting recent 

advancements and the applicability of these approaches in 

detecting and classifying faults based on acquired performance 

data. The article presents fault classification and various 

methods for data acquisition and analysis. In many situations 

presented, module-level sensing is impractical, especially in 

electrical signature methods. Therefore, the use of machine 

learning techniques was highlighted as a more suitable 

alternative. 

In [5], an innovative methodology is presented for monitoring 

partially shaded photovoltaic systems. Using a time-series data 

analysis approach, the methodology aims to distinguish energy 

losses caused by shading from other system malfunctions. This 

is achieved by comparing the performance data of a partially 

shaded PV system with an unshaded reference system, using 

algorithms that automatically detect shading-induced energy 

losses and differentiate them from other losses. This study is 

particularly relevant for PV systems with module-level power 

electronics, common in residential and commercial 

installations. The article discusses significant impacts of partial 

shading on photovoltaic plants and presents a clustering 

methodology and outlier identification for anomaly detection. 

Article [6] addresses the development and validation of a 

practical approach for fault detection in photovoltaic systems 

with online implementation. Using field measurements from a 

Canadian PV system, the methodology demonstrated a high 

fault detection rate, successfully handling anomalies present in 

real-life measurements. The method relies on comparing 

energy production measurements, generated AC power, and 

predictions from a model using solar irradiance and PV panel 

temperature measurements. The study shows that models based 

on hourly averages are more accurate than those using 10-

minute measurements, and models for different irradiance 

intervals result in a fault detection rate exceeding 90%. The 

research significantly contributes to preventive maintenance 

and optimized performance of PV systems, emphasizing the 

importance of online implementation of fault detection 

techniques for effective monitoring and timely corrective 

action. 

In [7], an innovative methodology for anomaly detection in 

photovoltaic power predictions for Virtual Power Plants 

(VPPs) is presented, using convolutional autoencoders and 

Principal Component Analysis (PCA). The research highlights 

how this approach can significantly improve prediction 

accuracy by identifying and filtering anomalous data, with 

experiments demonstrating up to a 23% reduction in prediction 

error. This method represents a significant advancement in 

integrating renewable energies into the power system, ensuring 

more reliable and efficient predictions for VPP operation. 

 

Figure 1: Block Diagram of the Developed Methodology 

Article [8] introduces a new procedure for automatic 

supervision and fault detection in photovoltaic systems (PV) 

based on power loss analysis. This automatic supervision 

system was developed in the Matlab&Simulink environment 

and includes parameter extraction techniques to calculate key 

parameters of the PV system from monitored data under real 

working conditions, considering environmental irradiance and 

PV panel temperature evolution. The automatic supervision 

method analyzes power losses in the DC part of the PV 

generator, defining two new power loss indicators: thermal 

capture losses (Lct) and various capture losses (Lcm). 

Processing these indicators allows the supervision system to 

generate a fault signal as an indicator of fault detection in the 

PV system operation. The article details the modeling process 

of a photovoltaic array output using the equivalent electrical 

circuit model. This model enables precise simulation of the PV 



International Journal of Computer Applications (0975 – 8887) 

Volume 186 – No.36, August 2024 

11 

system behavior under real conditions, comparing monitored 

data with simulation results to calculate energy losses. Capture 

losses mainly occur on the DC side of the PV conversion chain 

and are attributed to operating temperature, PV efficiency, solar 

irradiance dependency, shading, and losses when sunlight hits 

at a high angle. Despite the relevance of this work, given the 

variety of plant architectures commissioned by the company, 

the mathematical modeling approach of the plants proved 

impractical for the project at hand. 

The analysis of references pointed towards the development of 

a methodology for fault detection and alert management in 

photovoltaic plants that could be applied to systems with low 

sensing levels and with the information available from all 

plants commissioned by the company, especially the profile of 

generated AC power, irradiance provided by pyranometers, or 

estimated by satellite monitoring services. Given the 

unavailability of historical fault labeling in the company's 

databases, a recurrence-based alert management methodology 

was proposed in this work. An advantage presented by the 

developed methodology is the possibility of achieving reliable 

alerts using only the AC power provided by the inverters. To 

filter out the  stochastic effects of clouds on generation, the 

point-by-point moving average strategy was used over a period 

of 28 days. Besides, the methodology delivers to the user an 

alert level just after another 30 days of results using an 

ensemble of several models applied over the data, a sufficient 

response time over failure, reported by the PV Operation 

company. 

3. METHODOLOGY FOR ANOMALY 

ALERT MANAGEMENT IN 

PHOTOVOLTAIC SYSTEMS 
The methodology developed in this project is primarily based 

on collecting AC power data from inverters, eliminating the 

need for additional instrumentation for anomaly detection. To 

achieve this, we used autoencoders to model the normal 

behavior of inverters and identify deviations that indicate 

anomalies. The integration of solar irradiance data allows for 

refined detection and alert generation, using the Performance 

Ratio (PR) as a key performance indicator. When using PR, 

alert levels are defined based on variations in this parameter 

and the presence of anomalies within a specific period, 

facilitating quick and precise intervention. Figure 1 illustrates 

a general block diagram for this methodology. In this figure, 

we can observe sets of important blocks in this process, ranging 

from data processing and storage structure to an alert 

generation system. The main steps of this methodology will be 

described next. 

3.1 Data Processing 
Data preprocessing was a crucial process for preparing and 

performing the developed methodology. Initially, raw data was 

collected from various sources and stored in a Data Lake, which 

served as a centralized repository comprising data from 

inverters, plants, weather stations, and external climate data 

sources. Subsequently, this data underwent a processing phase, 

which included cleaning, synchronization, and merging of 

inverter generation data with irradiance information. This 

process ensured the quality and integrity of the data for 

subsequent analyses and training of the machine learning 

algorithm used, in this case, the autoencoder technique. 

The goal of anomaly detection in PV systems can be achieved 

through different approaches, but the premise of not using 

external measurements beyond the inverter limited the 

possibilities in this context. Therefore, it was decided to initiate 

the first prototype of an anomaly detection algorithm using a 

shallow neural network architecture known as an autoencoder. 

This architecture was chosen due to its recognized 

effectiveness in the literature for anomaly detection [9], with 

previous applications including shading detection in PV 

systems. The autoencoder was selected after studies and 

preliminary tests showed its good performance with the 

available historical data. 

Defining anomaly detection thresholds was an important step 

to minimize false positives and negatives, making the 

methodology robust and adaptable. With the use of AutoML 

techniques, the system was scalable by training autoencoder 

models adapted to various classes of plants, considering 

specific regions and generation capacities, without the need for 

extensive manual parameter tuning and deep expertise in 

machine learning techniques. 

3.2 The Use of Autoencoder 
The objective of detecting anomalies in PV systems can be 

achieved through different approaches, but the premise of not 

using external measurements or even labeled data ended up 

reducing the possibilities to be used in the context of this case.  

In [9], the use of autoencoders for anomaly detection was 

proposed. The fundamental concept is that the neural network 

generates an output which is a reconstruction of the input 

signal. Due to the information bottleneck, the network cannot 

store the entire signal but only a condensed representation of it. 

As a result, the network effectively stores and reproduces 

common patterns in the training data. However, patterns that 

are not familiar to the network will be reconstructed with 

significant errors. Each such uncommon pattern can be a 

potential anomaly. 

Based on this concept, the initial prototype of the anomaly 

detection algorithm was developed using a shallow 

autoencoder neural network. This architecture was selected due 

to its proven effectiveness in anomaly detection, as 

documented in the literature, particularly for detecting shading 

in PV systems. Additionally, shallow networks offer the 

advantage of being easily interpretable. 

The architecture of neural networks in the form of autoencoders 

allows unsupervised learning of the network, something that 

was a premise, since the database provided did not have quality 

labels and there was not enough time and resources to label it. 

However, unsupervised training of an autoencoder network 

relies heavily on the quality and quantity of data delivered to it. 

Another but very simplified perspective to describe the model 

is that an autoencoder network can be viewed as a copier, so it 

will shape itself to be able to copy the input data into its output 

with less error as possible. In this case, when it comes to 

anomaly detection using this technique, there are at least two 

approaches to train the autoencoder: deliver examples of 

regular or anomalous PV systems to the network. In the first 

case, the network will be trained to copy regular generation 

profiles and therefore will have difficulty copying anomalous 

generation profiles. In this way, by comparing the input and 

output data from the network, it is possible to classify the input 

data as regular or anomalous. In the second case, the exact 

opposite occurs, the network has difficulty copying regular 

data. It brings us to the different power generation profiles due 

the geographic distribution of PV plants and different inverter 

rated power that couldn’t be used together to train a model.  
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The segmentation of inverters by installed power and region 

was the strategy adopted and allowed the creation of more 

accurate models, considering specific characteristics. 

3.3 Information Processing 
As mentioned earlier in this section, the methodology was 

developed to operate only with AC power data from inverters, 

which is sufficient for training the autoencoder algorithms used 

in anomaly detection. However, this methodology can be 

enhanced if solar irradiance data is available. Therefore, in this 

subsection, we will present information processing pipeline 

considering that all the data specified in the methodology is 

available, which includes: 

- Inverter Rated Power: Represents the total energy generation 

capacity of the installed solar panels, serving as a reference 

parameter for expected performance. 

- Inverter AC Power: Data on the energy effectively converted 

by the inverters. 

- Solar Irradiance: Information on the amount of irradiation 

received at the location, essential for evaluating expected 

versus actual performance. 

- Mean Absolute Error (MAE) value of the autoencoder: A 

measure of how well the autoencoder model can reconstruct the 

input data, indicating the presence of anomalies when the error 

is significantly high. 

- Anomaly Detections by the autoencoder: Specific 

identifications of abnormal behaviors in the data, suggesting 

potential issues like shading. 

With these inputs, the methodology proceeds with calculating 

the Performance Ratio (PR), an indicator of the actual 

performance of photovoltaic systems relative to their maximum 

potential. A residual analysis based on the autoencoder MAE is 

conducted to identify when and where shading or other 

anomalies are occurring, providing valuable insights into the 

timing and location of problems. The number of anomalies is 

stored daily, along with their recurrence. 

3.4 Alert Generation 
The alert generation system is powered by the processed 

information to determine the quantity of anomalies, their 

recurrence, and the variation of the Performance Ratio (PR) 

over a 30-day interval. This system is structured into 10 alert 

levels, ranging from level 0 (indicating expected operation) to 

level 9 (indicating the worst level of inverter operation). 

Classification into one of these levels is done by comparing the 

current PR with the PR from the previous 30 days. The 

percentage variation of PR, along with the quantity and 

recurrence of anomalies detected by the autoencoder during the 

period, is used to determine the specific alert level. 

Additionally, the system can provide indicators of future 

failures by analyzing level changes over the 30 days. The use 

of a 30-day analysis period was a key point to achieve accuracy 

in the results, while also being a practical timeframe for 

diagnosing inverter performance. 

This integrated approach enables early and accurate anomaly 

detection, facilitating quick and informed interventions to 

maintain or enhance the performance of photovoltaic systems. 

Moreover, the use of the autoencoder and solar irradiance data 

analysis significantly enhances detection accuracy, reducing 

the risk of false positives and enabling more effective 

management of maintenance and operation of photovoltaic 

systems. 

4. RESULTS AND ANALYSIS 
To validate the methodology, we used a database consisting of 

34 5k inverters and 61 5k inverters in the state of São Paulo and 

Santa Catarina, respectively. To showcase the main results and 

analyses of this deployment, we will divide this section into 

three subsections. The first subsection will demonstrate the 

performance of the autoencoder technique in detecting 

anomalies in photovoltaic systems. The second subsection will 

showcase the results of the methodology in a real production 

environment without using the PR. The third subsection will 

highlight the impact of utilizing the PR on enhancing the 

methodology. 

4.1 Performance Evaluation of 

Autoencoder Technique in Detecting 

Anomalies in Photovoltaic Systems 
We evaluate the performance of an autoencoder in detecting 

anomalies in photovoltaic systems by using AC power data 

from four inverters, where three operated under normal 

conditions and one exhibited lower-than-expected 

performance. The analysis was conducted within a time 

window from 7:30 AM to 5:00 PM, considering 80 weeks of 

energy generation data for model training and 20 weeks for 

testing under normal conditions, as well as 26 weeks for testing 

with modules under shading conditions. In this analysis, one 

regular inverter was used for model training, while the others 

were used for testing. All inverters had the same rated power 

and were in the same region. 

However, even with this segmentation, feeding autoencoder 

networks from daily data on AC power generated did not result 

in models capable of identifying regular generation patterns. 

The fact is that even generation data considered regular 

presents high randomness, mainly due to the high incidence of 

clouds in the region that was being used in these first tests. 

Furthermore, the approach using more data to bring more 

satisfactory results to the model had to be discarded due to 

limited available data and time to acquire more data. 

To address the issue of noise generated by stochastic cloud 

cover, preprocessing was applied to the data using moving 

averages. We experimented with window sizes of 7, 14, and 28 

days to enhance the accuracy of the autoencoder-generated 

model. This strategy allowed for a detailed analysis of the 

autoencoder's behavior under different moving average 

configurations.  

The result of this data pre-processing is shown in Figure 2 and 

Figure 3. The points represent the daily generation, and the red 

lines display the averages. Figure 2 shows a regular generation 

curve, while Figure 3 illustrates the effect of a morning shadow 

affecting power generation. 
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Figure 2: Moving average effect over a regular generation 

curve. 

 

Figure 3: Moving average effect over an anomalous 

generation curve. 

The autoencoder architecture was defined using an AutoML 

process, which was restricted to finding an acceptable 

configuration of layers and neurons within predefined limits of 

the same architecture. Among the configurations tested, the 

architecture chosen for testing had 18,458 trainable parameters. 

It is important to note that we did not use AutoML to define 

different neural network architectures, as we opted to employ a 

data-centric approach and apply MLOPS concepts, rather than 

focusing on model-centric techniques and fine-tuning 

parameters. 

The results of these tests indicated a significant variation in the 

effectiveness of the autoencoder based on the number of days 

considered for the moving average. Sensitivity, specificity, 

precision, and accuracy of the model were calculated, 

demonstrating the autoencoder's capability to identify 

anomalies in photovoltaic systems. The comparative analysis 

of the results, considering different moving average 

configurations, can be observed in Table 1. 

Table 1: Autoencoder performance metrics in time 

windows of 1, 2 and 4 weeks 

Days Sensibility Specificity Precision Accuracy 

7 1.00 0.88 0.69 0.91 

14 1.00 0.98 0.92 0.98 

28 1.00 1.00 1.00 1.00 

According to Table 1, the 28-day window yielded excellent 

results, achieving 100% in all evaluated metrics. Considering 

that, in practical terms, evaluating an inverter's performance 

over a one-month period is acceptable, choosing a 28-day 

moving average becomes the most attractive option to include 

in our methodology. 

4.2 Analysis of Methodology Results in a 

Production Environment 
To test our infrastructure and methodology, we opted for a 

segmentation strategy for ML models guided by three main 

justifications, reflecting the complexity and diversity of 

photovoltaic systems. Firstly, the significant climatic 

distinction between Brazil's regions suggests the need for 

specific models by federative unit or regions, aiming to capture 

the regional nuances that affect solar energy generation. 

Additionally, the variation in behavior between inverters of 

different sizes and the importance of identifying anomalies at 

specific times of the day motivated the creation of models also 

differentiated by inverter size and periods of the day. 

Table 2: Models for the São Paulo (SP) and Santa Catarina (SC) 

region 

Model Region Number of 

Inverters Used to 

Train [abs/%] 

Trainin

g Time 

[s] 

2Y-SP-5-D SP 7 (21%) 34,1 

2Y-SP-5-M SP 7 (21%) 30,9 

2Y-SP-5-T SP 7 (21%) 31,7 

2Y-SC-5-D SC 13 (22%) 34,4  

2Y-SC-5-M SC 13 (22%) 30,9 

2Y-SC-5-T SC 13 (22%) 31,4 

 

The evaluations of our methodology were carried out without 

the use of PR, to show that in situations of restricted 

meteorological data, accurate results can also be obtained. 

Three models were used in two regions for plants with 5kW 

installed power. Table 2 presents the model data. Every model 

was generated and tested on a personal computer with the 

following configuration: Ubuntu 22.04.4 LTS Operating 

System, Processor AMD Ryzen 5 4600g and 16GB RAM 

Memory (no GPU was used). 

The results for each region are presented in confusion matrices 

in the Figure 6.  The methodology developed works with the 

ensemble technique, thus, the results of all models available for 

each group (region/power) generate only one combined result, 

following a vote that classifies as true (or anomalous) days that 

present two or more positive results among the results of the 

three available models. 

  

Figure 6: 2 Years Training SC (left) an SP (right) Models 

Ensemble Confusion Matrix 

When evaluating the performance of models that use data from 

two years of generation for their training, it was decided to test 

the capacity of models with data from just one year of 

generation. Table 3 presents the results of the evaluation 

metrics for these results. The accuracy and precision of models 

drops drastically when training data is reduced to one year. 

However, the recall was not computed in any of the cases, as 

the team did not assess whether the inverters classified as 

regular by the models are regular. 

Table 3: Performance metrics of 1 year- vs. 2 year-models 

Model Accuracy Precision 

2Y-SC-5 Ensemble 0.95 0.75 

2Y-SP-5 Ensemble 0.97 0.80 

1Y-SC-5 Ensemble 0.52 0.23 

1Y-SP-5 Ensemble 0.32 0.15 
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Figures 7, 8 and 9 show examples of average generation curves 

per 30-day period where the system identified shadows. These 

examples present different situations and different shading 

intensities. Figure 7 shows morning shading. 

 

Figure 7: Inverter 2026 

In Figures 8 and 9, corresponding to inverters "1626" and 

"1627," a notable drop in generation at noon was observed, an 

atypical pattern for photovoltaic systems. Such behavior 

suggests consistent shading at noon, which was later confirmed 

with the information of a nearby building construction, a factor 

that caused the shading. 

 

Figure 8: Inverter 1626 

 

Figure 9: Inverter 1627 

This analysis reinforces the effectiveness, versatility, 

flexibility, and robustness of the developed system, 

highlighting its ability to accurately detect anomalies and adapt 

to different operational conditions and configurations. 

5. CONCLUSIONS 
This study presents a methodology for detecting anomalies and 

generating alerts in photovoltaic systems, employing an 

approach using only the moving average of AC power available 

in the inverters as input of a light autoencoder network or 

combining AC power with solar irradiation data to increase the 

confidence level of the alert. The use of autoencoders allowed 

precise modeling of inverter behavior, facilitating the 

identification of deviations that indicate operational anomalies. 

The implementation of the methodology in an infrastructure 

based on Docker containers proved to be a scalable and energy-

and time-efficient solution, enabling rapid deployment and 

adaptation of the system to different configurations of 

photovoltaic plants. The results obtained, validated in plants 

with regular inverters and shading, demonstrated the 

effectiveness of the methodology in managing the operation of 

photovoltaic systems, thus ensuring the optimization of energy 

generation and the economic viability of investments. 

Detailed analysis of the performance of the autoencoder 

technique, especially with the application of moving averages 

over different time windows, reinforced the importance of an 

adaptive and data-centric approach to anomaly detection. The 

tests carried out without using the Performance Ratio (PR) 

emphasized the potential of the methodology to significantly 

improve the accuracy of anomaly detections and the generation 

of relevant alerts, mainly with the use of the ensemble 

technique. This technique has great potential especially for 

identifying specific faults. Currently, we only differentiate 

shadows at different times of the day, but with more models for 

specific defects it will be possible to increase the level of 

certainty regarding their detection, as failures in photovoltaic 

panels normally affect more than one characteristic of the 

power generation. 

In conclusion, the developed methodology represents a 

reliable, efficient and scalable option to be applied in the 

monitoring and maintenance of photovoltaic systems in a non-

intrusive manner, offering a low-cost solution that uses only 

data already available from the inverters. 
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