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ABSTRACT
Data Mining (DM) algorithms have become increasingly prevalent
in analyzing vast amounts of data generated in scientific fields like
instrument and simulation data and in areas such as social networks
and financial transactions. The availability of High-Performance
Computing (HPC) systems has made parallel implementations of
these algorithms commonplace. However, these systems, which
were designed with data movement constraints in mind, often expe-
rience faults in computing devices, resulting in permanent process
or node failures. This paper presents fault-tolerant parallel algo-
rithms that enable checkpointing and recovery in memory for fre-
quent pattern mining algorithms. Long-running data-intensive ap-
plications typically utilize the Message Passing Interface (MPI).
Therefore, we tackle the challenge of fault tolerance in MPI-based
applications by leveraging internal algorithm features and using
MPI one-sided communication technology. Although this paper fo-
cuses on the FP-Growth frequent mining algorithm, we anticipate
that the proposed approaches will serve as a foundation for design-
ing fault-tolerant DM algorithms in general, given the effectiveness
of the proposed implementations. Our evaluation demonstrates that
MPI one-sided communication can act as a robust support system
for efficient memory-based fault tolerance in parallel algorithms,
even when compared to existing parallel programming models like
Hadoop and Spark. To evaluate our fault-tolerant (FT) algorithms,
we conduct tests on a large-scale InfiniBand cluster using several
extensive datasets, employing up to 2K cores. Our evaluation re-
veals excellent efficiency in checkpointing and recovery compared
to the disk-based approach. Furthermore, we observe an average
speed-up of 20X for the FP-Growth algorithm compared to Spark.
This establishes that a well-designed algorithm can easily surpass
a solution based on a general fault-tolerant programming model.

General Terms
Message Passing Interface (MPI), One-side communication, fault tolerance

Keywords
MPI one-sided communication MPI-based applications fault toler-
ance algorithms FP-Growth Frequent mining algorithm.

1. INTRODUCTION
Current High-Performance Computing (HPC) systems can deliver
immense computational power to support large-scale applications,
and their computational capacity is increasing rapidly. For example,
according to the latest Top500 list, two systems have surpassed the
exaflop threshold, achieving 1018 floating-point operations per sec-
ond. These systems are Frontier at Oak Ridge National Laboratory
(ORNL) and Aurora at Argonne National Laboratory (ANL) 1. This
milestone will be achieved merely a decade after introducing the
first petascale supercomputer, capable of performing 1015 floating-
point operations per second. However, Supercomputing faces fre-
quent hardware failures and high energy consumption, with system
failures occurring within hours due to numerous cores. Research is
now directed toward developing fault-tolerant technologies to ad-
dress these issues.
In parallel systems, programming models serve as a means to de-
velop many parallel applications in various domains. Several pro-
gramming models, such as Hadoop [21] and Spark [24], have em-
phasized the significance of fault tolerance as a critical design con-
sideration. Hadoop achieves fault tolerance by incorporating mul-
tiple replicas of data structures in permanent storage. The data is
divided into chunks, each replicated on multiple nodes. The de-
fault replication factor is three, meaning each block is stored on
three different nodes. This ensures that data can still be accessed
from other nodes if one node fails. However, this approach intro-
duces a substantial I/O overhead on the critical path and increases
the required storage. On the other hand, Spark tackles this limita-
tion by relying on Resilient Distributed Datasets (RDDs), enabling
in-memory replication for fault tolerance. However, with large
datasets, in-memory replication becomes impractical. Within the
context of general-purpose programming systems, new techniques
have emerged to address the issue of fault tolerance. One notable
method is Scalable Checkpoint Restart (SCR) [8,18,19], which of-
fers in-memory checkpointing for multi-level hierarchical file sys-
tems through non-blocking methods. SCR also permits the utiliza-
tion of additional main memory to facilitate in-memory check-
pointing/recovery. Similarly, researchers have proposed program-
ming model/runtime extensions for Charm++ [1, 13] and X10 [9]
to enhance fault tolerance support. While these approaches offer
non-blocking checkpointing, they come with an inherent increase

1www.top500.org

25



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.36, August 2024

in memory requirements as spare memory is needed for check-
pointing purposes.
Analyzing substantial data volumes at each stage presents chal-
lenges related to space usage and I/O overhead. Algorithm-based
Fault Tolerance (ABFT) emerges as a promising approach to ad-
dress these issues. ABFT is a technique for enhancing system reli-
ability and robustness by directly integrating fault tolerance mech-
anisms into the algorithms. This approach is particularly useful in
high-performance computing, distributed systems, and critical ap-
plications where traditional hardware or system-level fault toler-
ance might be insufficient or inefficient. ABFT focuses on check-
pointing critical data essential for recovering an algorithm in case
of system failure, selectively excluding unnecessary data. Imple-
menting an ABFT algorithm requires an in-depth understanding of
the specific internal characteristics of the algorithm, making it gen-
erally applicable only to that particular algorithm rather than easily
extendable to a group of algorithms [12]. Several ABFT algorithms
have been proposed in the literature for different kinds of applica-
tions [5, 7, 22, 26].
Message Passing Interface (MPI) is frequently used in data-
intensive HPC applications to build robust applications for HPC
systems [10]. The Message Passing Interface (MPI) is a standard-
ized and portable message-passing system designed to function
on various parallel computing architectures. It allows processes to
communicate with each other by sending and receiving messages,
making it a fundamental tool for developing parallel applications in
high-performance computing (HPC) environments. This paper ad-
dresses the challenge of fault tolerance, specifically in MPI-based
applications, focusing on well-known FP-growth pattern mining al-
gorithms. Existing literature has seen the development of various
fault tolerance (FT) algorithms to support data mining algorithms
with robust fault tolerance techniques. Examples like VB-FT mine
and FTP-mine provide internal recovery mechanisms for hardware
failures, especially in frequent pattern mining [15]. However, these
algorithms often prioritize fault tolerance over efficiency, impacting
performance. Some efforts have also added fault tolerance support
to the Apriori frequent pattern algorithm, although it is less com-
monly used in large-scale applications [23].
Our primary objective in this study is to overcome the limita-
tions of disk I/O bottleneck and minimize the overhead associ-
ated with checkpointing. We propose leveraging the memory in-
stead of relying on disk operations to achieve this. Our approach
revolves around the utilization of Algorithmic Based Fault Tol-
erance (ABFT) techniques [26], coupled with advanced MPI fea-
tures, specifically one-sided communication (MPI-RMA), where a
process to directly access the memory of another process without
the involvement of the remote process. By incorporating these el-
ements, we aim to construct robust fault tolerance systems for the
targeted algorithm.

2. PRELIMINARIES
This study is dedicated to developing parallel fault-tolerant solu-
tions for the FP-Growth frequent pattern mining algorithm. FP-
Growth is a critical algorithm in data mining, widely used for dis-
covering frequent patterns in large datasets. When it comes to paral-
lel execution and large datasets, ensuring fault tolerance in the FP-
Growth algorithm is essential to maintain reliability and efficiency,
especially in distributed computing environments where node fail-
ures and communication errors can disrupt the mining process. In
the following subsections, we provide a concise overview of the
algorithms to facilitate a better understanding of their functionality.

2.1 FP-Growth Algorithm
Frequent itemsets are defined as itemsets with frequencies exceed-
ing a user-defined threshold value, denoted as θ [20]. To extract
such items from a given dataset, various Frequent Pattern Mining
(FPM) algorithms have been introduced in the literature, includ-
ing Apriori [3], Eclat [25], GenMax [11], and FP-Growth [6] algo-
rithms. FP-Growth is commonly employed among these algorithms
in large-scale domains because it can retrieve all the frequent item-
sets with just two passes over the dataset. FP-Growth relies on a
compressed structure known as the FP-Tree (FPT), allowing for ef-
ficient in-memory processing of large datasets while maintaining
a smaller memory footprint than other existing algorithms. In the
first pass of the FP-Growth algorithm, frequent items are identi-
fied. An FP-Tree (FPT) is generated in the second pass to represent
the frequent itemsets that meet the specified threshold θ. Figure 1
illustrates an example of the FP-Tree generation process. The left
subfigure shows an example of an FP-Tree, while the right sub-
figure demonstrates how to extract the frequent itemsets from the
given FP-Tree. Specifically, creating the FP-Tree during the second
pass is the most time-consuming part of the computation. Thus,
this study focuses on developing a fault-tolerant approach for the
FP-Tree creation step, as the extended execution time increases the
likelihood of encountering faults.
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Fig. 1: An illustrative depiction of the FP-Tree generation phase within the
FP-Growth algorithm.

2.2 Challenges in Large-Scale Fault-Tolerant
Programming Models

Recently, there has been a significant rise in the popularity of large-
scale and FT programming models like Hadoop and Spark [14].
Programming models rely on a single assignment, where every
variable mutation is tracked, stored (in the memory or permanent
storage of another node), and replayed in the event of a fault. For
instance, when inserting an element into an existing FP-Tree, each
modification or mutation must be locally recorded and eventually
persisted to permanent storage. By exploring the implications of
this framework for an algorithm like FP-Tree, in many cases, sav-
ing a new FP-Tree version on disk occurs at the end of the Re-
duce phase in the MapReduce programming model. However, this
does not provide a significant advantage in two-phase algorithms
like FP-Growth, where most computation is in the second phase.
An alternative is to split the calculation into multiple MapReduce
steps, taking checkpoints after each Reduce phase. However, this
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approach increases total execution time, as saving a new version re-
quires disk writes or using memory from neighboring nodes when
designed for distributed memory systems. Since the Reduce phase
is blocking, this leads to significant overhead and degrades overall
performance. Ideally, a scalable algorithm should prioritize native
execution for optimal performance while minimizing checkpoint-
ing costs through non-blocking methods.

2.3 Leveraging MPI-RMA for Fault-Tolerant Data
Mining

This study leverages the Message Passing Interface (MPI), a main-
stay on supercomputers and clusters that is now gaining traction in
cloud environments. MPI-RMA provides a powerful and efficient
mechanism for one-sided communication in parallel and distributed
computing environments. Allowing direct memory access across
processes can lead to significant performance improvements and
more flexible communication patterns. Understanding and lever-
aging MPI-RMA can be crucial for developing high-performance
parallel applications. Despite past criticisms regarding its fault tol-
erance capabilities, recent advancements and literature suggest MPI
now adequately handles permanent process faults. Furthermore,
the introduction of MPI One-sided communication primitives, also
known as MPI-Remote Memory Access (MPI-RMA), provides
valuable means for integrating communication and computation.
MPI-RMA operations fall into three categories: window creation,
RMA operations (like MPI Get and MPI Put), and synchroniza-
tion. These operations allow asynchronous access to specific mem-
ory regions during “epochs” - periods between the opening and
closing of a window. Modern MPI updates have brought in dy-
namic windows, which enable the flexible allocation of memory
across remote processes, a feature advantageous for tasks that in-
volve work-stealing and enhancing fault tolerance. We aim to har-
ness these MPI capabilities to develop fault-tolerant data mining
algorithms.

3. PROPOSED FAULT TOLERANT ALGORITHM
This section explores strategies for designing a fault-tolerant (FT)
FP-Growth algorithm in a fail-stop scenario. We prioritize contin-
ued execution over re-spawning new processes on spare nodes due
to its simplicity and smoother recovery process, reducing reliance
on additional software components. In this study, we introduce an
Asynchronous Memory-based Fault Tolerant (AMFT) approach to
provide fault tolerance support for the FP-Growth algorithm.
Algorithm 1 outlines the key steps of the parallel FP-Growth al-
gorithm, which serves as the baseline for designing fault-tolerant
FP-Growth algorithms. The process begins by distributing the in-
put database transactions across all |P | processes (Line 3). Each
process independently constructs its own local FP-Tree. In this
step, each process (pi) scans its assigned transactions to calcu-
late the frequency of each item (Line 4). To obtain the global
frequency of items, an all-to-all reduction operation is performed
using MPI Allreduce, with a time complexity of log(|P |) (Line
5). Following this reduction, only the items that meet or exceed
the support threshold are retained. Each process pi then constructs
a local FP-Tree (L.Tree) using its transactions that contain at
least one frequent item (Line 6). These local FP-Trees are sub-
sequently merged into a global FP-Tree (G.Tree) through a ring
communication algorithm (Line 7). Finally, the frequent itemsets
(FreqItemSet) are extracted from this global FP-Tree (Line 8).

Algorithm 1 : Parallel FP-Growth Algorithm
1: Input: Global Transactions S, Support threshold θ
2: Output: Set of frequent itemsets
3: L.Trans← getLocalTrans(S)
4: L.FreqList← findLocalFreqItems(L.Trans, θ)
5: G.FreqList←MPI Allreduce(L.FreqList)
6: L.Tree← generateLocalFPTree(L.Trans, G.FreqList)
7: G.Tree← generateGlobalFPTree(L.Tree)
8: FreqItemSet← miningGFPTree(G.Tree)

To simplify the understanding of the following subsections, Table 1
provides the symbols used to represent the time and space complex-
ity of our proposed FT algorithm.

Table 1. : Symbols used for time-space complexity modeling.

Name Symbol
Process Set P = {p0, . . . , p|P |−1}
Transaction Database T = {t0, . . . , t|T |−1}
Average Local Transaction Size tavg

Minimum Support Threshold θ

Local FP-Tree Set S = {s0, . . . , s|P |−1}
Average Local FP-Tree Size savg

Average Time to Merge Two FP-Trees m

Number of Checkpoints C

Disk Access Bandwidth l

Network Bandwidth b

3.1 Asynchronous Memory-based Fault Tolerant
(AMFT) FP-Growth Algorithm

Generating FP-trees is the most demanding part of the FP-growth
algorithm, with each process building an individual FP-tree from
its transaction subset. To safeguard against failures, these FP-trees
must be saved at intervals on permanent storage. Traditional disk
checkpointing, while common, is not as efficient as our proposed
fault-tolerant FP-Growth algorithm that mainly relies on MPI-
RMA technology for in-memory storage of these crucial structures,
enhancing both efficiency and fault tolerance. We introduce the
Asynchronous Memory-based Fault Tolerance (AMFT) approach,
which checkspoints in memory without increasing space complex-
ity. It uses the memory allocated to processed transactions to save
intermediate states, avoiding the need for process synchronization
during checkpointing. By employing non-blocking MPI primitives,
we overlap checkpointing of FP-trees with transaction processing,
thus achieving efficient and asynchronous fault tolerance that min-
imally affects performance. This overlapping strategy enables the
concurrent execution of communication and computation in dis-
tributed memory systems, which helps accelerate the checkpointing
process and conceal its complexity. We summarize the checkpoint-
ing and recovery algorithms for the FP-Growth algorithm in the
following subsections.

3.1.1 Checkpointing Algorithm. In a system with a set of pro-
cesses P , assume two processes, pi and ptarget. Within our check-
pointing framework, pi saves its checkpoint data onto ptarget. To
achieve a one-sided checkpointing mechanism, pi must ensure its
checkpoint is compact enough to fit into the space allocated by the
processed transactions in ptarget, which optimizes checkpointing
efficiency and reduces overhead. The AMFT method enables this
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Fig. 2: A snapshot of an AMFT FP-Growth algorithm checkpoint: blue
shows the local FP-tree of the process Pi, red indicates the unprocessed
transactions of the process Pi, and purple highlights the unprocessed trans-
actions of Ptarget.

using an atomic variable created through MPI-RMA, accessible by
other processes for read and update actions. ptarget has the sole
task of atomically updating this variable to reflect the space avail-
able for checkpointing, which does not require interaction with
other processes. When pi is ready to checkpoint its FP-Tree, it
atomically checks the variable of ptarget variable to confirm avail-
able space, facilitating a smooth, communication-free memory re-
source coordination for checkpointing. In extreme cases, pi might
have to verify the space until it has sufficient periodically, but this
is a rare occurrence. Normally, pi proceeds with the checkpoint us-
ing MPI Put. This protocol includes saving the local FP-Tree and
potentially unprocessed transactions from pi to memory of ptarget.
Checkpointing transactions just once improves recovery by allow-
ing immediate access to the data of the failed process from check-
point memory, bypassing slower disk reads. This boosts recovery
speed and overall system efficiency. Figure 2 depicts the AMFT
checkpointing method, showcasing two scenarios. In one, only the
local FP-Tree of a process pi is checkpointed into the transac-
tion space of ptarget. In the other, both the remaining transactions
and the local FP-Tree of pi are checkpointed into the memory of
ptarget, space permitting. These instances highlight how the AMFT
checkpointing approach can adapt to various data-saving needs.
The simplicity of the AMFT checkpointing algorithm is a criti-
cal factor in its effectiveness. By relying on MPI-RMA on high-
performance interconnects like InfiniBand, Slingshot, and NVLink,
we anticipate AMFT as an almost optimal checkpointing solution
for large-scale FP-Growth algorithms. As anticipated, each process
only needs to initiate the communication for the checkpointing pro-
cess, resulting in an expected time complexity of approximately,

O

(
|T |

log |P | · C

)

, as per the LogGP communication performance model [4]. This
time complexity demonstrates the efficiency and scalability of the
AMFT checkpointing algorithm in handling large-scale datasets.

3.1.2 Recovery Algorithm. To illustrate the FP-Growth recovery
algorithm in the case of a failure, we consider the following sce-
nario. If ptarget is the process chosen for recovery, also referred to
as prec, then upon a failure in process pi, prec undertakes the fol-
lowing recovery sequence: It integrates the checkpointed FP-Tree
pf the process pi with its own; should an in-memory checkpoint
exist locally, prec reassigns unfinished transactions of pi to a sub-
set of working processes, often log |P | in number; if no in-memory
checkpoint, then all operational processes join forces to retrieve
the unfinished transactions of pi from the disk. Adopting this re-
covery strategy enables the system to rebound from process fail-
ures using in-memory checkpoints alongside parallel disk retrieval,
thereby maintaining the operation of the FP-Growth algorithm. In
the direst situation, recovery entails reading the full transaction set
from the disk simultaneously, which has a time complexity of

O

(
|T |

|P | · (|P | − 1) · l

)
The recomputation is then carried out by log |P | processes, result-
ing in a complexity of

O

(
|T |

|P | · log |P |

)
It is worth mentioning that disk reads are often unnecessary, espe-
cially if a fault arises late in the FP-Tree construction phase, lead-
ing to a substantially swifter recovery than the worst-case analysis
suggests, thereby greatly diminishing the time needed for system
restoration.

4. PERFORMANCE EVALUATION
This section provides a detailed performance evaluation of the pro-
posed fault-tolerant system for the FP-Growth algorithm discussed
in Section 3. We analyze the overhead associated with checkpoint-
ing and recovery operations and compare our MPI-RMA-based
approaches with the built-in fault-tolerant support of Spark and
Hadoop to demonstrate their efficacy.

4.1 Experimental Testbed
For performance testing, we conducted evaluations on 6,400 Dell
PowerEdge servers, each equipped with 32GB of RAM and dual
8-core Intel Xeon E5 (Sandy Bridge) processors. We rely on the
MVAPICH2-3.7 MPI library, optimized for RDMA, leveraging
high-speed InfiniBand interconnects. Additionally, we apply ag-
gressive optimizations using the Intel compiler to enhance perfor-
mance. Our study simulates permanent process failures by arbitrar-
ily selecting a point during execution to “fail” a process, effectively
rendering it offline. We focus on simulating a single process failure,
the most common failure mode in fault-tolerant systems.
We evaluate the proposed asynchronous checkpointing/recovery al-
gorithm against two other techniques: Disk-based Fault Tolerant
(DFT) and Synchronous Memory-based Fault Tolerant (SMFT). In
the FP-Growth algorithm, both database transactions and interme-
diate FP-Trees are crucial for recovery. The DFT approach period-
ically saves intermediate FP-Trees to disk, which limits scalability
due to its reliance on disk-based checkpointing, making memory-
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based alternatives more appealing. SMFT overcomes these limita-
tions by maintaining constant space complexity and utilizing non-
blocking MPI primitives for efficient checkpointing and recovery.
It avoids disk I/O, minimizing overhead by distributing transactions
from failed processes to active ones and using parallel disk access
when necessary. However, SMFT has two main drawbacks: it re-
quires synchronization between processes to share checkpoint in-
formation and incurs overhead from de-allocating and reallocating
memory for checkpointing.

4.2 Overhead of FP-Growth Fault Tolerance
To assess our fault-tolerant FP-Growth algorithms, we use the
IBM Quest dataset generator [2], known for creating realistic,
large-scale synthetic datasets resembling real-world transaction
patterns [16, 17]. We work with two synthetic datasets: one with
100 million transactions and another with 200 million transactions.
Each transaction contains 15-20 items, using 1,000 unique item
IDs.

4.2.1 Checkpointing Overhead Evaluation. Table 2 shows
the checkpointing overhead in fault-tolerant FP-growth algo-
rithms—DFT, SMFT, and AMFT—on datasets with 100M and
200M transactions at support thresholds of 0.03 and 0.05. We as-
sess these algorithms against a fault-tolerant baseline, noting that
both the baseline and our algorithms (DFT, SMFT, and AMFT)
scale efficiently, achieving super-linear speedup at 256-512 pro-
cesses due to better cache utilization. At a 0.05 support thresh-
old, processing time for some frequent itemsets is under 50 sec-
onds. Small tests with 256 processes handling 100M transactions
show DFT and SMFT slowing down by 67% and 31%, respectively,
with AMFT at a lower 21%, attributed to increased FP-tree sizes
and fewer workers. This is because MPI-RMA is not efficient for
large data transfers. Conversely, AMFT running on 2048 cores with
100M transactions has a mere 5% overhead due to checkpointing.
When the support threshold is reduced, AMFT’s slowdown stays
within 4-6%, whereas DFT varies between 10-20%, depending on
the number of processes.

4.2.2 Recovery Overhead Evaluation. To assess the impact on
recovery time following deliberate process failures, we instigate
process crashes after 80% of the dataset transactions have been pro-
cessed. This provides an even basis for comparing the recovery per-
formance of DFT, SMFT, and AMFT approaches. We concentrate
on how much faster AMFT and SMFT can recover from a single
failure relative to DFT. The data illustrated in Figure 3 indicate that
with a 0.05 support threshold and a 100M dataset, AMFT registers
a recovery speedup of 1.41X on average, and SMFT records 1.36X.
When tested on a larger, 200M synthetic dataset, AMFT and SMFT
decrease the total execution time by 1.59X and 1.55X, respectively.
In Figures 3b and 3d, with a support threshold of 0.03, we note that
the recovered FP-Tree size increases, impacting DFT performance
compared to SMFT and AMFT. Using a 100M dataset, AMFT
achieves a 1.46X recovery speedup over DFT, and SMFT achieves
1.39X. With a 200M dataset, AMFT speeds up algorithm execution
with recovery by 1.68X, and SMFT achieves a 1.51X speedup.
Figure 3 offers significant findings, indicating that the SMFT and
AMFT algorithms enable quicker FP-Growth recovery than DFT.
With a lower support threshold, such as θ = 0.05, the smaller
size of checkpointed and recovered FP-Trees highlights the syn-
chronization costs in SMFT, with AMFT showing superior perfor-
mance. As the threshold increases to θ = 0.03, leading to larger
FP-Trees, the relative impact of synchronization declines, making
the speed advantages of SMFT and AMFT over DFT less pro-

nounced. Furthermore, these algorithms excel with larger datasets,
like those with 200M transactions, as the expanded FP-Trees en-
hance speedups. DFT, in contrast, incurs longer checkpointing and
recovery times from disk. Notably, a super-linear speedup is ob-
served with a higher threshold of θ = 0.3 when expanding from
256 to 512 cores, a benefit primarily due to better cache usage.

4.3 Comparison Against Spark
We compare the overhead of handling failures in MPI-based imple-
mentations, which typically surpass MapReduce ones. For bench-
marking, we use Spark’s MLlib, which includes FP-Growth imple-
mentations, as our comparison standard. Figure 4 shows the AMFT
algorithm’s performance relative to Spark. AMFT is faster than
Spark, averaging 20X quicker for θ = 0.01 and 8.6X for θ = 0.03
when there are no failures. This increase in speed, especially at the
lower θ = 0.01 threshold, is attributed to the larger FP-Trees that
need checkpointing. AMFT also scales better during checkpointing
compared to Spark. It periodically checkpoints only the FP-Trees
and a small set of transactions, which remain compact even as the
core count increases. Spark, however, uses the RDD mechanism
that replicates FP-Trees and transactions in memory, with replica-
tion overhead growing as more cores are added. In failure scenar-
ios, AMFT achieves an average speed-up of 15.3X for θ = 0.01
and 8.34X for θ = 0.03 over Spark. Both AMFT and Spark’s per-
formances benefit from a larger core count and/or smaller support
thresholds like θ = 0.03, since they result in a smaller FP-Tree to
recover.

5. CONCLUSION
This paper presents a comprehensive study on designing and eval-
uating fault-tolerant solutions for the FP-Growth algorithm, specif-
ically tailored for high-performance computing (HPC) environ-
ments. Leveraging the capabilities of MPI one-sided communica-
tion (MPI-RMA), we developed the Asynchronous Memory-based
Fault Tolerant (AMFT) FP-Growth algorithm, which significantly
enhances efficiency and robustness compared to traditional disk-
based checkpointing methods.
Our key findings are: first, the AMFT algorithm achieves signif-
icant speedups in checkpointing and recovery processes, with up
to 20x improvement over Spark for lower support thresholds. Sec-
ond, by focusing on a single process failure, we effectively demon-
strated the robustness and efficiency of our fault-tolerant mecha-
nisms, which are crucial for maintaining the reliability of data min-
ing operations in distributed environments. Third, our approach
minimizes the overhead associated with fault tolerance by utiliz-
ing in-memory checkpointing and non-blocking MPI primitives,
ensuring that system performance remains high despite failures.
The detailed performance evaluation highlights the advantages of
integrating fault tolerance directly into the algorithmic design, par-
ticularly through the use of MPI one-sided communication. This
integration allows for seamless memory management and efficient
resource utilization, making it a viable solution for large-scale data
mining applications. Our tests show that AMFT reduces overhead
and speeds up performance by up to 20X for θ = 0.01 and 8.6X
for θ = 0.03 over Spark.
In conclusion, our research demonstrates that leveraging MPI-
RMA and algorithm-based fault tolerance techniques can signifi-
cantly enhance the performance and reliability of parallel data min-
ing algorithms. The AMFT FP-Growth algorithm serves as a robust
model for future developments in fault-tolerant computing, offering
valuable insights and methodologies that can be applied to a wide
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Table 2. : Baseline FP-Growth, DFT, AMFT, and SMFT systems execution time without failures.

# Cores Sup. Baseline FP-growth DFT SMFT AMFT
100M 200M 100M 200M 100M 200M 100M 200M

256 0.03 1628.79 5751.64 1950.73 7799.13 1805.55 6455.58 1727.93 6350.59
0.05 35.94 79.15 50.74 133.67 47.09 111.45 43.71 102.18

512 0.03 549.94 1811.63 634.03 2280.31 603.63 1993.09 581.10 1980.59
0.05 14.68 36.25 24.56 57.31 19.05 50.31 17.39 45.53

1024 0.03 319.32 838.91 363.30 1025.34 338.66 935.59 333.60 915.59
0.05 7.06 19.32 10.88 29.56 9.03 27.30 7.92 22.96

2048 0.03 238.88 531.87 263.09 625.30 254.80 578.08 248.95 558.09
0.05 5.32 10.91 6.78 14.80 6.16 14.20 5.59 11.99
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Fig. 3: SMFT and AMFT recovery speedup compared to DFT approach with different number of transactions, support threshold, and cores.
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Fig. 4: Spark and MPI-based (AMFT) with Different Support Threshold θ and using 500K Synthetic Dataset
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range of data-intensive applications. Future work will focus on fur-
ther optimizing these mechanisms and exploring their applicability
to other data mining algorithms and HPC systems.
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