
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.35, August 2024

19

Block-level Cloud Tiering System for XFS

Mokshad Vaidya
Department of Information

Technology
Pune Institute of Computer

Technology
Pune, India

Gargi Mhaskar

Department of Information
Technology

Pune Institute of Computer
Technology
Pune, India

Vaibhav Mahajan
Department of Information

Technology
Pune Institute of Computer

Technology
Pune, India

Shweta Dharmadhikari, PhD
Department of Information

Technology
Pune Institute of Computer

Technology
Pune, India

Soham Kulkarni
Department of Information

Technology
Pune Institute of Computer

Technology
Pune, India

Swarnika Maurya
Software Engineer

Veritas Technologies LLC
Pune, India

ABSTRACT

Data storage and management in modern computing

environments pose significant challenges, with a growing need

for efficient and cost-effective solutions. Cloud tiering has

emerged as a promising option, enabling efficient management

and optimization of data placement across the local and cloud

tier on the basis of various criteria such as access frequency,

performance requirements, and cost considerations. XFS is a

high-performance file system primarily used in Unix-like

operating systems that can efficiently handle large amounts of

data. This paper discusses the implementation of block-level

tiering in XFS File System.

General Terms

Cloud Computing, Machine Learning

Keywords

Cloud Tiering, Storage Management, Cold Data, XFS

1. INTRODUCTION
With the massive amounts of data being stored by all

organizations nowadays, it has become crucial to optimize the

storage of that data to reduce cost and latency while improving

on the throughput, reliability and availability. One of the

strategies for storage optimization is data tiering. It is a data

storage strategy that defines different storage tiers and shifts

data between tiers to fulfil the requirements of an organization

depending on the usage. Cloud tiering involves storing

frequently accessed data in fast cloud storage while less used

data is assigned to slower and cheaper storage. Advantages of

cloud tiering also include more granular control over cloud

resources and rapid data recovery in case of emergencies such

as natural disaster or sudden system failure. Extending this

need for storage optimization to the file system present on

compute clusters and on-premise servers, we can utilize the

primary, more expensive storage more judiciously by shifting

a bulk of the data to secondary storage services such as AWS

S3 and Google Cloud Storage, which implement a Pay-As-

You- Go model with high durability. Some considerations need

to be made while deciding on the type of cloud tiering that

would be most suited to a particular organization. These

considerations are as follows:

• Block-Level vs File-Level Tiering: File-level tiering operates

with greater granularity, enabling precise control over which

files are transferred to lower-cost storage tiers based on their

access patterns and significance. This method maximizes

savings without binding organizations to specific storage

vendors or technologies. On the other hand, block-level

tiering functions at a more granular level, relocating data in

fixed-size blocks between tiers according to usage patterns.

Although block-level tiering offers advantages like faster

data retrieval, file- level tiering delivers more flexibility and

cost-efficiency, particularly in diverse environments that

utilize both on- premises and cloud storage. [7]

• Identification of Cold Data: Accurately identifying cold

blocks is essential when implementing cloud tiering. Either

the user can be given complete control over which data

should be designated as cold data. Another method is

imposing a deadline on data, beyond which the data would

be declared to be cold. For example, data not accessed within

a week or a month can be categorized as cold data.

Otherwise, cold blocks can be detected using algorithms like

Least Recently Used (LRU) and AI- based ensemble

models, which take into account factors such as access

frequency, file size, and user information. By analyzing

metadata, it is possible to identify cold data by considering

both the frequency and recency of access.

• Primary Storage Utilization and Secondary Tier Read-

Write Costs: Cloud tiering should optimize primary storage

use without data loss, preventing both overuse and under

use. Methods to ensure this include setting a maximum

utilization limit for primary storage, beyond which cold data

is tiered, or defining a hot-cold storage ratio. The costs of

reading from and writing to secondary storage must also be

considered. A policy should address frequently accessed

data in the secondary tier, migrating it back to primary

storage. Monitoring cloud tier access patterns helps

determine which data to return to primary storage, factoring

in current primary storage utilization, migration costs, and

secondary tier read costs.

XFS is a high-performance, journaling file system for Linux,

known for its scalability and near-native I/O performance, even

across multiple storage devices. It is favored by large-scale

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.35, August 2024

20

enterprises with substantial data and performance needs due to

its significant advantages.

In this paper, we have demonstrated a Proof of Concept for

implementing block level cloud tiering in XFS. The system

uses IOCTL (Input/Output Control) and system commands for

deallocating blocks of data and transferring them to the cloud

tier along with a machine learning algorithm to distinguish

between cold and hot data. The system operates in the

background so the user will be unaware of where their data is

actually stored. The proposed solution is also modularized so

clients can, for example, plug-in the hot- cold identification

they desire. The system demonstrates the feasibility of a block-

level cloud tiering mechanism tailored to XFS that will allow

for effective usage of both tiers of storage for large-scale

enterprises. The rest of this paper is organized as follows: In

Section II, relevant literature referencing intelligent cloud

tiering systems and the functionalities of XFS is discussed. In

Section III, the concept along with the system architecture is

described. In Section IV, certain results and advantages of the

concept are discussed. In Section V, a discussion of future

research plans is provided. In Section VI, this paper is

concluded.

2. LITERATURE SURVEY
This section presents an overview of the different

methodologies used by various cloud tiering supports and a

review of XFS. To understand cloud tiering better, multiple

different researches proposing different methodologies for

cold-block identification and tiering have been reviewed. The

differences can be better understood by comparing these

researches on certain parameters, which are detailed below:

• Cold Block Identification: The Novel Automated Cloud

Storage Tiering System proposed in [1] predicts the data

temperature by learning from past data access pat- terns

and user behaviors, applying a stacked ensemble machine

learning model. The prediction engine utilizes various

input features such as file access frequency, size, type,

user information, etc. If a file is estimated to be accessed

in the next month, it will continue to stay in the hot

storage; otherwise, it’ll be moved to cold storage. In

FabricPool [2] when a block is written to the local tier, it

is assigned a temperature value indicating that it is hot.

Over time, a background cooling scan cools blocks,

making hot blocks warm and eventually turning blocks

cold if they have not been read. Assuming no activity, a

block becomes cold based on the time set by the user. [3]

uses Deep Reinforcement Learning to dynamically

classify data into different storage tiers based on its access

patterns and cost considerations. [4] recommends a rule-

based classification scheme that utilizes IF-THEN rules

for predicting the storage tier for each object based on

specific criteria such as access frequency, data size, and

age of the stored object.

• Type of Tiering: [1] implements File-level tiering while

[2] is an example of Block-level Tiering. In [2] when

enough 4KB blocks from the same volume have been

collected, they are concatenated into a 4MB object and

moved to the cloud tier. [3] and [4] refer to data as objects

and perform tiering accordingly.

• System: [1] and [4] are supposed to be deployed by cloud

service providers. [2] works on ONTAP, NetApp’s

proprietary operating system used in storage disk arrays.

• Special Features: In [1], the authors evaluate their system

by considering Feasibility, Reliability, and Quality of

Experience (QoE). Their system comprises of the Data

Content Manager, the Hot-Cold Prediction Engine, and

the subsequently generated file priority list. The system

allocates data to the appropriate storage tier without

manual intervention. [2] introduces special conditions to

ensure that the local tier is optimally utilized by tiering to

the cloud tier only if the local tier is >50% full to prevent

underutilization. It also has write-back prevention for

when the local tier is heavily utilized. [3]’s use of

Reinforcement Learning ensures that the agent learns

optimal tiering policies through trial and error,

maximizing long-term rewards (cost reduction) over time.

[4] defines 4 tiers (Premium, Hot, Cold, Archive) instead

of 2 which enables more effective allocation of data to

appropriate storage tiers based on their priority scores and

ensures optimal cost management while meeting data

access and availability needs.

XFS is a high-performance 64-bit journaling file system

renowned for its capability to handle large volumes of data

efficiently. It maintains low performance degradation even

when processing numerous files and nodes. XFS offers a

variable- length block size mechanism, adjustable to meet

system needs. XFS excels in parallel input/output (I/O)

operations due to its design, which utilizes allocation groups—

subdivisions of physical volumes. This design enables

exceptional scalability, accommodating up to 110 threads, and

optimizing file system bandwidth and file size when spanning

multiple physical storage devices. Each allocation group

manages its own nodes and free space, allowing multiple

processes and threads to operate concurrently, thereby

enhancing overall performance.

[5] IOCTL (Input/Output Control) commands in XFS are used

to perform various control operations on files and file systems,

beyond the capabilities of standard system calls. These

commands allow for direct interaction with the file system to

manage aspects like allocation, querying status, or performing

administrative tasks. One notable IOCTL command in XFS is

the “punch hole” command, which deallocates space within a

file without altering the file’s logical size. This operation is

useful for freeing up unused space in sparse files, optimizing

storage usage, and enhancing performance by reducing the

amount of physical storage required. [6]

3. SYSTEM ARCHITECTURE AND

METHODOLOGY
In this section, the proof of concept and the system architecture

and methodology used is elaborated upon. The concept is based

on block-level cloud tiering. Figure 1 shows the important

components of the system. These components are further

detailed below:

Figure 1 System Architecture

3.1 XFS Tier
The XFS tier is the designated local or primary storage, storing

numerous files. Further, a file in XFS consists of many blocks.

Hence, blocks in the context of file systems represent fixed-

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.35, August 2024

21

sized units of data storage used to organize and manage files on

storage media. XFS, specifically allows file systems to be

created with block sizes ranging between 512 bytes and 64 KB,

depending on the user’s usage. The byte representation of the

blocks also depends on the system command being used.

3.2 Tracing Block-Level IO Operations
The output of a system command called btrace provides

detailed insights into block-level I/O events occurring within

the system. Each entry in the output corresponds to a specific

I/O operation, including read and write operations, along with

relevant metadata such as the process ID, file descriptor, block

number, and operation type. The logs are preprocessed to

compute the Frequency of Access, Recency of Access, Mean

Time Between Access, and the Standard Deviation of Access

Time for each block. This data is then used for cold-block

identification.

3.3 Cold Block Identification
Artificial Intelligence models provide a way to use historical

data to predict future access patterns. Deep Learning Models,

Neural Networks and Stacked Ensemble Models have been

known to be precise with their predictions. As described in

Section 1, the identification could also be based on certain time

limits such as weekly or monthly. With the system, the aim was

to create an automatic system that did not require manual

intervention, hence the use of machine learning. Furthermore,

the dataset used was unlabeled, prompting the use of the K-

means clustering algorithm for creating two clusters: Hot

Blocks and Cold Blocks. Figure 2 demonstrates the

methodology for generating the list of Hot and Cold blocks.

The features used for K-Means algorithm and their importance

is as follows:

• Frequency: Frequency refers to the number of times a block

has been accessed within a certain period. It indicates the level

of activity or usage of a block. A higher frequency suggests that

the block is accessed more frequently, indicating its importance

or relevance in the system, and vice versa.

• Recency: Recency measures the time elapsed since the last

access to a block. It reflects the temporal aspect of block access

patterns. Blocks that have been accessed recently are more

likely to be relevant or active compared to those accessed a long

time ago.

• Mean Time Between Access (MTBA): MTBA represents the

average time interval between consecutive accesses to a block.

It provides insights into the average frequency or regularity of

block access over time. A low MTBA indicates that blocks are

accessed frequently, with shorter intervals between accesses,

suggesting high activity or demand. Conversely, a high MTBA

implies longer intervals between accesses, indicating lower

activity or less demand for the block.

• Standard Deviation in Access Time: Standard deviation

measures the dispersion or variability of access times for a

block. It quantifies the extent to which access times deviate

from the mean access time. A higher standard deviation

indicates greater variability in access times, suggesting

inconsistent or irregular access patterns.

Roman in which these guidelines have been set. The goal is to

have a 9-point text, as you see here. Please use sans-serif or

non-proportional fonts only for special purposes, such as

distinguishing source code text. If Times Roman is not

available, try the font named Computer Modern Roman. On a

Macintosh, use the font named Times. Right margins should

be justified, not ragged.

Figure 2 Tracing I/O Operations and Identifying Hot-Cold

Blocks

3.4 Block Migration
The Block Migration is a four-step process. As the punch- hole

IOCTL command requires a file path and offset value to

deallocate the blocks. Hence, the first step involves mapping

the block numbers of the cold blocks to the respective file path

and calculating the offset. The next step is to store the block

number, file name and offset in a table to ensure that local tier

has access to information about the blocks that have been

migrated to the cloud tier so as to perform read-write

operations. The third step involves iteratively uploading the

cold blocks to the cloud tier. The final step is performing the

punch-hole operation and deallocating space in the local tier.

The “punch hole” operation essentially reclaims space without

having to rewrite the entire file. The third and fourth step occur

simultaneously: every block that has been successfully

uploaded to the cloud tier is immediately deallocated in the

local tier.

Figure 3 Demonstration of Punch-Hole Operation

Figure 4 Sample of Processed Block Data

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.35, August 2024

22

4. RESULTS AND DISCUSSION

Figure 5 Testing of Hot and Cold Block Classification

As big data becomes increasingly prevalent, the utilization of

the XFS file system rises due to its clear advantages in

managing substantial data loads. Further, the need for Cloud

Tiering is also significantly rising due to the reliability, cost

effectiveness and versatility of cloud storage. The Input/Output

Commands (IOCTL) along with the journaling mechanism

offered by XFS lends itself to the implementation of block-

level cloud tiering. Block-level tiering offers the advantage of

faster data retrieval.

To evaluate the system, a dataset simulating organizational

usage through random block access was generated. After

preprocessing, K-means clustering was applied. As can be

understood from the above graph, K-means clustering resulted

in dynamic identification of cold blocks: 52.6% in test 1, 71.1%

in test 2, 43.8% in test 3, and 38.9% in test 4. These cold blocks

were then migrated to the cloud tier, freeing up space in the

primary tier. Adjusting the number of clusters in the model

allows for further refinement of the cloud tiering process.

The proposed system has a modular architecture which allows

for different users to plug-in different components in the system

as per their requirements without affecting the functionality of

the rest of the system. This implies that different users could

use different log tracing methods, cold- block identification

algorithms, or block migration commands depending on their

usage of the file system and cloud tier. Another advantage of

the solution is that the system is independent of the operating

system. The system can operate on any OS that has XFS

mounted on it. Furthermore, the Cloud Service Provider are not

required to provide any additional infrastructure to be

compatible with the system.

Overall, the solution provides comprehensive proof that the

concept of block-level tiering can be successfully and

efficiently implemented on XFS, providing a cost-effective

method of handling big data.

5. FUTURE SCOPE
This project aspired to provide a Proof-of-Concept model for

implementing cloud tiering in XFS. Therefore, the scope was

limited to a basic modularized implementation using Punch-

hole IOCTL commands. However, in the future every

component in the architecture can be refined to be better suited

to the needs of big data enterprises.

For this solution, we had to generate our own dataset of IO

commands and later use a clustering algorithm for cold block

identification due to the absence of a dataset. In the future, a

genuine and labelled dataset of Hot and Cold data can be

generated using user input from big data enterprises. A genuine

dataset will allow us to compute metrics such as precision of

predictions and write-back costs. This labelled dataset can then

be used to train Neural Networks or Classification algorithms

that produce more accurate results than clustering algorithms.

Moreover, the identification algorithm can be modified to

either give more control to users to choose how and when

tiering happens, or to make the system entirely automatic,

depending on the requirements of the organization using the

system. Further modifications can be made to the algorithm to

ensure that the local tier is neither underutilized nor over-

utilized.

Another interesting possibility is increasing the number of tiers

in the cloud storage. Differentiating between two or more cloud

tiers will better capture the nuances of the usage patterns of

data, and make the system more cost effective. However, it

would lead to an increase in the access time of the data

depending on the type of cloud selected.

6. CONCLUSION
In this paper, a proof of concept for implementing block-level

cloud tiering in XFS file system has been demonstrated. The

system leverages the advanced capabilities of XFS, including

its journaling and IOCTL command features, to effectively

manage and optimize data storage across local and cloud tiers.

By utilizing a machine learning algorithm for cold-block

identification, efficient data placement based on access

patterns, enhancing performance and cost-efficiency has been

ensured. The modular architecture allows for customization

and adaptability to different user requirements and operating

environments.

The findings indicate that block-level tiering on XFS can

significantly improve storage management for large-scale

enterprises, offering faster data retrieval and reducing primary

storage costs without sacrificing performance. The ability to

seamlessly migrate data between tiers, combined with the

robust scalability of XFS, positions this solution as a viable

strategy for handling the growing demands of big data.

Future research can build upon this foundation by refining the

components of the system, incorporating genuine datasets for

more accurate predictions, and exploring multi-tier cloud

storage strategies. These advancements will further enhance the

utility and effectiveness of block-level tiering, providing a

comprehensive, cost-effective solution for modern data storage

challenges.

7. ACKNOWLEDGEMENTS
We thank Veritas Technologies LLC for the idea to conduct

novel research in this domain. We also express our gratitude

towards Mr. Sumit Dighe (Veritas Technologies LLC) for

providing his technical guidance during the course of our

project

8. REFERENCES
[1] Y.-F. Hsu, R. Irie, S. Murata, and M. Matsuoka, “A novel

automated cloud storage tiering system through hot-cold

data classification,” 2018 IEEE 11th International

Conference on Cloud Computing (CLOUD), 2018.

[2] J. Lantz, “FabricPool best practices TR-4598 NetApp.”

https://www.netapp.com/pdf.html?item=/media/17239-

tr-4598.pdf, 2024

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.35, August 2024

23

[3] M. Liu, L. Pan and S. Liu, “RLTiering: A Cost-Driven

Auto-Tiering System for Two-Tier Cloud Storage Using

Deep Reinforcement Learning,” in IEEE Transactions on

Parallel and Distributed Systems, vol. 34, no. 2, pp. 501-

518, 1 Feb. 2023

[4] A. Q. Khan, N. Nikolov, M. Matskin, R. Prodan, C.

Bussler, D. Roman, A. Soylu, “Towards Cloud Storage

Tier Optimization with Rule-Based Classification” in 10th

IFIP WG 6.12 European Conference, ESOCC 2023,

October 24–25, 2023, Proceedings.

[5] Z. Wang, “Research of data storage mode and recovery

method based on XFS file system,” in 7th IEEE

International Conference on Software Engineering and

Service Science (ICSESS), Beijing, pp. 369-372, 2016.

[6] J. Corbet, “XFS: the big storage file system,” LWN.net,

Nov. 10, 2010.

[7] ”Block-Level Tiering vs File-Level Tiering,” Komprise,

2019.

[8] A. Raghavan, A. Chandra, and J. B. Weissman, “Tiera,”

Proceedings of the 15th International Middleware

Conference on- Middleware ’14, 2014.

[9] N. J. Mutkawoa, “Debugging Disk Issues with blktrace,

blkparse, btrace and btt in Linux Environment,” Tunnelix,

May 2024.

IJCATM : www.ijcaonline.org

