
International Journal of Computer Applications (0975 – 8887) 

Volume 186 – No.35, August 2024 

8 

Traffic Image Analysis using Deep Learning for Safe 

Vehicle Navigation in Roads Controlled by Police 

 
Samitha P. Randeniya 

Postgraduate Institute of Science, 
University of Peradeniya, 

Peradeniya 20400, Sri Lanka 

 

Ruwan D. Nawarathna 
Department of Statistics and Computer Science, 

University of Peradeniya, 
Peradeniya 20400, Sri Lanka 

 

 

ABSTRACT 

Driving in urban environments where traffic is controlled by 

police presents significant challenges for both human drivers 

and autonomous vehicles (AVs). Interacting with pedestrians 

and traffic police officers in such settings requires sophisticated 

communication and understanding of their intentions. Such 

interactions are critical because pedestrians are the most 

vulnerable road users. Traffic conditions, driving scenarios, 

police signals, and pedestrian behaviours can vary widely 

between countries. Understanding these behaviours and signals 

is not straightforward and depends on numerous factors such as 

pedestrian demographics, traffic dynamics, and environmental 

conditions. In different countries, pedestrians may use hand 

signals to stop traffic when crossing the road, and traffic police 

officers may control vehicles during traffic jams, traffic light 

malfunctions, and at zebra crossings. The common signals used 

are STOP and GO. Convolutional Neural Networks (CNNs), a 

deep learning technology, are widely applied in areas such as 

computer vision and object recognition. This study explores 

how an AV can identify the STOP signal from a pedestrian or 

traffic police officer amidst other pedestrians and officers on 

the road. A model is proposed using a custom dataset and a 

CNN-based multi-class object detection framework. 

Additionally, the model can identify pedestrians crossing at 

zebra crossings. To test the proposed model in real-time, a 

compact autonomous vehicle was designed using a Raspberry 

Pi, a popular microcontroller for small-scale projects. This 

prototype AV can detect five classes of objects and respond by 

moving forward or stopping based on the relevant signals. The 

study focused on the traffic conditions in Sri Lanka, where the 

case study was conducted.   
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Keywords 

Deep Learning, Traffic Image Analysis, Object Detection, Safe 
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1. INTRODUCTION 
In the past decade, as the concept of self-driving vehicles 

became a hot topic, engineers and scientists have been striving 

to achieve vehicle autonomy by eliminating the need for human 

control. This technology can assist drivers or even replace them 

entirely. Autonomous vehicles (AVs) can directly impact 

society at both micro and macro levels [1]. However, 

implementing AVs presents immense challenges for 

researchers and scientists, as it requires the vehicles to perform 

with the accuracy and efficiency of human drivers [2]. Driving 

is not only a dynamic control task but also a social activity that 

necessitates mutual understanding among road users to ensure 

smooth traffic flow and safety for all [3]. Interaction between 

AVs and pedestrians is crucial, as it helps pedestrians navigate 

crossings safely while enabling AVs to avoid accidents. When 

developing a self-driving car, various factors must be 

considered, such as pedestrians randomly crossing the road and 

traffic police officers managing traffic, as illustrated in Figure 

1.  

 

 

 

In this study, the self-driving car must be capable of detecting 

traffic police officers' signals and responding accordingly. 

Additionally, some pedestrians use hand signals to indicate to 

the vehicle to stop so they can cross the road, as shown in 

Figure 2. Moreover, when an AV approaches a zebra crossing, 

it must be particularly attentive, as there is a possibility of 

pedestrians crossing. In such cases, the AV must stop before 

the zebra crossing line and wait until pedestrians have safely 

crossed the road.  

 

 

The study focuses on detecting hand signals from traffic police 

officers and pedestrians, as well as recognizing zebra crossing 

lines. The primary objective is to develop a deep learning-based 

model capable of identifying pedestrians and police officers, 

including their hand signals, to aid navigation for self-driving 

cars on roads where people cross randomly, and traffic is 

controlled by officers. To achieve this, two advanced deep 

learning object detection models, Faster R-CNN and SSD, are 

trained. Data collection occurs in three distinct scenarios: 

indoor, outdoor, and through images extracted from the Joint 

Attention in Autonomous Driving (JAAD) dataset [23], 

a) b)

) 
Fig 1: Traffic Police STOP sign (a) and some pedestrians 

randomly crossing the road (b) 

Fig 2: A pedestrian signaling to stop 
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offering diverse backgrounds, lighting conditions, and global 

road conditions. Additionally, a prototype car controlled by a 

Raspberry Pi is constructed to deploy and test the models in 

real-time operations, fulfilling the second objective of the 

study.  

1.1 Understanding pedestrian behaviour 
Some modern studies still rely on questionnaires, especially 

when measuring general attitudes towards various aspects of 

driving, such as crossing in front of autonomous vehicles [4]. 

The effects of vehicle speed and distance are also examined 

separately in the literature. It has been shown that an increase 

in vehicle speed impairs pedestrians' ability to accurately 

estimate speed and distance [5]. Social norms influence the 

extent to which pedestrians obey the law, take risks, and 

communicate with one another [6]. Behavioral analysts have 

identified factors such as demographics [7], pedestrian state, 

and traffic characteristics as significant in pedestrian decision-

making. 

1.2 Study of characteristics among 

different pedestrians 
One of the key dynamic factors is gap acceptance or how much 

gap in traffic (typically in time) that pedestrians consider safe 

to cross. Gap acceptance depends on two dynamic factors, 

speed of the vehicle and vehicle distance from the pedestrian. 

The combination of these two factors defines Time To 

Collision (or Contact) (TTC), or how far the approaching 

vehicle is from the point of impact [8]. As for pedestrians, it is 

shown that the majority of pedestrians tend to pay attention to 

the frequency of which may vary depending on the crosswalk 

delineation such as the presence of traffic signals or zebra 

crossing lines [7] before crossing. Some findings suggest that 

when pedestrians make eye contact with drivers, the drivers are 

more likely to slow down and yield to the pedestrians [9]. 

Signals significantly influence pedestrians' level of caution [7]. 

In a study by Tom and Granie [10], it was shown that 

pedestrians look at vehicles 69.5% of the time at signalized 

intersections and 86% of the time at unsignalized intersections. 

The authors also note that pedestrians' trajectories differ at 

unsignalized crossings; specifically, they tend to cross 

diagonally when no signal is present. Furthermore, pedestrians 

are found to rely more on the distance of the approaching 

vehicle when crossing; within the same TTC, they cross more 

frequently when the vehicle's speed is higher. Some scholars 

investigate the relationship between pedestrian waiting time 

before crossing and gap acceptance.  

1.3 Pedestrian intention estimation 
The task of estimating pedestrian intentions is typically 

approached as a tracking problem in intelligent transportation 

research. Different methods are used by traffic participants to 

communicate with each other. For instance, pedestrians may 

employ eye contact (gazing/staring), subtle movements toward 

the road, hand gestures, smiles, or head nods. Conversely, 

drivers may use flashing headlights, hand waves, or eye contact 

[11].  

Additionally, some researchers suggest that changes in vehicle 

speed can indicate the driver's intention [7]. The stopping 

behavior of vehicles may also serve as a communicative cue. 

Studies indicate that when drivers stop their cars significantly 

before the legally required stopping point, they are signaling 

their intention to yield the right of way to others [12]. An 

innovative dataset addresses a critical aspect of autonomous 

driving: the joint attention required between drivers and 

pedestrians, cyclists, or other drivers. This dataset was created 

to illustrate the varied behaviors of traffic participants. 

1.4 Detection of police hand signals 
Limited research has been undertaken on the detection of police 

hand signals, with only two notable works discussed here. One 

study delves into vision-based traffic police hand signal 

recognition in surveillance videos [13]. The other study focuses 

on instances where heavy traffic prevents the use of automatic 

traffic light systems, traffic control depends on traffic police 

gestures [14]. 

1.5 Detection of zebra crossings 
The zebra crossing, a common road marking used instead of a 

pedestrian crossing in many countries, consists of multiple 

parallel white stripes in a 3D space. The study in [15] proposes 

a zebra crossing detection method for intelligent vehicles. The 

method is applied to a bird's-eye-view image known as an 

inverse perspective mapping image. 

Pedestrian crossings, integral to transportation infrastructures, 

play a crucial role in safeguarding pedestrians' lives and 

property while maintaining orderly traffic flow. As a prominent 

feature in street scenes, detecting pedestrian crossings 

contributes to the reconstruction of 3D road markings and 

reduces the adverse effects of outliers in 3D street scene 

reconstruction. Monitoring the condition of pedestrian 

crossings is imperative due to wear and tear from heavy traffic 

flow. In this regard, an approach to automatic pedestrian 

crossing detection using images from a vehicle-based Mobile 

Mapping System is proposed in [16], along with an analysis of 

its deterioration and impairment. 

1.6 Computer vision in self-driving cars 
In [17], a vision-based detection system for self-driving cars, 

encompassing traffic signs, traffic lights, and pedestrians, has 

been proposed. Furthermore, an autonomous lane-keeping 

system utilizing end-to-end learning is introduced. The study 

presented in [18] elaborates on devices such as Lidar and 

Radar, which are based on computer vision and are integral to 

self-driving cars, providing detailed descriptions and 

definitions. Additionally, the paper discusses the workings of 

pathfinding in self-driving cars using computer vision. 

1.7 Deep neural networks and machine 

learning algorithms used in self-driving 

cars 
A discussion on machine learning algorithms used in self-

driving cars and proposals for enhancements is presented in 

[19]. In [20], a network four times smaller than the PilotNet 

model and approximately 250 times smaller than the AlexNet 

model is proposed, aiming to achieve a significantly faster 

frame rate. This proposal focuses on developing a lightweight 

model for autonomous vehicles that operates more swiftly than 

current algorithms, with a comparison drawn between the 

suggested model and existing networks. Furthermore, [21] 

explores a comparison of AI-based self-driving architectures, 

including convolutional and recurrent neural networks, as well 

as deep reinforcement learning paradigms. These 

methodologies serve as the foundation for surveyed driving 

scene perception, path determination, behavior arbitration, and 

motion control algorithms. Additionally, the paper delves into 

current challenges encountered in designing AI architectures 

for autonomous driving, such as safety concerns, 

computational hardware limitations, and training data sources. 
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2. MATERIALS AND METHODS 
The proposed methodology comprises five steps: data 

collection, data preprocessing, object detection model 

selection, and finally, designing a prototype car to implement 

the results, as illustrated in Figure 3. Each step is elaborated 

upon in detail below. 

 

 

2.1 Data collection 
The study considers images from five different object classes 

which are common in road and driving conditions. The names 

and descriptions of the five object classes are listed in Table 1. 

Datasets need to encompass various background and lighting 

conditions, as well as different environments, including local 

and international settings. 

Table 1: Object classes in the data sets 

Class Description 

Person Person class represents pedestrians on the 

roads 

Person 

Stop 

Person Stop class includes images of 

pedestrians signaling to stop a moving 

vehicle 

Police Police class includes images of traffic 

police officers on the roads 

Police Stop Police Stop class contains images of traffic 

police officers gesturing to stop traffic 

Zebra 

Crossing 

Zebra crossing class includes images of 

pedestrian crossing lines on the roads 

Therefore, data were collected in three different scenarios: 

indoor data driving, outdoor driving, and Joint Attention in 

Autonomous Driving (JAAD) data [23]. The collected images 

from each approach are then labeled as Data Set 01, Data Set 

02, and Data Set 03. 

2.1.1 Data set 01 
Data Set 01 consists of images collected in indoor 

environments. Six members participated in the data collection, 

acting according to the desired gestures and signals. The data 

were gathered using a Windows 640 XL mobile phone camera 

and a 0.9MP laptop camera. This dataset includes images from 

three classes: Person, Person Stop, and Police Stop, as shown 

in Figure 4. In each recording session, only one camera was 

used at a time, and it was placed in various halls on different 

days, with varied backgrounds and lighting conditions. All 

images were captured from distances of 2m, 4m, and 7m from 

the cameras.  

 

 

 

 

 

 

 

 

 

 

 

Although the models were designed for actual self-driving cars, 

the implementation was carried out using a prototype car. 

Consequently, images from the perspective of the prototype car 

were included in the datasets. A Picamera was used to capture 

these images, as shown in Figure 5.  

 

Due to the smaller size of the prototype car, images were taken 

from two angles: one covering the upper body and the other 

covering the full body. Additionally, images were captured 

from three different distances: 2m, 4m, and 7m. A Python script 

a) b) 

c) 

a) b) 

c) 

Data collection 

from five different 

object classes 

Data 

preprocessing and 

labeling 

Analyze the 

impact of the 

number of 

examples in one 

class, on 

prediction results 

Train multi class 

object detection 

model 

Analyze the 

impact of 

hyperparameter

s of the model 

Design a prototype 

car 

Test the performance 

of the model 

Fig 3: Steps of the proposed methodology 

Fig 4: Sample images from Data Set 01 collected in indoor 

environments: (a) Person, (b) Person Stop and (c) Police 

Stop 

 

Fig 5: Sample images of the Data Set 01 captured using a 

Picamera 
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was developed to automate the continuous image capture 

process.  

The data were collected in daylight conditions and inside a hall. 

Data Set 01 contains a total of 2,855 images, with 2,168 images 

distributed across three different classes. The number of images 

for each class in Data Set 01 is listed in Table 2. 

Table 2: Number of images in each object class of Data Set 

01 

Class Number of Images 

Person 891 

Person Stop 973 

Police Stop 991 

 

2.1.2 Data set 02 
This data was collected as video recordings during real-time 

driving in road conditions, including scenarios such as 

pedestrians randomly crossing and congested roads controlled 

by traffic police officers. An Apple iPhone 5S camera was used 

to capture these videos over a period of five months, 

considering various climate and lighting conditions. Using 

FFmpeg [22], 3,383 images were extracted from the video files. 

These images cover five different classes: Person, Person Stop, 

Police Stop, Police, and Zebra Crossing, as shown in Figure 6. 

The number of images for each class in Data Set 02 is presented 

in Table 3.  

 

 

 

Table 3: Number of examples in the outdoor collected data 

set 

Class Number of Images 

Person 1567 

Person Stop 359 

Police Stop 258 

Police 649 

Zebra crossing 550 

 

2.1.3 Data set 03 
To incorporate international road conditions and analyze the 

impact of the number of images in each class on the model's 

results, images from the Joint Attention in Autonomous 

Driving (JAAD) dataset were selected [23]. The JAAD dataset, 

created for developing self-driving vehicle models, includes 

videos filmed in various locations across North America and 

Eastern Europe. For our study, only images from the Person 

class were considered, as shown in Figure 7. A total of 582 

images were extracted for this class. 

  

 

 

2.2 The proposed model 

2.2.1 Faster R-CNN 
There are various multiclass object detection models, including 

Fast R-CNN, Faster R-CNN, YOLO, and Mask R-CNN. 

Among these, Faster R-CNN was identified as the best model 

for this task. Details of the Faster R-CNN model are presented 

below.  

Faster R-CNN is one of the most widely used object detection 

models. Similar to other popular models, it relies on deep 

convolutional neural networks (CNNs). It has become an 

authoritative model for deep learning-based object detection 

and has influenced many subsequent detection and 

segmentation models. The main advancement of Faster R-CNN 

over its predecessor, R-CNN, is the replacement of the selective 

search algorithm with a faster neural network, the Region 

Proposal Network (RPN). In the final layer of an initial CNN, 

a sliding window of size 3 × 3 moves across the feature map 

a) b) 

c) 

a) b) 

c) d) 

e) 

Fig 6: Sample images from real road conditions outdoor 

collected Data Set 02 (a) Person (b) Police (c) Person Stop, 

d) Police Stop and (e) Zebra crossing 

Fig 7: Sample images from Data Set 03 which were 

extracted from JAAD data set 
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and reduces it to a lower dimension, as shown in Figure 8. For 

each location of the sliding window, the RPN generates 

multiple possible regions based on k fixed-ratio anchor boxes, 

also known as default bounding boxes. Each region proposal 

includes a score and four coordinates representing the bounding 

box of the region.  

 

The 2k scores represent the softmax probability of each of the 

k bounding boxes containing an object. Although the RPN 

outputs bounding box coordinates, it does not classify any 

potential objects; it only proposes object regions. When an 

anchor box has an objectness score exceeding a certain 

threshold, that box’s coordinates are passed forward as a region 

proposal. The architecture includes fully connected layers, a 

pooling layer, a softmax classification layer, and a bounding 

box regressor. Faster R-CNN offers superior speed and high 

performance. The architecture of Faster R-CNN is illustrated in 

Figure 9. Several CNNs can serve as the backbone for Faster 

R-CNN, such as Inception, AlexNet, VGG-16, and LeNet. In 

this study, VGG-16 was used as the backbone for Faster R-

CNN.  

2.3 Model training 
Data preprocessing and training of Faster R-CNN were 

performed as follows. Faster R-CNN requires only an input 

image and ground truth boxes for each object. The training 

dataset was generated manually by tagging the classes in the 

images using LabelImg [24], as shown in Figure 10. LabelImg 

saves the annotations as XML files in PASCAL VOC format.  

 

 

Fig 9: The complete Faster R-CNN architecture

 

Fig 8: The anchor box approach of Faster R-CNN 
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From the selected images, 80% were allocated for training and 

20% for testing. During the training process, the frozen graph 

weights are integrated into the graph as constants to be used for 

out-of-the-box inference. At the core of Faster R-CNN is the 

prediction of category scores and box offsets for a fixed set of 

default bounding boxes using small convolutional filters 

applied to feature maps. Once the training process is complete, 

the object detection classifier performs object detection, 

localization, and classification. The pre-trained Faster R-CNN 

models were fine-tuned for our collected datasets using 

manually labeled images. The training was halted after 200,000 

timesteps.  

 

 

2.4 Model evaluation 
Precision, recall, F1-score, and mAP (Mean Average Precision) 

are the most relevant evaluation metrics for this application. 

The relevance of the detection results are described by 

precision (Eq. 1): 

precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

where TP = true positives, FP = false positives  

Recall describes the percentage of relevant objects that are 

detected with the detector (Eq. 2): 

recall = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

where FN = false negatives.  

In general, as precision increases, recall decreases, and vice 

versa. A highly sensitive model may detect a large percentage 

of objects in an image but also generate a high number of false 

positives. Conversely, a model with a high detection threshold 

may produce fewer false positives but also leave a higher 

percentage of objects undetected. The application must strike 

the right balance between these two factors. The F1-score 

serves as a single metric for evaluating these two viewpoints 

(Eq. 3).  

F1_score = 2 * 
precision ∗ recall

precision + recall
 (3) 

The definition of true positives, false positives, and false 

negatives can vary between different object detection 

applications. The TensorFlow Object Detection API adopts the 

"PASCAL VOC 2007 metrics" [25], where a predicted instance 

is considered a true positive when the Intersection over Union 

(IoU) exceeds 50% [26] (Eq. 4). 

IoU =
𝑎𝑟𝑒𝑎(true bbox ∩ predicted bbox)

𝑎𝑟𝑒𝑎(true bbox ∪ predicted bbox)
> 0.5 (4) 

An object can only have one bounding box associated with it. 

Therefore, if multiple bounding boxes are predicted for an 

object, only one is considered a true positive (TP), while the 

others are considered false positives (FP). An object without 

any predicted bounding boxes associated with it is classified as 

a false negative (FN). Objects labeled as "difficult" are 

excluded from the evaluation protocol. 

Mean Average Precision (mAP) serves as a widely used metric 

for comparing model performance in object detection. For each 

prediction, both recall and precision values are calculated based 

on their confidence ratings. Recall is the proportion of true 

positives (TPs) above a given rank out of all user-tagged 

objects, while precision is the proportion of TPs in predictions 

above the given rank. A precision-recall curve is formed from 

these precision-recall pairs, and Average Precision (AP) is 

calculated as the area under this curve. AP approximates 

precision averaged across all values of recall between 0 and 1 

by summing precision values multiplied by the corresponding 

change in recall from one point in the curve to the next. 

However, what VOC metrics refer to as "AP" is the interpolated 

average precision, defined as "the mean precision at a set of 

eleven equally spaced recall levels". The precision value 

corresponding to each recall interval is the maximum precision 

value observed in the curve within the interval. The mAP is 

then the mean of AP values for all object classes. It is important 

to note that the basic AP is typically lower than the interpolated 

AP, and this distinction should be considered when comparing 

mAP values.  

2.5 Model implementation 
The models were trained using the TensorFlow object detection 

API, which performs optimally with TensorFlow-GPU. This 

API is an open-source framework developed on top of 

TensorFlow, designed to simplify the construction, training, 

and deployment of object detection models. It offers users 

access to various pre-trained object detection models along 

with instructions and example codes for fine-tuning and 

deploying these models for object detection tasks. The 

TensorFlow object detection API supports the use of different 

pre-trained models and allows for fine-tuning according to 

specific datasets. In this study, the Faster R-CNN and SSD 

models with MobileNet were selected. Training was conducted 

on a Dell PowerEdge R740xd server equipped with a P40 GPU. 

The purpose of testing with two models was to identify a more 

suitable solution for devices with limited processing power, 

such as the Raspberry Pi.  

2.6 Prototype car 
A prototype car was developed to validate the proposed 

solution, employing a Raspberry Pi 3 Model B as the 

microcontroller. The Raspberry Pi processed the live video 

feed from the Picamera, while the object detection model 

predicted the classes. Control of the front and rear motors of 

the car was facilitated by the L298N motor controller. The 

complete circuit diagram of the prototype car is depicted in 

Figure 11. The Raspberry Pi is renowned for its robust 

performance and is widely utilized in low-power processing 

projects. Despite the availability of other devices with greater 

processing power and performance, the Raspberry Pi was 

chosen for its cost-effectiveness and suitability for the task at 

hand.  

Fig 10: Labelling of the classes (Passenger and zebra 

crossing) using bounding boxes. 
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3. RESULTS AND DISCUSSION 

3.1 Experiments 
Three experiments were conducted using Faster R-CNN, along 

with the single-shot detector (SSD) for comparison purposes. 

SSD is another multi-class object detection model that predicts 

both the bounding box and the class simultaneously as it 

processes the image in a single shot.  

In SSD, an input image and a set of ground truth labels are fed 

into the model, which then passes the image through a sequence 

of convolutional layers, cropping several sets of feature maps 

at different scales. VGG-16 serves as the backbone of SSD.  

The object detection models were trained using different 

datasets. Faster R-CNN and SSD with Data Set 01 and Data Set 

02 were designated as Model 01 and Model 02, respectively. 

To assess the impact of the number of images in each class on 

the final performance of the model, Faster R-CNN was trained 

with Data Set 01, Data Set 02, and Data Set 03. This approach 

was labeled as Model 03. The models and selected datasets are 

illustrated in Figure 12. 

 

 

3.2 Results of model training 
All models completed training for 200,000 epochs. The total 

loss graphs for Model 01, 02, and 03 are depicted below in 

Figure 13. Notably, Model 02 failed to predict any classes after 

200,000 epochs of training. As a result, Model 02 was subjected 

to retraining for an additional 100,000 epochs. Examination of 

the loss graphs in Figure 13 indicates that all models have been 

adequately trained.  

3.3 Results of model testing/verification 
A specially curated dataset was employed to assess the models' 

performance. This dataset consists of 238 images, each 

encompassing all five classes. Importantly, these images were 

not utilized during the model training phase. The trained 

models were then tested using this dataset of 238 images.  

 

  

Fig 13: Total loss graphs of Model 02 (a), Model 03 (b) and Model 04 (c) with 200,000 time steps, and Model 03 with 100,000 

time steps (d) 

a) b) c) Fig 11: Circuit diagram of the prototype car 

Fig 12: Models with their trained data sets, Model 01 (a), 

Model 02 (b), and Model 03 (c) 
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The performance of Model 01 is presented in Table 4, 

showcasing Precision, Recall, and F1-score values. As 

observed in Table 4, the precision and recall values for Person 

Stop class are lower compared to all the other classes. 

Specifically, Faster R-CNN falsely identifies a person as a 

Person Stop sign, even when the person merely raises one hand 

more than 45 degrees. Hence, the accuracy of predicting the 

Person Stop sign is lower compared to the other classes.  

The performance of Model 02 is outlined in Table 5. A notable 

decrease in precision value is observed for the Police class. This 

decline in precision can be attributed to a higher number of 

false-positive predictions. Specifically, certain images 

belonging to the Person class were erroneously identified as 

Police, possibly due to the similarity in color between the 

clothing worn by individuals and police uniforms. Despite this, 

Table 5 indicates a high recall value for the Police class.  

Table 6 illustrates the performance of Model 03, which 

comprises Faster R-CNN trained with all three datasets. The 

objective of training this model was to assess the influence of 

the number of images in a single class on the final predictions. 

Notably, the number of images in the Person class was 

increased for this purpose.  

As depicted in Table 6, the precision, recall, and F1-score for 

the Person class have increased compared to Model 01. 

However, the average values for Model 03 are lower than those 

of Model 01. Consequently, while the performance in 

predicting the Person class has improved, the performance in 

predicting other classes has declined.  

3.4 Sample predictions of the best model 

(Model 01-Faster R-CNN) 
Some prediction results of the best model (Model 1) are shown 

in Figure 14. These sample predictions include both indoor and 

outdoor images.  

3.5 Performance of the models with 

prototype car 
Figure 15 displays the prototype car, which was created as a 

cost-effective solution since designing a full-scale vehicle 

would be impractical. To determine the optimal model for the 

prototype car, each model underwent testing with the 

Raspberry Pi. While Model 01 exhibited superior performance, 

its prediction results were excessively slow. Consequently, 

Model 01 proved unsuitable for the prototype car, which relies 

on live video feeds. Conversely, Model 02 demonstrated faster 

processing with the Raspberry Pi while maintaining 

commendable prediction accuracy. Hence, Model 02 was 

chosen for deployment with the prototype car. Notably, the 

performance of the prototype car was sluggish with Faster R-

CNN but improved significantly with SSD. Consequently, the 

final implementation utilized SSD for enhanced performance.  

4. Discussion 
As outlined in the results section, Faster R-CNN emerged as 

the top-performing model compared to SSD. Notably, within 

both Model 01 and Model 02, Faster R-CNN exhibited greater 

sensitivity than SSD. This heightened performance can largely 

be attributed to Faster R-CNN's utilization of region proposal 

networks. 

However, Faster R-CNN incurred higher computational costs 

compared to SSD. Both Faster R-CNN and SSD models 

underwent training for 200,000 epochs initially. However, SSD 

did not perform as expected in this instance due to overtraining, 

leading to suboptimal results. This underscores the potential 

ramifications of overtraining on model efficacy. Subsequently, 

SSD was retrained for 100,000 epochs, resulting in improved 

outcomes. Hence, 100,000 timesteps emerged as the optimal 

training duration for SSD.  

 

 

Table 4: Precision and recall of the Model 01 detections 

 Person Person Stop Police Police Stop Zebra crossing Average 

Precision 0.92 0.67 0.90 0.93 0.94 0.87 

Recall 0.93 0.75 0.78 0.82 0.92 0.84 

F1-score 0.92 0.85 0.80 0.87 0.93 0.87 

 

Table 5: Precision and recall of the Model 02 detections 

 Person Person Stop Police Police Stop Zebra crossing Average 

Precision 0.89 0.81 0.48 0.88 0.95 0.80 

Recall 0.86 0.80 0.74 0.82 0.83 0.81 

F1-score 0.87 0.80 0.58 0.84 0.88 0.79 

 

Table 6: Precision and recall of the Model 03 detections 

 Person Person Stop Police Police Stop Zebra crossing Average 

Precision 0.93 0.57 0.66 0.91 0.93 0.80 

Recall 0.97 0.65 0.78 0.95 0.89 0.84 

F1-score 0.94 0.60 0.71 0.92 0.90 0.81 
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The number of images in each class within a dataset can be 

adjusted. Given that data collection during real-time driving 

conditions naturally yields more images in the Person class than 

in other classes, an investigation into the impact of image 

quantity on model performance was conducted by augmenting 

the number of Person class images. Training the datasets with 

Faster R-CNN revealed that while the accuracy of the Person 

class improved, the accuracy of other classes slightly decreased 

compared to the initial model results. This suggests that 

augmenting the number of examples in a single class can 

enhance the model's ability to detect that class. Consequently, 

the number of examples in a dataset emerges as a critical factor 

influencing model performance, with higher volumes of data 

resulting in improved performance.  

There is a notable imbalance in the results across various 

classes. Particularly, the accuracy of the Person Stop sign and 

Police classes significantly lagged behind the others. The 

primary issue with the Person Stop class stemmed from models 

incorrectly identifying individuals as Person Stop signs when 

their hands were raised more than 45 degrees, even though this 

gesture did not signify a stop signal. Additionally, instances 

arose where models misclassified individuals as Police when 

their clothing colors resembled those of a police uniform. 

Moreover, in certain images, the models struggled to 

distinguish between the Police and Person classes.  

The quality and quantity of images in the dataset significantly 

influence the model's sensitivity and accuracy. It is advisable 

Fig 14: Sample predictions of the best model (Model 01) with bounding boxes. 

Fig 15: The final design of the prototype car 
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to include high-resolution images with sharp details in the 

dataset. In this study, images ranging from 640x480 to 

1920x1080 resolution were utilized, with file sizes below 521 

Kilobytes. Larger image sizes may prolong the model training 

process. Training the models on a GPU-accelerated platform is 

recommended to expedite the training process. 

When employing both models with Raspberry Pi, Faster R-

CNN exhibited slower performance, achieving as low as 1.05 

frames per second. Consequently, utilizing Faster R-CNN with 

a low-power device can result in diminished speed 

performance. As SSD operates more swiftly than Faster R-

CNN with Raspberry Pi, SSD was employed for the prototype 

car. However, in terms of performance, Faster R-CNN 

outperformed SSD. Therefore, the prototype car's real-time 

driving implementation was executed using SSD, prioritizing 

speed over performance.  

5. CONCLUSIONS 
When implementing a self-driving car's navigation system, 

various factors must be taken into account, especially in diverse 

traffic scenarios where pedestrians may cross roads 

unpredictably or traffic officers control traffic flow. To address 

this challenge, multiclass object detection models were 

developed to identify pedestrians, traffic officers, and their 

hand signals. For instance, when a person is detected on a Zebra 

crossing, the self-driving car must halt, whether or not a hand 

signal is present. Consequently, images were gathered for 

training these object detection models across five classes: 

Person, Person stop, Police stop, Police, and Zebra crossing. To 

encompass a wide range of scenarios, data were collected 

indoors, outdoors, and from the Joint Attention in Autonomous 

Driving (JAAD) dataset. Subsequently, each model was 

subjected to training using various datasets, while the impact of 

epoch numbers on model performance was also assessed. 

Additionally, the effect of increasing the number of images per 

class on the final model predictions was evaluated.   

After reviewing all the test results and performance metrics, it 

was determined that Faster R-CNN emerged as the most 

accurate model among the three. Furthermore, this model 

exhibited superior speed compared to the others and excelled 

in object localization and detection. While Faster R-CNN 

delivers exceptional performance in these aspects, its efficiency 

diminishes when deployed on low-power computational 

devices. However, optimizing the resources allocated to model 

execution can enhance its speed. Notably, Faster R-CNN 

requires more training time compared to the SSD model, 

capable of training up to 200,000 epochs without encountering 

issues. Conversely, the SSD model's performance deteriorates 

after surpassing 100,000 epochs. Consequently, selecting the 

appropriate model and training parameters is crucial to 

achieving optimal performance. Finally, a Raspberry Pi-

powered prototype car was developed for model deployment 

and real-time driving tests. However, implementing these 

models demands considerable computational resources beyond 

the capabilities of the Raspberry Pi. Therefore, utilizing a 

higher-powered computational platform is essential for 

seamless implementation. Additionally, the Picamera, 

renowned for its superior image quality and lightweight design, 

is recommended for projects requiring a compact camera 

solution, particularly when integrated with devices like the 

Raspberry Pi.  

To enhance performance, it is imperative to gather additional 

data using high-quality cameras, encompassing various 

lighting conditions and climates, including day and night 

scenarios. While the Raspberry Pi employed in the prototype 

car exhibits sluggish performance in real-world settings, 

transitioning to more powerful processing devices is essential 

to achieve optimal performance. Expanding the dataset allows 

for utilizing resources like Nvidia Cloud GPU or Google Cloud 

GPU for efficient model training. Additionally, robust 

networking capabilities enable the utilization of cloud or edge 

computing for vehicle operation.  
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