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ABSTRACT 

The rapid growth of cloud computing and task scheduling has 

become a critical aspect that significantly impacts the overall 

performance and productivity of cloud-based applications. For 

service providers and users, inadequate resource management 

and inefficient task scheduling can result in high cost and 

resource wastage. In recent years, metaheuristic algorithms 

have gained prominence for task scheduling in cloud 

environments. Among them, Whale Optimization Algorithm 

(WOA) can efficiently explore solution space and optimize 

complex objective functions. This review paper provides an 

extensive overview along with the application of WOA-based 

task scheduling methods in cloud computing. Originally, the 

WOA principles and operation, which highlight its salient 

features and optimization capabilities, were reviewed. The 

existing literature on WOA-based task scheduling methods is 

reviewed systematically and also the performance of different 

WOA variants is analyzed. This survey consolidates the current 

state-of-the-art WOA-based task scheduling methods and also 

offers insights into their applicability, future directions and 

performance. It serves as a valuable resource for researchers, 

practitioners, and educators seeking to understand, evaluate 

and advance the state-of-the-art cloud task scheduling 

optimization.   
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1. INTRODUCTION 
With increasing demand for cloud computing services which 

has urged a parallel growth in the complexity and the scale of 

task scheduling, within the challenges in the cloud 

environment. The overall performance of the cloud system 

depends upon the optimization of resource utilization, 

decreasing the response time and effective task scheduling 

plays a pivotal role. Recently researchers have increasingly 

used natural-inspired optimization techniques to tackle intricate 

task scheduling problems in cloud environments. These 

optimization algorithms are used to increase the utilization and 

decrease the execution time along with maintaining cost in task 

scheduling settings [1]. The traditional algorithms used for 

scheduling lack to cope with intricate and dynamic workloads 

in the cloud environment. For a single machine, these processes 

can be challenging and often require computational power, 

large amounts of memory, and parallel processing capabilities. 

Due to the intensive computational demands and the need for 

effective scheduling algorithms become more significant [2]. 

Among the natural-inspired optimization algorithms, the 

Whale Optimization Algorithm (WOA) has emerged as a 

promising approach owing to its ability to mimic the social 

behaviour of humpback whales during hunting [3]. For 

addressing the multi-objective and dynamic nature of task 

scheduling in cloud environments, the WOA exhibits strong 

exploration and exploitation capabilities, making it well-suited. 

Considering various constraints such as task dependencies, 

resource capacities, and QoS requirements, the WOA 

algorithm iteratively searches for the optimal mapping of tasks 

to available cloud resources. Based on the demand cloud 

resources can be elastically provisioned or de-provisioned and 

the tasks may be completed at different times or queued for 

processing. In various works, the WOA has shown the best 

results and also in different applications based on task 

scheduling. The nature-inspired approach, integrated with its 

ability to handle complex limitations and dynamic 

environments, makes it a valuable tool for optimizing resource 

utilization and improving the efficiency of workloads. This 

study aims to evaluate WOA-based task scheduling methods in 

cloud computing systems and this will help the researchers 

community to understand the process of WOA and its 

efficiency and constraints for performing optimum task 

scheduling in the cloud.  

2. WOA 
For continuous optimization problems, the WOA algorithm is 

utilized which is inspired by the social behaviour of humpback 

whales [3]. The hunting behaviour of the whale is characterized 

by operational techniques which include encircling prey in the 

exploitation phase by employing a bubble-net attack method 

and in the exploration phase searching for prey.  Whales with 

Humpbacks possess the ability to locate prey and coordinate to 

traverse them. In the WOA, the optimum value in the search 

space is unknown prior. The hunting behaviour of the whales 

has collaborated to find the best position. The WOA algorithm 

operates on the principle that the present best candidate solution 

is the target prey or is in proximity to the optimum solution. 

Each search agent in the algorithm will adjust to the most 

effective search agent from their position. The movement of the 

search agents towards the best solution is mathematically 

expressed as: 

𝑆 = |𝐶. 𝑋∗⃗⃗ ⃗⃗ ⃗(𝑡) −  𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|   (1) 
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Here, 𝑡 refers to the current iteration, 𝐶 refers to the co-efficient 

vector, �⃗� refers to the position vector and 𝑋∗ refers to the 

position vector of the best solution obtained. The co-efficient 

vector 𝐶 is calculated using a random vector 𝑟 that ranges from 

(0, 1): 

𝐶 = 2. 𝑟     (2) 

 The movement of a search agent's position (𝑋, 𝑌) can 

be adjusted based on the present best record's position(𝑋∗, 𝑌∗). 

By modifying the vector values 𝐴 𝑎𝑛𝑑 𝐶, various positions 

near the optimal best agent can be explored to its current 

position. The attacking method in WOA for the exploitation 

phase is mentioned as the bubble-net attacking method. This 

attack method includes two approaches: the shrinking 

encircling method and the spiral updating position. Humpback 

whales employ the bubble-net strategy not only for trapping 

prey but also for attacking. For the creation of a bubble net to 

trap the prey, this method introduces perturbations around 

randomly selected solutions within a certain radius. These 

perturbations encourage the exploration of diverse regions in 

the solution space, preventing the algorithm from prematurely 

converging to suboptimal solutions.  

 The shrinking encircling mechanism refers to the 

behaviour in Equation (4), where the parameter (𝑎) decreases; 

the range of fluctuation for a parameter (𝐴) also decreases. This 

behaviour signifies a reduction in the intensity of the encircling 

movement of the whales during the optimization process. The 

position update using the shrinking encircling method is 

formulated as follows: 

𝑋 ⃗⃗⃗⃗  (𝑡 + 1) =  𝑋∗⃗⃗ ⃗⃗ ⃗(𝑡) − 𝐴 . 𝑆    (3) 

Here, 𝑡 refers to the current iteration, 𝐴 refers to the co-efficient 

vector which is calculated as: 

𝐴 = 2�⃗�. 𝑟 − �⃗�     (4) 

Here, the value of �⃗� is linearly decreased from 2 to 0 over the 

iterations on both the exploration and exploitation phases and  

𝑟 is the random vector ranges from (0, 1). 

 The method of updating the position in a spiral 

manner includes measuring the distance between a whale 

positioned at coordinates (𝑋, 𝑌) and the prey situated at 

coordinates(𝑋∗, 𝑌∗).  

A spiral equation is formulated to replicate the helical 

movement observed in humpback whales. This equation guides 

the gradual adjustment of the whale's position towards the prey, 

mimicking the behaviour of whales as they navigate through 

their environment. The helix movement of the whale is given 

by: 

𝑋 ⃗⃗⃗⃗  (𝑡 + 1) =  𝑆′⃗⃗⃗⃗  . 𝑒𝑏𝑙 . cos(2𝜋𝑙) + 𝑋 ⃗⃗⃗⃗ (𝑡) (5) 

Here,𝑆′⃗⃗⃗⃗  = |𝑋∗⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗�(𝑡)| and the distance of 𝑖𝑡ℎ whale to the 

prey (the best solution obtained for far), 𝑏 refers to the constant 

value for defining the shape, cos(2𝜋𝑙) refers to the spiral 

movement of the whale towards the prey, and  𝑙 is the random 

value ranges from [-1, 1]. The probability factor that determines 

whether to employ the shrinking encircling technique when 

updating the positions of whales during optimization allows us 

to emulate the dynamic hunting strategy of whales more 

realistically within the optimization process. The model is 

formulated as: 

𝑋 ⃗⃗⃗⃗  (𝑡 + 1) =  {
𝑋∗⃗⃗ ⃗⃗ ⃗(𝑡) − 𝐴. 𝑆,                                𝑖𝑓 𝑝 < 0.5

𝑆′⃗⃗⃗⃗  . 𝑒𝑏𝑙 . cos(2𝜋𝑙) +  𝑋∗⃗⃗ ⃗⃗ ⃗(𝑡),       𝑖𝑓 𝑝 ≥ 0.5
 

     (6) 

Here, 𝑝 is a random number ranging from [0, 1]. During the 

exploration phase, the optimization process is similar to the 

strategy based on adjusting the vector 𝐴 can be employed. The 

humpback whales explore randomly based on the positions of 

each other. To move the search agents far from the reference 

whale, the 𝐴 vector is set with the random values between [-1, 

1]. The location of a search agent is adjusted based on the 

location of another search agent selected randomly. This 

technique along with |𝐴|  ≥  1, accentuates exploration and 

enables the WOA algorithm to conduct a thorough global 

search. The model can be expressed as: 

𝑆 = |𝐶.⃗⃗⃗⃗ 𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ −  �⃗�|   (7) 

𝑋 ⃗⃗⃗⃗  (𝑡 + 1) =  𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ −   𝐴. 𝑆   (8) 

Here, 𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  refers to the random position vector taken from the 

current population. Algorithm 1 summarizes the WOA. 

Algorithm.1. WOA 

Population is initiated 𝑋𝑖  ( 1, 2, 3, … , 𝑛)  

Initially, search agent value 𝑋∗ is selected randomly 

The fitness value for each agent is calculated. 

Consider 𝑋∗ as the best search agent. 

While (𝑡 < 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑚𝑎𝑥)) 

For search agents, each 

Update 𝑎, 𝐴, 𝐶, 𝑙 𝑎𝑛𝑑 𝑝 

If  (𝑝 <  0.5)  

If (|𝐴|  <  1) 

Update the position by using eq. (3) 

Else if (|𝐴|  ≥ 1) 

Random search agent(𝑋𝑟𝑎𝑛𝑑)  is selected 

Update current search agent by eq. (8) 

End if 

Else if  (𝑝 ≥ 0.5) 

Update current search agent by eq. (5) 

End if 

End for 

Check for search agents beyond the search space and 

modify  

Calculate the fitness value for each search agent 

𝑋∗ value is updated if there is a better solution 

𝑡 =  𝑡 +  1  

End while 

Return 𝑋∗. 

The WOA initiates a collection of random solutions. The search 

agents reposition themselves relative to either a randomly 

selected search agent or the optimal solution found until the 

iteration. The parameter 𝑎 is gradually decreased from 2 to 0, 
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which helps to maintain a balance between the new areas and 

the solutions. When|𝐴|  >  1, a random search agent is selected 

for position update, whereas when|𝐴|  <  1, the best solution is 

utilized. Depending on the value of 𝑝, the algorithm switches 

between spiral or circular movement modes. Termination 

occurs upon meeting a predefined criterion. 

3. WOA-based Task Scheduling Methods 
Recent studies have been directed for task scheduling based on 

WOA for efficient resource management in cloud computing 

systems. Sreenu et al. [4] presented a task scheduling (TS) 

algorithm called W-Scheduler, which combined a multi-

objective model and WOA for cloud computing environments. 

The multi-objective model measures the fitness value by 

considering CPU cost, memory cost, makespan, and budget 

cost. Evaluation results demonstrated that the W-Scheduler 

achieved a decreased makespan of 7 and a decreased average 

cost of 5.8. The experiments are conducted with limited 

resources, which may not accurately represent large-scale 

cloud environments. Chen et al. [5] proposed a WOA algorithm 

to unravel the optimization problem and an improved approach 

called Improved WOA for Cloud task scheduling (IWC). IWC 

has presented two optimization strategies such as a nonlinear 

convergence factor and adaptive population size. The IWC 

approach is implemented and the performance is measured 

through simulations of up to 10,000 tasks. The IWC achieved 

a time cost of 897 and a load cost of 1567 for optimal task 

scheduling plans. It also performed more efficiently at utilizing 

the system resources for large-scale and small-scale tasks. Ni 

et al. [6] introduced a multi-objective task scheduling strategy 

based on Gaussian cloud-whale optimization (GCWOAS2) for 

cloud computing environments. WOA based on the GCWOA 

is developed to improve randomness and avoid premature 

convergence. The GCWOAS2 strategy combined the above 

contributions to optimize the task and resulted in 0.2623s 

execution time, 0.14489s running time and 0.3302 CPU rate for 

100 tasks. Yet, the model lacks complex scenarios with task 

dependencies and heterogeneous resources. Jia et al. [7] 

introduced an improved whale optimization algorithm (IWC-

TS) for efficient TS in cloud computing environments. The 

model introduced an inertial weight strategy and improved 

WOA's local search ability and convergence. The results 

demonstrated that the model achieved 0.008$ of economic cost, 

1.3ms of time consumption, and 0.55 of load for 1000 tasks. 

Yet, the model lacks balance in exploration and exploitation 

capabilities.  

Ababneh et al. [8] introduced a hybrid grey wolf and whale 

optimization (HGWWO) algorithm that integrated the Grey 

Wolf Optimizer (GWO) and WOA to address the cloud task 

scheduling problem effectively. The HGWWO algorithm 

integrated the strengths of both metaheuristics and 

mathematical models for the fitness function, encompassing 

makespan, resource utilization, energy, latency, and task 

weights. The results showed that the HGWWO achieved 95s of 

makespan, 90% of resource utilization, 9827s of cost and 

1923W of energy consumption. The limitation is that the 

chosen fitness limitations and parameter values directly impact 

the optimization value quality. Sanaj et al. [9] presented a Map-

Reduce Framework and a Genetic Algorithm-based Whale 

Optimization Algorithm (MRF-GA-WOA). The model used 

Maximized Raleigh QuoFisher Linear Discriminant Analysis 

(MRQFLDA) for feature extraction and reduction. The MRF-

GA-WOA algorithm increased convergence and optimized the 

scheduling process by integrating the WOA with the GA. Yet, 

scalability and robustness for larger or more complex cloud 

computing environments remain unexplored. Manikandan et al. 

[10] proposed a hybrid Whale optimization algorithm-based 

Mutation-based Bee algorithm (MBA) called HWOA-MBA. 

The fitness function that combines makespan, energy 

consumption, and total power cost is optimized by using WOA, 

and the scheduling problem is modelled as a multi-objective 

optimization problem. The model resulted in 37542s for 

execution time, 96% for throughput and 1340 for 

computational cost. The proposed model effectively schedules 

tasks by considering task and VM priorities while minimizing 

energy consumption.  

Chhabra et al. [11] introduced an energy-aware bag-of-tasks 

scheduling approach using a Hybrid oppositional Differential 

Evolution-enabled Whale Optimization Algorithm (h-

DEWOA). The algorithm used chaotic maps and OBL 

techniques to create an initial population, which upgraded the 

variety of scheduling solutions. The model evaluated with the 

work logs such as CEA-Curie and HPC2N, the makespan was 

decreased to 10,488.06s and 11,450.91s, with reduced energy 

consumption of 6739.39W and 7097.58W for the initial set. 

Yet, the algorithm exhibited longer execution times. 

Mangalampalli et al. [12] introduced a prioritized energy-

efficient task scheduling algorithm for cloud computing using 

a whale optimization algorithm (PEETS-WS). The model 

measured priorities for tasks and VMs based on task length, 

processing capacity and electricity cost. The approach resulted 

in 1867.2s for makespan, 4145 for total energy cost and 11.56 

for energy consumption. The model lacked testing on real cloud 

workload traces. Mangalampalli et al. [13] also developed a 

multi-objective trust-aware TS algorithm (MOTSWAO) using 

WOA in cloud computing. MOTSWAO assigns task priorities 

based on task size and VM capacities and sets VM priorities 

based on the cost of electricity. The MOTSWAO decreased 

energy consumption by 22-43%, makespan by 17-39%, 

boosted success rate by 23-68%, process completion efficiency 

by 29-84%, availability by 13-60%, and total running time by 

10-38% for various workloads along with optimizing trust. Yet, 

the model faced challenges in complexity and computational 

difficulty in tuning algorithm parameters. Mangalampalli et al. 

[14] also proposed a SLA-aware TS algorithm in cloud 

computing using WOA (SLA-WOA). By calculating priorities 

for tasks and VMs, the algorithm effectively maps high-priority 

tasks to high-priority VMs, thereby reducing the overall job 

completion time and the number of SLA breaches. SLA 

violations are decreased for PSO, ACO, GA, and W-scheduler 

up to 63.42%, 23.33%, 55.51% and 40.1% for BigDataBench 

workloads and 56.76%, 42.17%, 35.29% and 24.53% for 

random workloads. The scheduler WOA not only minimized 

completion times but also significantly reduced SLA 

violations. 

Chakraborty et al. [15] presented a new variant of the WOA 

called Elite-Based WOA (EBWOA) to handle the limitations 

of the conventional WOA, such as restricted exploration 

capabilities and premature convergence. The model removed 

the search prey phase and used encircling prey and bubble-net 

attack phases, which employed a local elite solution during 

exploration, using a global best solution during exploitation. 

The model resulted in 10.792s for makespan and 7038.24W for 

energy consumption, respectively. The model limitation 

includes it only considering encircling prey and bubble-net 

attack phases which may restrict exploration. Hosny et al. [16] 

proposed a Refined Whale Optimization Algorithm (RWOA), 

an optimizing multi-user dependent task offloading in an edge-

cloud computing environment. The model was evaluated based 

on performance metrics, namely completion time, energy 

consumption, cost usage, and fitness. RWOA outperformed 

and achieved optimized fitness by 52.7%. Yet, the model's 
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Computational complexities improve with the number of tasks 

and users. Khan et al. [17] presented a Parallel Enhanced Whale 

Optimization Algorithm (PEWOA) for scheduling independent 

tasks on heterogeneous VMs in the cloud. PEWOA 

incorporated an updated encircling manoeuvre, parallelization 

and an adaptive bubble net attacking technique that enhanced 

diversity, avoided local optima and improved convergence. 

The model resulted in 0.74% in resource utilization, 

1693.166ms in makespan, 0.605bps in throughput, 0.098s in 

response time and 1872.500ms in execution time. Gupta et al. 

[18] introduced a Multi-Objective Whale Optimization-Based 

Scheduler (WOA-Scheduler) for efficient TS in cloud 

computing environments. The methodology involved 

integrating WOA with CloudSim, initializing a whale 

population representing task allocations, and iteratively 

updating positions through exploration and exploitation phases 

and improved solutions. The results indicated the WOA 

scheduler's effectiveness in adapting to varying cloudlet counts, 

VM capacities, realistic task distributions, and user-defined 

objective weights. The model resulted in a cost of 6.625$, 

execution time of 12.125 seconds and load balancing rate of 

1.6154. The model achieved a balance between minimizing 

cost and execution time while maintaining an acceptable load 

balance. Yet, the model lacked dynamic resource provisioning 

strategies.  

Table 1 summarizes the advantages and disadvantages of the 

discussed WOA-based task scheduling methods. The 

discussion of WOA-based task scheduling methods from the 

above previous research works highlights the strengths and 

weaknesses of WOA compared to the other variants of WOA 

algorithms in this context. 

Table 1. Comparison of WOA-based Task Scheduling Methods 

Authors Method Advantages Disadvantages 

Sreenu et al. [4] W-Scheduler Minimized makespan and cost. Poor resource utilization and energy 

consumption. 

Chen et al. [5] IWC Better resource management. Slow convergence. 

Ni et al. [6] GCWOAS2 Reduced task execution time, and 

improved resource utilization. 

Poor handling of task dependencies and 

heterogeneous resources. 

Jia et al. [7] IWC-TS Reduced response time. Imbalance between exploration and 

exploitation capabilities. 

Ababneh et al. [8] HGWWO Better makespan, cost, and resource 

utilization. 

Poor selection of fitness constraints and 

parameter values for faster convergence. 

Sanaj et al. [9] MRF-GA-

WOA 

Improved the convergence rate Less scalable for complex cloud computing 

environments. 

Manikandan et al. 

[10] 

HWOA-MBA Effective handling of VM priorities and 

minimized power consumption. 

Ignores the total time for scheduling the task. 

Chhabra et al. [11] h-DEWOA Reduced energy consumption. Longer execution times. 

Mangalampalli et 

al. [12] 

PEETS-WS Prioritized task and VM mapping with 

reduced energy for data centres. 

Less effective on dynamic workload traces. 

Mangalampalli et 

al. [13] 

MOTSWAO Minimized task completion time and 

execution time with faster convergence. 

High memory utilization and less effective on 

dynamic workloads. 

Mangalampalli et 

al. [14] 

SLA-WOA Minimized makespan and SLA breaches. High computational complexity. 

Chakraborty et al. 

[15] 

EBWOA Faster convergence and better balance in 

exploitation. 

Neglects the exploration phase. 

Hosny et al. [16] RWOA Improved multi-user dependent task 

offloading. 

High computational complexity. 

Khan et al. [17] PEWOA Higher scalability. Ineffective for dynamic environment. 

Gupta et al. [18] WOA-

Scheduler 

Better balanced trade-off between 

decreasing cost and execution time while 

maintaining an acceptable load balance. 

Less suitable for dynamic resource 

provisioning strategies. 
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It is inferred that the WOA-based hybrid optimization methods 

provided better task scheduling performance since they solved 

the problem of convergence at local optimum solutions. 

However, the complexity of many WOA-based algorithms is a 

major problem. Also, the complexity of WOA for handling the 

scheduling of a larger number of tasks is a concerning 

limitation. 

4. PERFORMANCE COMPARISON 
The discussed research works have performed experiments for 

justifying efficient task scheduling using CloudSim 3.0.2. The 

workload, involving a combination of interactive and batch 

processing tasks, encompasses tasks associated with managing 

and processing accounting records for the 128 nodes. Details 

include the runtime, number of nodes, user commands and start 

time. The commonly used performance metrics are Energy 

Consumption, Execution Time, Response Time, and Cost. The 

available results for the metrics by the discussed methods are 

summarized in Table 2. 

The results summarized in Table 2 show that the WOA-based 

task scheduling methods were efficient in task scheduling for 

different scenarios. Based on the comparison results in those 

research studies, the WOA-based task scheduling methods 

outperformed the other task scheduling methods, especially the 

other metaheuristic algorithms-based task scheduling methods. 

Results and analysis illuminated the performance of each WOA 

variant concerning predefined metrics. Variants showcased 

diverse strengths and weaknesses, influenced by factors such as 

convergence speed, solution quality, and computational 

efficiency. Contextualizing findings within task scheduling 

optimization underscored the practical implications of WOA-

based algorithms, yet limitations and avenues for further 

research were acknowledged. Hybridization emerged as a 

promising avenue for enhancing WOA-based task scheduling 

methods. By integrating WOA with complementary techniques 

such as local search heuristics or problem-specific strategies, 

hybrid methods have the potential to mitigate weaknesses and 

capitalize on strengths inherent in both WOA and its 

counterparts. When compared to standalone methods of the 

WOA variant, the hybrid model provides higher performance, 

increased computational efficiency and robustness across 

diverse problem instances. 

The research studies conducted experiments in various 

scenarios, involving different numbers of tasks and virtual 

machines (VMs). The results summarized in Table 2 indicate 

that WOA-based task scheduling methods generally performed 

well across a range of scenarios, with specific metrics such as 

energy consumption, execution time, response time, and cost 

being key performance indicators. Energy consumption was a 

critical metric in scenarios where it was measured. For instance, 

HGWWO [8] and EBWOA [15] showed significant energy 

usage, highlighting the importance of energy efficiency in 

cloud environments.  

 

Table 2. Performance Results of WOA-based Task Scheduling Methods 

Methods No. of 

Tasks 

No of VMs Energy (W) Execution time 

(s) 

Response 

time (s) 

Cost ($) 

W-Scheduler [4] 400 40 - 7.76 8.25 5.8 

IWC [5] 1000 40 - 3.876 2.334 0.22 

GCWOAS2 [6] 1000 40 - 0.2623 4.865 - 

IWC-TS [7] 1000 100 - 0.543 1.3 100 

HGWWO [8] 500 32 1.923 125.6 95 188 

MRF-GA-WOA [9] 500 50 - 255 220 - 

HWOA-mBA [10] 100 40 - 336.57 375.42 1340 

h-DEWOA [11] 400 48 6739.39 120.05 104.88 - 

PEETS-WS [12] 1000 100 11.56 964.2 103.42 4145 

MOTSWAO [13] 1000 30 112.34 119.1 95.62 - 

SLA-WOA [14] 1000 20 - 200.45 189.95 1653 

EBWOA [15] 100 10 7038.24 12.34 10.792 - 

RWOA [16] 200 10 362.36 18.765 21.05 5.33 

PEWOA [17] 1000 32 - 0.098 187.25 - 

WOA-Scheduler [18] 50 5 - 12.125 11.453 265.3 
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Figure.1. Execution Time Comparison 

In Figure 1, execution time varied significantly among the 

methods. For example, IWC-TS [7] achieved a notably low 

execution time (0.543s) for 1000 tasks, showcasing the 

efficiency of the method in handling large workloads.  

 

Figure.2. Response Time Comparison 

Response time was another crucial metric. Methods like IWC 

[5] and GCWOAS2 [6] demonstrated relatively low response 

times, indicating their effectiveness in minimizing delays in 

task processing. Cost was a variable factor across different 

methods, with some like IWC [5] achieving a minimal cost of 

$0.22, while others like PEETS-WS [12] incurred much higher 

costs, reflecting the trade-offs between performance and 

economic efficiency. 

The analysis indicates that WOA-based methods generally 

outperformed other metaheuristic algorithms in task scheduling 

efficiency. For example, methods like GCWOAS2 [6] and 

IWC-TS [7] delivered superior performance in terms of 

execution and response times, making them suitable for 

scenarios requiring rapid task processing. The various WOA 

variants displayed different strengths and weaknesses, often 

influenced by factors like convergence speed, solution quality, 

and computational efficiency. For instance, while some 

methods like MRF-GA-WOA [9] showed excellent 

convergence in terms of execution time, others like HWOA-

mBA [10] struggled with significantly higher execution times.  

The research highlighted hybridization as a promising strategy 

to enhance WOA-based methods. By integrating WOA with 

complementary techniques such as local search heuristics or 

problem-specific strategies, hybrid models like MOTSWAO 

[13] were able to mitigate some of the inherent weaknesses of 

standalone WOA, offering improved performance, 

computational efficiency, and robustness across various 

problem instances. 

The findings underscore the practical utility of WOA-based 

task scheduling methods in cloud computing environments, 

particularly in scenarios requiring optimized resource 

allocation and task management. However, the performance of 

these methods can vary depending on specific workload 

characteristics and environmental factors. Despite the 

promising results, the research also acknowledged limitations 

in the existing WOA-based methods, such as the potential for 

high energy consumption and the need for improved cost 

efficiency. Future research could explore further hybridization, 

dynamic adaptation techniques, and the application of WOA in 

emerging cloud computing paradigms like edge computing 

architectures. 

5. CONCLUSION 
This review paper has given a detailed overview of utilizing 

standalone WOA variants and hybrid WOA methods in task 

scheduling within cloud environments. Through an elaborate 

and extensive study and examination of various WOA methods 

in task scheduling, several observations and insights have been 

developed. These adaptations exhibit the versatility of WOA 

and its potential to suit varying requirements and constraints of 

cloud-based scheduling scenarios. Against the traditional 

optimization algorithm, the different WOA-based approaches 

have illustrated the competitive performance in solution 

quality, convergence speed, adaptability to dynamic 

environments and robustness. These models have demonstrated 

their effectiveness in reducing execution time, minimizing 

energy consumption, improving resource utilization, and 

optimizing cost-related objectives. In cloud computing 

systems, the WOA has great potential for optimizing and 

enhancing the performance of task scheduling methods. The 

insights from the survey serve as a valuable resource and 

information for practitioners and researchers to guide the 

development of innovative scheduling methods that harness the 

full potential of WOA for optimizing resource utilization, 

enhancing the system performance and advancing techniques 

in cloud computing. 

While the current applications of WOA in cloud computing 

task scheduling are impressive, several avenues for future 

research and development remain unexplored. Future research 

could focus on developing advanced hybrid models that 

integrate WOA with emerging optimization techniques, such as 

machine learning-based predictive models or quantum-inspired 

algorithms. These integrations could enhance WOA's ability to 

handle increasingly complex and dynamic cloud environments. 
As cloud environments continue to grow in size and 
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complexity, there is a need to scale WOA-based methods 

effectively. Research could explore distributed and parallelized 

WOA algorithms capable of handling large-scale task 

scheduling in real-time, ensuring that performance gains are 

maintained even as the system scales. Developing dynamic 

adaptation mechanisms that allow WOA-based models to 

adjust their strategies in real-time based on changing workloads 

or system conditions could further enhance their applicability 

in highly volatile cloud environments. Future studies could 

focus on refining WOA-based methods to align with green 

computing initiatives, emphasizing energy efficiency and 

sustainability. This could involve optimizing energy 

consumption not just at the task level, but across the entire 

cloud infrastructure, including data centers and network 

resources. Combining WOA with cost-effective energy models 

could lead to the development of task scheduling algorithms 

that balance performance and environmental impact, offering 

cloud providers more sustainable and economically viable 

solutions. As cloud systems become more complex, ensuring 

security and reliability in task scheduling is crucial. Future 

research could explore how WOA-based methods can be 

extended or hybridized with security-focused algorithms to 

address potential vulnerabilities and ensure reliable task 

execution. Enhancing the resilience of WOA-based scheduling 

models against system failures or attacks could be another 

promising direction, ensuring continuous and reliable service 

in cloud environments. 
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