
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.35, August 2024

1

Performance Analysis of Multitask Scheduling in Cloud

Computing System using Whale Optimization-based

Algorithms: A Survey

S. Kavitha
Ph.D. (PT) Research Scholar,

Department of Computer Science, KG College of
Arts and Science,

Coimbatore, Tamil Nadu- 641035, India.

G. Paramasivam, PhD
Associate Professor,

Department of Computer Science, KG College of
Arts and Science, Coimbatore, Tamil Nadu-

641035, India.

ABSTRACT

The rapid growth of cloud computing and task scheduling has

become a critical aspect that significantly impacts the overall

performance and productivity of cloud-based applications. For

service providers and users, inadequate resource management

and inefficient task scheduling can result in high cost and

resource wastage. In recent years, metaheuristic algorithms

have gained prominence for task scheduling in cloud

environments. Among them, Whale Optimization Algorithm

(WOA) can efficiently explore solution space and optimize

complex objective functions. This review paper provides an

extensive overview along with the application of WOA-based

task scheduling methods in cloud computing. Originally, the

WOA principles and operation, which highlight its salient

features and optimization capabilities, were reviewed. The

existing literature on WOA-based task scheduling methods is

reviewed systematically and also the performance of different

WOA variants is analyzed. This survey consolidates the current

state-of-the-art WOA-based task scheduling methods and also

offers insights into their applicability, future directions and

performance. It serves as a valuable resource for researchers,

practitioners, and educators seeking to understand, evaluate

and advance the state-of-the-art cloud task scheduling

optimization.

General Terms

Cloud Computing, Task Scheduling

Keywords

Cloud Computing, Multitask Scheduling, Virtual Machines,

Metaheuristics, Whale Optimization Algorithm, Quality-of-

Service

1. INTRODUCTION
With increasing demand for cloud computing services which

has urged a parallel growth in the complexity and the scale of

task scheduling, within the challenges in the cloud

environment. The overall performance of the cloud system

depends upon the optimization of resource utilization,

decreasing the response time and effective task scheduling

plays a pivotal role. Recently researchers have increasingly

used natural-inspired optimization techniques to tackle intricate

task scheduling problems in cloud environments. These

optimization algorithms are used to increase the utilization and

decrease the execution time along with maintaining cost in task

scheduling settings [1]. The traditional algorithms used for

scheduling lack to cope with intricate and dynamic workloads

in the cloud environment. For a single machine, these processes

can be challenging and often require computational power,

large amounts of memory, and parallel processing capabilities.

Due to the intensive computational demands and the need for

effective scheduling algorithms become more significant [2].

Among the natural-inspired optimization algorithms, the

Whale Optimization Algorithm (WOA) has emerged as a

promising approach owing to its ability to mimic the social

behaviour of humpback whales during hunting [3]. For

addressing the multi-objective and dynamic nature of task

scheduling in cloud environments, the WOA exhibits strong

exploration and exploitation capabilities, making it well-suited.

Considering various constraints such as task dependencies,

resource capacities, and QoS requirements, the WOA

algorithm iteratively searches for the optimal mapping of tasks

to available cloud resources. Based on the demand cloud

resources can be elastically provisioned or de-provisioned and

the tasks may be completed at different times or queued for

processing. In various works, the WOA has shown the best

results and also in different applications based on task

scheduling. The nature-inspired approach, integrated with its

ability to handle complex limitations and dynamic

environments, makes it a valuable tool for optimizing resource

utilization and improving the efficiency of workloads. This

study aims to evaluate WOA-based task scheduling methods in

cloud computing systems and this will help the researchers

community to understand the process of WOA and its

efficiency and constraints for performing optimum task

scheduling in the cloud.

2. WOA
For continuous optimization problems, the WOA algorithm is

utilized which is inspired by the social behaviour of humpback

whales [3]. The hunting behaviour of the whale is characterized

by operational techniques which include encircling prey in the

exploitation phase by employing a bubble-net attack method

and in the exploration phase searching for prey. Whales with

Humpbacks possess the ability to locate prey and coordinate to

traverse them. In the WOA, the optimum value in the search

space is unknown prior. The hunting behaviour of the whales

has collaborated to find the best position. The WOA algorithm

operates on the principle that the present best candidate solution

is the target prey or is in proximity to the optimum solution.

Each search agent in the algorithm will adjust to the most

effective search agent from their position. The movement of the

search agents towards the best solution is mathematically

expressed as:

𝑆 = |𝐶. 𝑋∗⃗⃗ ⃗⃗ ⃗(𝑡) − 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗| (1)

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.35, August 2024

2

Here, 𝑡 refers to the current iteration, 𝐶 refers to the co-efficient

vector, �⃗� refers to the position vector and 𝑋∗ refers to the

position vector of the best solution obtained. The co-efficient

vector 𝐶 is calculated using a random vector 𝑟 that ranges from

(0, 1):

𝐶 = 2. 𝑟 (2)

 The movement of a search agent's position (𝑋, 𝑌) can

be adjusted based on the present best record's position(𝑋∗, 𝑌∗).

By modifying the vector values 𝐴 𝑎𝑛𝑑 𝐶, various positions

near the optimal best agent can be explored to its current

position. The attacking method in WOA for the exploitation

phase is mentioned as the bubble-net attacking method. This

attack method includes two approaches: the shrinking

encircling method and the spiral updating position. Humpback

whales employ the bubble-net strategy not only for trapping

prey but also for attacking. For the creation of a bubble net to

trap the prey, this method introduces perturbations around

randomly selected solutions within a certain radius. These

perturbations encourage the exploration of diverse regions in

the solution space, preventing the algorithm from prematurely

converging to suboptimal solutions.

 The shrinking encircling mechanism refers to the

behaviour in Equation (4), where the parameter (𝑎) decreases;

the range of fluctuation for a parameter (𝐴) also decreases. This

behaviour signifies a reduction in the intensity of the encircling

movement of the whales during the optimization process. The

position update using the shrinking encircling method is

formulated as follows:

𝑋 ⃗⃗⃗⃗ (𝑡 + 1) = 𝑋∗⃗⃗ ⃗⃗ ⃗(𝑡) − 𝐴 . 𝑆 (3)

Here, 𝑡 refers to the current iteration, 𝐴 refers to the co-efficient

vector which is calculated as:

𝐴 = 2�⃗�. 𝑟 − �⃗� (4)

Here, the value of �⃗� is linearly decreased from 2 to 0 over the

iterations on both the exploration and exploitation phases and

𝑟 is the random vector ranges from (0, 1).

 The method of updating the position in a spiral

manner includes measuring the distance between a whale

positioned at coordinates (𝑋, 𝑌) and the prey situated at

coordinates(𝑋∗, 𝑌∗).

A spiral equation is formulated to replicate the helical

movement observed in humpback whales. This equation guides

the gradual adjustment of the whale's position towards the prey,

mimicking the behaviour of whales as they navigate through

their environment. The helix movement of the whale is given

by:

𝑋 ⃗⃗⃗⃗ (𝑡 + 1) = 𝑆′⃗⃗⃗⃗ . 𝑒𝑏𝑙 . cos(2𝜋𝑙) + 𝑋 ⃗⃗⃗⃗ (𝑡) (5)

Here,𝑆′⃗⃗⃗⃗ = |𝑋∗⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗�(𝑡)| and the distance of 𝑖𝑡ℎ whale to the

prey (the best solution obtained for far), 𝑏 refers to the constant

value for defining the shape, cos(2𝜋𝑙) refers to the spiral

movement of the whale towards the prey, and 𝑙 is the random

value ranges from [-1, 1]. The probability factor that determines

whether to employ the shrinking encircling technique when

updating the positions of whales during optimization allows us

to emulate the dynamic hunting strategy of whales more

realistically within the optimization process. The model is

formulated as:

𝑋 ⃗⃗⃗⃗ (𝑡 + 1) = {
𝑋∗⃗⃗ ⃗⃗ ⃗(𝑡) − 𝐴. 𝑆, 𝑖𝑓 𝑝 < 0.5

𝑆′⃗⃗⃗⃗ . 𝑒𝑏𝑙 . cos(2𝜋𝑙) + 𝑋∗⃗⃗ ⃗⃗ ⃗(𝑡), 𝑖𝑓 𝑝 ≥ 0.5

 (6)

Here, 𝑝 is a random number ranging from [0, 1]. During the

exploration phase, the optimization process is similar to the

strategy based on adjusting the vector 𝐴 can be employed. The

humpback whales explore randomly based on the positions of

each other. To move the search agents far from the reference

whale, the 𝐴 vector is set with the random values between [-1,

1]. The location of a search agent is adjusted based on the

location of another search agent selected randomly. This

technique along with |𝐴| ≥ 1, accentuates exploration and

enables the WOA algorithm to conduct a thorough global

search. The model can be expressed as:

𝑆 = |𝐶.⃗⃗⃗⃗ 𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − �⃗�| (7)

𝑋 ⃗⃗⃗⃗ (𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝐴. 𝑆 (8)

Here, 𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ refers to the random position vector taken from the

current population. Algorithm 1 summarizes the WOA.

Algorithm.1. WOA

Population is initiated 𝑋𝑖 (1, 2, 3, … , 𝑛)

Initially, search agent value 𝑋∗ is selected randomly

The fitness value for each agent is calculated.

Consider 𝑋∗ as the best search agent.

While (𝑡 < 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑚𝑎𝑥))

For search agents, each

Update 𝑎, 𝐴, 𝐶, 𝑙 𝑎𝑛𝑑 𝑝

If (𝑝 < 0.5)

If (|𝐴| < 1)

Update the position by using eq. (3)

Else if (|𝐴| ≥ 1)

Random search agent(𝑋𝑟𝑎𝑛𝑑) is selected

Update current search agent by eq. (8)

End if

Else if (𝑝 ≥ 0.5)

Update current search agent by eq. (5)

End if

End for

Check for search agents beyond the search space and

modify

Calculate the fitness value for each search agent

𝑋∗ value is updated if there is a better solution

𝑡 = 𝑡 + 1

End while

Return 𝑋∗.

The WOA initiates a collection of random solutions. The search

agents reposition themselves relative to either a randomly

selected search agent or the optimal solution found until the

iteration. The parameter 𝑎 is gradually decreased from 2 to 0,

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.35, August 2024

3

which helps to maintain a balance between the new areas and

the solutions. When|𝐴| > 1, a random search agent is selected

for position update, whereas when|𝐴| < 1, the best solution is

utilized. Depending on the value of 𝑝, the algorithm switches

between spiral or circular movement modes. Termination

occurs upon meeting a predefined criterion.

3. WOA-based Task Scheduling Methods
Recent studies have been directed for task scheduling based on

WOA for efficient resource management in cloud computing

systems. Sreenu et al. [4] presented a task scheduling (TS)

algorithm called W-Scheduler, which combined a multi-

objective model and WOA for cloud computing environments.

The multi-objective model measures the fitness value by

considering CPU cost, memory cost, makespan, and budget

cost. Evaluation results demonstrated that the W-Scheduler

achieved a decreased makespan of 7 and a decreased average

cost of 5.8. The experiments are conducted with limited

resources, which may not accurately represent large-scale

cloud environments. Chen et al. [5] proposed a WOA algorithm

to unravel the optimization problem and an improved approach

called Improved WOA for Cloud task scheduling (IWC). IWC

has presented two optimization strategies such as a nonlinear

convergence factor and adaptive population size. The IWC

approach is implemented and the performance is measured

through simulations of up to 10,000 tasks. The IWC achieved

a time cost of 897 and a load cost of 1567 for optimal task

scheduling plans. It also performed more efficiently at utilizing

the system resources for large-scale and small-scale tasks. Ni

et al. [6] introduced a multi-objective task scheduling strategy

based on Gaussian cloud-whale optimization (GCWOAS2) for

cloud computing environments. WOA based on the GCWOA

is developed to improve randomness and avoid premature

convergence. The GCWOAS2 strategy combined the above

contributions to optimize the task and resulted in 0.2623s

execution time, 0.14489s running time and 0.3302 CPU rate for

100 tasks. Yet, the model lacks complex scenarios with task

dependencies and heterogeneous resources. Jia et al. [7]

introduced an improved whale optimization algorithm (IWC-

TS) for efficient TS in cloud computing environments. The

model introduced an inertial weight strategy and improved

WOA's local search ability and convergence. The results

demonstrated that the model achieved 0.008$ of economic cost,

1.3ms of time consumption, and 0.55 of load for 1000 tasks.

Yet, the model lacks balance in exploration and exploitation

capabilities.

Ababneh et al. [8] introduced a hybrid grey wolf and whale

optimization (HGWWO) algorithm that integrated the Grey

Wolf Optimizer (GWO) and WOA to address the cloud task

scheduling problem effectively. The HGWWO algorithm

integrated the strengths of both metaheuristics and

mathematical models for the fitness function, encompassing

makespan, resource utilization, energy, latency, and task

weights. The results showed that the HGWWO achieved 95s of

makespan, 90% of resource utilization, 9827s of cost and

1923W of energy consumption. The limitation is that the

chosen fitness limitations and parameter values directly impact

the optimization value quality. Sanaj et al. [9] presented a Map-

Reduce Framework and a Genetic Algorithm-based Whale

Optimization Algorithm (MRF-GA-WOA). The model used

Maximized Raleigh QuoFisher Linear Discriminant Analysis

(MRQFLDA) for feature extraction and reduction. The MRF-

GA-WOA algorithm increased convergence and optimized the

scheduling process by integrating the WOA with the GA. Yet,

scalability and robustness for larger or more complex cloud

computing environments remain unexplored. Manikandan et al.

[10] proposed a hybrid Whale optimization algorithm-based

Mutation-based Bee algorithm (MBA) called HWOA-MBA.

The fitness function that combines makespan, energy

consumption, and total power cost is optimized by using WOA,

and the scheduling problem is modelled as a multi-objective

optimization problem. The model resulted in 37542s for

execution time, 96% for throughput and 1340 for

computational cost. The proposed model effectively schedules

tasks by considering task and VM priorities while minimizing

energy consumption.

Chhabra et al. [11] introduced an energy-aware bag-of-tasks

scheduling approach using a Hybrid oppositional Differential

Evolution-enabled Whale Optimization Algorithm (h-

DEWOA). The algorithm used chaotic maps and OBL

techniques to create an initial population, which upgraded the

variety of scheduling solutions. The model evaluated with the

work logs such as CEA-Curie and HPC2N, the makespan was

decreased to 10,488.06s and 11,450.91s, with reduced energy

consumption of 6739.39W and 7097.58W for the initial set.

Yet, the algorithm exhibited longer execution times.

Mangalampalli et al. [12] introduced a prioritized energy-

efficient task scheduling algorithm for cloud computing using

a whale optimization algorithm (PEETS-WS). The model

measured priorities for tasks and VMs based on task length,

processing capacity and electricity cost. The approach resulted

in 1867.2s for makespan, 4145 for total energy cost and 11.56

for energy consumption. The model lacked testing on real cloud

workload traces. Mangalampalli et al. [13] also developed a

multi-objective trust-aware TS algorithm (MOTSWAO) using

WOA in cloud computing. MOTSWAO assigns task priorities

based on task size and VM capacities and sets VM priorities

based on the cost of electricity. The MOTSWAO decreased

energy consumption by 22-43%, makespan by 17-39%,

boosted success rate by 23-68%, process completion efficiency

by 29-84%, availability by 13-60%, and total running time by

10-38% for various workloads along with optimizing trust. Yet,

the model faced challenges in complexity and computational

difficulty in tuning algorithm parameters. Mangalampalli et al.

[14] also proposed a SLA-aware TS algorithm in cloud

computing using WOA (SLA-WOA). By calculating priorities

for tasks and VMs, the algorithm effectively maps high-priority

tasks to high-priority VMs, thereby reducing the overall job

completion time and the number of SLA breaches. SLA

violations are decreased for PSO, ACO, GA, and W-scheduler

up to 63.42%, 23.33%, 55.51% and 40.1% for BigDataBench

workloads and 56.76%, 42.17%, 35.29% and 24.53% for

random workloads. The scheduler WOA not only minimized

completion times but also significantly reduced SLA

violations.

Chakraborty et al. [15] presented a new variant of the WOA

called Elite-Based WOA (EBWOA) to handle the limitations

of the conventional WOA, such as restricted exploration

capabilities and premature convergence. The model removed

the search prey phase and used encircling prey and bubble-net

attack phases, which employed a local elite solution during

exploration, using a global best solution during exploitation.

The model resulted in 10.792s for makespan and 7038.24W for

energy consumption, respectively. The model limitation

includes it only considering encircling prey and bubble-net

attack phases which may restrict exploration. Hosny et al. [16]

proposed a Refined Whale Optimization Algorithm (RWOA),

an optimizing multi-user dependent task offloading in an edge-

cloud computing environment. The model was evaluated based

on performance metrics, namely completion time, energy

consumption, cost usage, and fitness. RWOA outperformed

and achieved optimized fitness by 52.7%. Yet, the model's

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.35, August 2024

4

Computational complexities improve with the number of tasks

and users. Khan et al. [17] presented a Parallel Enhanced Whale

Optimization Algorithm (PEWOA) for scheduling independent

tasks on heterogeneous VMs in the cloud. PEWOA

incorporated an updated encircling manoeuvre, parallelization

and an adaptive bubble net attacking technique that enhanced

diversity, avoided local optima and improved convergence.

The model resulted in 0.74% in resource utilization,

1693.166ms in makespan, 0.605bps in throughput, 0.098s in

response time and 1872.500ms in execution time. Gupta et al.

[18] introduced a Multi-Objective Whale Optimization-Based

Scheduler (WOA-Scheduler) for efficient TS in cloud

computing environments. The methodology involved

integrating WOA with CloudSim, initializing a whale

population representing task allocations, and iteratively

updating positions through exploration and exploitation phases

and improved solutions. The results indicated the WOA

scheduler's effectiveness in adapting to varying cloudlet counts,

VM capacities, realistic task distributions, and user-defined

objective weights. The model resulted in a cost of 6.625$,

execution time of 12.125 seconds and load balancing rate of

1.6154. The model achieved a balance between minimizing

cost and execution time while maintaining an acceptable load

balance. Yet, the model lacked dynamic resource provisioning

strategies.

Table 1 summarizes the advantages and disadvantages of the

discussed WOA-based task scheduling methods. The

discussion of WOA-based task scheduling methods from the

above previous research works highlights the strengths and

weaknesses of WOA compared to the other variants of WOA

algorithms in this context.

Table 1. Comparison of WOA-based Task Scheduling Methods

Authors Method Advantages Disadvantages

Sreenu et al. [4] W-Scheduler Minimized makespan and cost. Poor resource utilization and energy

consumption.

Chen et al. [5] IWC Better resource management. Slow convergence.

Ni et al. [6] GCWOAS2 Reduced task execution time, and

improved resource utilization.

Poor handling of task dependencies and

heterogeneous resources.

Jia et al. [7] IWC-TS Reduced response time. Imbalance between exploration and

exploitation capabilities.

Ababneh et al. [8] HGWWO Better makespan, cost, and resource

utilization.

Poor selection of fitness constraints and

parameter values for faster convergence.

Sanaj et al. [9] MRF-GA-

WOA

Improved the convergence rate Less scalable for complex cloud computing

environments.

Manikandan et al.

[10]

HWOA-MBA Effective handling of VM priorities and

minimized power consumption.

Ignores the total time for scheduling the task.

Chhabra et al. [11] h-DEWOA Reduced energy consumption. Longer execution times.

Mangalampalli et

al. [12]

PEETS-WS Prioritized task and VM mapping with

reduced energy for data centres.

Less effective on dynamic workload traces.

Mangalampalli et

al. [13]

MOTSWAO Minimized task completion time and

execution time with faster convergence.

High memory utilization and less effective on

dynamic workloads.

Mangalampalli et

al. [14]

SLA-WOA Minimized makespan and SLA breaches. High computational complexity.

Chakraborty et al.

[15]

EBWOA Faster convergence and better balance in

exploitation.

Neglects the exploration phase.

Hosny et al. [16] RWOA Improved multi-user dependent task

offloading.

High computational complexity.

Khan et al. [17] PEWOA Higher scalability. Ineffective for dynamic environment.

Gupta et al. [18] WOA-

Scheduler

Better balanced trade-off between

decreasing cost and execution time while

maintaining an acceptable load balance.

Less suitable for dynamic resource

provisioning strategies.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.35, August 2024

5

It is inferred that the WOA-based hybrid optimization methods

provided better task scheduling performance since they solved

the problem of convergence at local optimum solutions.

However, the complexity of many WOA-based algorithms is a

major problem. Also, the complexity of WOA for handling the

scheduling of a larger number of tasks is a concerning

limitation.

4. PERFORMANCE COMPARISON
The discussed research works have performed experiments for

justifying efficient task scheduling using CloudSim 3.0.2. The

workload, involving a combination of interactive and batch

processing tasks, encompasses tasks associated with managing

and processing accounting records for the 128 nodes. Details

include the runtime, number of nodes, user commands and start

time. The commonly used performance metrics are Energy

Consumption, Execution Time, Response Time, and Cost. The

available results for the metrics by the discussed methods are

summarized in Table 2.

The results summarized in Table 2 show that the WOA-based

task scheduling methods were efficient in task scheduling for

different scenarios. Based on the comparison results in those

research studies, the WOA-based task scheduling methods

outperformed the other task scheduling methods, especially the

other metaheuristic algorithms-based task scheduling methods.

Results and analysis illuminated the performance of each WOA

variant concerning predefined metrics. Variants showcased

diverse strengths and weaknesses, influenced by factors such as

convergence speed, solution quality, and computational

efficiency. Contextualizing findings within task scheduling

optimization underscored the practical implications of WOA-

based algorithms, yet limitations and avenues for further

research were acknowledged. Hybridization emerged as a

promising avenue for enhancing WOA-based task scheduling

methods. By integrating WOA with complementary techniques

such as local search heuristics or problem-specific strategies,

hybrid methods have the potential to mitigate weaknesses and

capitalize on strengths inherent in both WOA and its

counterparts. When compared to standalone methods of the

WOA variant, the hybrid model provides higher performance,

increased computational efficiency and robustness across

diverse problem instances.

The research studies conducted experiments in various

scenarios, involving different numbers of tasks and virtual

machines (VMs). The results summarized in Table 2 indicate

that WOA-based task scheduling methods generally performed

well across a range of scenarios, with specific metrics such as

energy consumption, execution time, response time, and cost

being key performance indicators. Energy consumption was a

critical metric in scenarios where it was measured. For instance,

HGWWO [8] and EBWOA [15] showed significant energy

usage, highlighting the importance of energy efficiency in

cloud environments.

Table 2. Performance Results of WOA-based Task Scheduling Methods

Methods No. of

Tasks

No of VMs Energy (W) Execution time

(s)

Response

time (s)

Cost ($)

W-Scheduler [4] 400 40 - 7.76 8.25 5.8

IWC [5] 1000 40 - 3.876 2.334 0.22

GCWOAS2 [6] 1000 40 - 0.2623 4.865 -

IWC-TS [7] 1000 100 - 0.543 1.3 100

HGWWO [8] 500 32 1.923 125.6 95 188

MRF-GA-WOA [9] 500 50 - 255 220 -

HWOA-mBA [10] 100 40 - 336.57 375.42 1340

h-DEWOA [11] 400 48 6739.39 120.05 104.88 -

PEETS-WS [12] 1000 100 11.56 964.2 103.42 4145

MOTSWAO [13] 1000 30 112.34 119.1 95.62 -

SLA-WOA [14] 1000 20 - 200.45 189.95 1653

EBWOA [15] 100 10 7038.24 12.34 10.792 -

RWOA [16] 200 10 362.36 18.765 21.05 5.33

PEWOA [17] 1000 32 - 0.098 187.25 -

WOA-Scheduler [18] 50 5 - 12.125 11.453 265.3

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.35, August 2024

6

Figure.1. Execution Time Comparison

In Figure 1, execution time varied significantly among the

methods. For example, IWC-TS [7] achieved a notably low

execution time (0.543s) for 1000 tasks, showcasing the

efficiency of the method in handling large workloads.

Figure.2. Response Time Comparison

Response time was another crucial metric. Methods like IWC

[5] and GCWOAS2 [6] demonstrated relatively low response

times, indicating their effectiveness in minimizing delays in

task processing. Cost was a variable factor across different

methods, with some like IWC [5] achieving a minimal cost of

$0.22, while others like PEETS-WS [12] incurred much higher

costs, reflecting the trade-offs between performance and

economic efficiency.

The analysis indicates that WOA-based methods generally

outperformed other metaheuristic algorithms in task scheduling

efficiency. For example, methods like GCWOAS2 [6] and

IWC-TS [7] delivered superior performance in terms of

execution and response times, making them suitable for

scenarios requiring rapid task processing. The various WOA

variants displayed different strengths and weaknesses, often

influenced by factors like convergence speed, solution quality,

and computational efficiency. For instance, while some

methods like MRF-GA-WOA [9] showed excellent

convergence in terms of execution time, others like HWOA-

mBA [10] struggled with significantly higher execution times.

The research highlighted hybridization as a promising strategy

to enhance WOA-based methods. By integrating WOA with

complementary techniques such as local search heuristics or

problem-specific strategies, hybrid models like MOTSWAO

[13] were able to mitigate some of the inherent weaknesses of

standalone WOA, offering improved performance,

computational efficiency, and robustness across various

problem instances.

The findings underscore the practical utility of WOA-based

task scheduling methods in cloud computing environments,

particularly in scenarios requiring optimized resource

allocation and task management. However, the performance of

these methods can vary depending on specific workload

characteristics and environmental factors. Despite the

promising results, the research also acknowledged limitations

in the existing WOA-based methods, such as the potential for

high energy consumption and the need for improved cost

efficiency. Future research could explore further hybridization,

dynamic adaptation techniques, and the application of WOA in

emerging cloud computing paradigms like edge computing

architectures.

5. CONCLUSION
This review paper has given a detailed overview of utilizing

standalone WOA variants and hybrid WOA methods in task

scheduling within cloud environments. Through an elaborate

and extensive study and examination of various WOA methods

in task scheduling, several observations and insights have been

developed. These adaptations exhibit the versatility of WOA

and its potential to suit varying requirements and constraints of

cloud-based scheduling scenarios. Against the traditional

optimization algorithm, the different WOA-based approaches

have illustrated the competitive performance in solution

quality, convergence speed, adaptability to dynamic

environments and robustness. These models have demonstrated

their effectiveness in reducing execution time, minimizing

energy consumption, improving resource utilization, and

optimizing cost-related objectives. In cloud computing

systems, the WOA has great potential for optimizing and

enhancing the performance of task scheduling methods. The

insights from the survey serve as a valuable resource and

information for practitioners and researchers to guide the

development of innovative scheduling methods that harness the

full potential of WOA for optimizing resource utilization,

enhancing the system performance and advancing techniques

in cloud computing.

While the current applications of WOA in cloud computing

task scheduling are impressive, several avenues for future

research and development remain unexplored. Future research

could focus on developing advanced hybrid models that

integrate WOA with emerging optimization techniques, such as

machine learning-based predictive models or quantum-inspired

algorithms. These integrations could enhance WOA's ability to

handle increasingly complex and dynamic cloud environments.
As cloud environments continue to grow in size and

0

200

400

600

800

1000

1200

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Methods

W-Scheduler [4] IWC [5]
GCWOAS2 [6] IWC-TS [7]
HGWWO [8] MRF-GA-WOA [9]
HWOA-mBA [10] h-DEWOA [11]
PEETS-WS [12] MOTSWAO [13]
SLA-WOA [14] EBWOA [15]
RWOA [16] PEWOA [17]
WOA-Scheduler [18]

0

50

100

150

200

250

300

350

400

R
e

sp
o

n
se

 T
im

e
 (

s)

Methods

W-Scheduler [4] IWC [5]
GCWOAS2 [6] IWC-TS [7]
HGWWO [8] MRF-GA-WOA [9]
HWOA-mBA [10] h-DEWOA [11]
PEETS-WS [12] MOTSWAO [13]
SLA-WOA [14] EBWOA [15]
RWOA [16] PEWOA [17]
WOA-Scheduler [18]

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.35, August 2024

7

complexity, there is a need to scale WOA-based methods

effectively. Research could explore distributed and parallelized

WOA algorithms capable of handling large-scale task

scheduling in real-time, ensuring that performance gains are

maintained even as the system scales. Developing dynamic

adaptation mechanisms that allow WOA-based models to

adjust their strategies in real-time based on changing workloads

or system conditions could further enhance their applicability

in highly volatile cloud environments. Future studies could

focus on refining WOA-based methods to align with green

computing initiatives, emphasizing energy efficiency and

sustainability. This could involve optimizing energy

consumption not just at the task level, but across the entire

cloud infrastructure, including data centers and network

resources. Combining WOA with cost-effective energy models

could lead to the development of task scheduling algorithms

that balance performance and environmental impact, offering

cloud providers more sustainable and economically viable

solutions. As cloud systems become more complex, ensuring

security and reliability in task scheduling is crucial. Future

research could explore how WOA-based methods can be

extended or hybridized with security-focused algorithms to

address potential vulnerabilities and ensure reliable task

execution. Enhancing the resilience of WOA-based scheduling

models against system failures or attacks could be another

promising direction, ensuring continuous and reliable service

in cloud environments.

6. REFERENCES
[1] Arunarani, A. R., Manjula, D., and Sugumaran, V. 2019.

Task scheduling techniques in cloud computing: A

literature survey. Future Generation Computer Systems,

91, 407-415.

[2] Houssein, E. H., Gad, A. G., Wazery, Y. M., and

Suganthan, P. N. 2021. Task scheduling in cloud

computing based on meta-heuristics: review, taxonomy,

open challenges, and future trends. Swarm and

Evolutionary Computation, 62, 100841.

[3] Mirjalili, S., and Lewis, A. 2016. The whale optimization

algorithm. Advances in engineering software, 95, 51-67.

[4] Sreenu, K., and Sreelatha, M. 2019. W-Scheduler: whale

optimization for task scheduling in cloud computing.

Cluster Computing, 22, 1087-1098.

[5] Chen, X., Cheng, L., Liu, C., Liu, Q., Liu, J., Mao, Y., and

Murphy, J. 2020. A WOA-based optimization approach

for task scheduling in cloud computing systems. IEEE

Systems Journal, 14(3), 3117-3128.

[6] Ni, L., Sun, X., Li, X., and Zhang, J. 2021. GCWOAS2:

multi-objective task scheduling strategy based on

Gaussian cloud-whale optimization in cloud computing.

Computational Intelligence and Neuroscience, 2021, 1-17.

[7] Jia, L., Li, K., and Shi, X. 2021. Cloud computing task

scheduling model based on improved whale optimization

algorithm. Wireless Communications and Mobile

Computing, 2021, 1-13.

[8] Ababneh, J. 2021. A hybrid approach based on grey wolf

and whale optimization algorithms for solving cloud task

scheduling problem. Mathematical Problems in

Engineering, 2021, 1-14.

[9] Sanaj, M. S., and Prathap, P. J. 2021. An efficient

approach to the map-reduce framework and genetic

algorithm-based whale optimization algorithm for task

scheduling in cloud computing environment. Materials

Today: Proceedings, 37, 3199-3208.

[10] Manikandan, N., Gobalakrishnan, N., and Pradeep, K.

2022. Bee optimization based random double adaptive

whale optimization model for task scheduling in cloud

computing environment. Computer Communications,

187, 35-44.

[11] Chhabra, A., Sahana, S. K., Sani, N. S., Mohammadzadeh,

A., and Omar, H. A. 2022. Energy-aware bag-of-tasks

scheduling in the cloud computing system using hybrid

oppositional differential evolution-enabled whale

optimization algorithm. Energies, 15(13), 4571.

[12] Mangalampalli, S., Swain, S. K., and Mangalampalli, V.

K. 2022. Prioritized energy efficient task scheduling

algorithm in cloud computing using whale optimization

algorithm. Wireless Personal Communications, 126(3),

2231-2247.

[13] Mangalampalli, S., Karri, G. R., and Kose, U. 2023.

Multi-Objective Trust aware task scheduling algorithm in

cloud computing using Whale Optimization. Journal of

King Saud University-Computer and Information

Sciences, 35(2), 791-809.

[14] Mangalampalli, S., Swain, S. K., Karri, G. R., and Mishra,

S. 2023. SLA Aware Task-Scheduling Algorithm in

Cloud Computing Using Whale Optimization Algorithm.

Scientific Programming, 2023.

[15] Chakraborty, S., Saha, A. K., and Chhabra, A. 2023.

Improving whale optimization algorithm with elite

strategy and its application to engineering design and

cloud task scheduling problems. Cognitive Computation,

1-29.

[16] Hosny, K. M., Awad, A. I., Khashaba, M. M., Fouda, M.

M., Guizani, M., and Mohamed, E. R. 2023. Optimized

multi-user dependent tasks offloading in edge-cloud

computing using refined whale optimization algorithm.

IEEE Transactions on Sustainable Computing.

[17] Khan, Z. A., Aziz, I. A., Osman, N. A. B., and Nabi, S.

2024. Parallel Enhanced Whale Optimization Algorithm

for Independent Tasks Scheduling on Cloud Computing.

IEEE Access.

[18] Gupta, S., and Singh, R. S. 2024. User-defined weight-

based multi-objective task scheduling in cloud using

whale optimization algorithm. Simulation Modelling

Practice and Theory, 102915.

IJCATM : www.ijcaonline.org

