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ABSTRACT 

Plant diseases are a major challenge for global food safety, and 

therefore it is impossible to underestimate the role of diagnostic 

methods. This paper promotes an integrated scheme that 

combines the capabilities of CNN and InceptionV3 models in 

order to diagnose plant disease. The proposed model integrates 

image processing algorithms, feature extraction techniques and 

ensemble learning in order to enhance accuracy and robustness. 

For evaluation purposes, we have used an all-inclusive dataset 

containing various ailments associated with corn maize rust, 

potato early blight, and tomato early blight. The dataset was 

divided into an 80-20 split ratio for training and testing 

respectively. Our findings are highly encouraging since the 

hybrid model recorded an accuracy level of 98.04%. Therefore, 

this research advances detection methodologies for plant 

ailments which could provide a dependable solution for use in 

agriculture. There is also future work that looks at tribrid models 

as well as comparison with existing literature to further enhance 

detection accuracy. 

Keywords 

Plant Disease, Deep Learning, Hybrid Model, Smart Farming 

1. INTRODUCTION 
Diseases in plants are a major threat to worldwide agriculture, 

which can affect agricultural yields, food security and 

economic stability. If left uncontrolled, these diseases caused 

by pathogens such as fungi, bacteria and viruses and other 

factors of the environment can cause huge crop losses. Plant–

pathogen interrelationships are complicated and are influenced 

by fluctuating conditions that need advanced detection and 

management approaches. Rapid, accurate diagnosis is vital for 

identifying diseases in plants that can prompt measures to stop 

their spread & minimize financial impacts. To maintain a 

secure and stable global food supply it is necessary to deal with 

these problems. The growing concern over plant diseases 

endangering global food security has driven the development 

of sophisticated mechanisms of detection for timely 

intervention. This study investigates the use of DL models for 

plant diseases aiming at comparing its accuracy with other 

models. We aim at evaluating disease identification precision 

through integration with different techniques covering 

machine learning, image processing and biological knowledge. 

The crucial part of this project is the relative assessment 

among the existing models. In making such a comparison, we 

aim to identify what these models can do well or poorly. The 

outcomes of this study will not only help in coming up with 

methods for detecting diseases in plants but also result in us 

working on the development of a model that can accurately 

sense disease. 

The model to be tested and trained is based on an extensive 

dataset that contain healthy and diseased leaves. This set 

includes diverse plant species and diseases which make it 

possible for the model to generalize results. Such a wide range 

of types enables the efficient identification of plants in different 

farming regions. It also helps improve its interpretational 

capacity by detecting image characteristics that are unique to 

specific illnesses. Thus, this design may eventually result in a 

more accurate disease diagnosis based on context with a 

detailed understanding of what is happening within crop 

tissues at the moment of capturing imagery from them by the 

model.  

Moreover, this research seeks to build a bridge between the two 

by making practical suggestions for the reality. We anticipate 

that consulting agronomists and industrial partners will ensure 

our models are both precise and credible as well as easily 

adaptable to real field conditions. Additionally, this 

partnership will help bring in cutting edge technologies into 

current agricultural practices thereby benefiting farmers and 

other stakeholders in agriculture sector. Our aim is to make 

significant contributions towards plant disease detection and 

management, thus enhancing global food security through an 

interdisciplinary approach. To sum up, this research also aims 

at creating new technological prototypes besides using deep 

learning (DL) models for plant disease detection. In addition, 

the comparison with different models and exploring various 

approaches contribute to the advancement of precision, 

dependability and promptness of identifying a wide range of 

diseases on plants globally promoting the aim of ensuring food 

safety at large scale. 

2. LITERATURE SURVEY 
Traditional visual scouting methods [1] for detecting plant 

diseases often miss asymptomatic infections, necessitating the 

use of more advanced techniques like DNA-based or 

serological methods, such as PCR and ELISA, which are 

specific and sensitive but also laborious. Recent 

advancements have focused on combining soft computing 

with molecular techniques to improve detection efficiency. 

The integration of machine learning and nanotechnology 

presents a promising avenue for transforming infection 

detection systems and enhancing crop management practices 

while addressing food safety concerns. 

Deep learning models have shown significant promise in 

classifying plant diseases from images, as demonstrated by a 

study using a 26-layer model on the BJFU100 dataset, 

achieving 91.78% accuracy [2]. However, challenges such as 
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complex backgrounds and uneven lighting persist. Another 

study investigated various deep learning architectures using 

the PlantVillage dataset, finding that ResNet50 performed 

best under specific conditions, while networks like AlexNet 

and SqueezNet were less effective [3] [4] 

The OMNCNN model, incorporating elements like ELM for 

classification and BF for preprocessing [20], achieved a high 

accuracy of 98.7%, outperforming other models like CNN-

LVQ and VGG-16 [5]. Further research explored an 

optimized deep learning algorithm for herb plant disease 

classification, demonstrating superior performance metrics 

such as prediction rate and F-measure [6]. Data augmentation 

techniques and hyperparameter optimization, especially in 

ResNet-9, led to exceptional test accuracy and detection rates 

for specific diseases like blight in potatoes and tomatoes [7] 

While both machine learning (ML) and deep learning (DL) 

techniques have been explored for plant disease detection, DL 

methods generally offer better performance, with models like 

VGG-16 achieving higher accuracy and precision compared 

to traditional ML approaches like Random Forest (RF) [8]. 

The development of mobile applications for disease diagnosis 

has also been suggested, allowing farmers to upload pictures 

for analysis. Future research aims to integrate IoT, cloud 

computing, and big data to enhance image processing 

capabilities and explore advanced classification methods [9]. 

Beyond image analysis, other advanced techniques include 

infrared thermal imaging for detecting temperature changes 

associated with diseases, as shown in studies on tea and 

tomato plants [10]. Spectroscopy and remote sensing 

technologies provide high spatial resolution for early infection 

detection, distinguishing between healthy and infected plants 

based on chlorophyll levels and other biomarkers [11]. 

Additionally, nucleic acid and protein analysis, along with 

mobility spectrometers and lateral flow devices, offer 

alternative methods for early disease detection [12]. Despite 

these advancements, there remains a need for accessible and 

efficient diagnostic tools that can be used widely in 

agricultural practices [13]. 

3. MATERIALS AND METHOD 

3.1 Proposed Model 
The proposed methodology for plant disease detection employs 

a hybrid model approach that integrates deep learning 

techniques. The process begins with dataset acquisition and 

pre-processing, followed by partitioning the data into training, 

validation, and testing sets. The dataset includes approximately 

87,000 images of healthy and diseased crop leaves, sourced 

from the new plant disease dataset and augmented from the 

original PlantVillage dataset. For this study, only three disease 

categories are considered: Corn Maize - Common Rust, Potato 

- Early Blight, and Tomato - Early Blight[15]. The dataset is 

split into 80% for training and 20% for validation, while a 

separate directory is maintained for testing images. This 

structure supports effective training and testing of the detection 

models. During model selection, two deep learning models are 

chosen, and their feature extraction layers are frozen. The 

features extracted from both models are flattened and 

concatenated into a single feature vector, forming a hybrid 

model that learns from both sets of features. A dense layer with 

512 units and ReLU activation, followed by a dropout layer, is 

employed to process these features and prevent overfitting. The 

final dense layer, with softmax activation, outputs the 

probabilities for each class, with training focused on 

minimizing the categorical cross-entropy loss. 

In the evaluation phase, the hybrid model's performance is 

assessed using several metrics, including training accuracy, 

validation accuracy, training loss, and validation loss. Training 

accuracy reflects the percentage of correct predictions on the 

training samples, while validation accuracy indicates the 

model's accuracy on the validation set. Similarly, training loss 

measures the average error over all training samples, and 

validation loss gauges how well the model generalizes to new, 

unseen data. These metrics collectively provide insight into the 

model's ability to accurately detect and classify plant diseases, 

highlighting its effectiveness and potential areas for 

improvement represented in Figure 1. 

Table 1. Plant disease dataset 

 

Disease Train  Validation 

Corn Maize – Healthy 1859 465 

Corn Maize – Common Rust 1907 477 

Potato – Healthy 1824 456 

Potato – Early Blight 1939 485 

Tomato – Healthy 1926 481 

Tomato – Early Blight 1920 480 

Total 11375 2846 
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Fig 1: Proposed Model 

 

Fig 2: (a) Tomato Early Blight (b) Potato Early Blight (c) 

Corn Maize Common Rust  

 

Fig 3: (a) Tomato Healthy (b) Potato Healthy (c) Corn 

Maize Healthy  

3.2 Theoretical Background 

3.2.1 CNN 

CNNs are the most commonly used deep learning algorithms 

in image classification and analysis. Three main types of layers 

constitute CNNs: pooling, fully connected, and convolutional 

layers. Convolutional and Pooling Layers play a vital part in 

feature extraction from input data [16]. This is the layer that 

extracts different features from images. When going deeper 

into the network, it extract more complex information such as 

object orientation or texture whereas at its initial stages, learns 

trivial properties like edges and boundaries [19]. 

3.2.2 InceptionV3 
InceptionV3, a convolutional neural network (CNN) model, is 

designed with several key layers for efficient image data 

processing, starting with an input layer that accepts three-

channel RGB images. The model's core consists of 

convolutional layers that extract features from the input data, 

utilizing various filter sizes within inception modules to capture 

both fine-grained and coarse-grained information 

simultaneously. Pooling layers reduce the spatial dimensions of 

feature maps, retaining essential information, while batch 

normalization layers stabilize and accelerate training. 

Activation functions like ReLU introduce non-linearity, 

enabling the network to learn complex features [22].  

3.2.3 MobileNet 
MobileNet is a convolutional neural network (CNN) 

architecture designed for devices with limited computational 

power, offering efficiency and speed ideal for low-power, real-

time processing. Its standout feature is the use of depth-wise 

separable convolutions, which split regular convolutions into 

depth-wise and pointwise convolutions. This separation 

significantly reduces computational costs while maintaining 

high accuracy. MobileNet's lightweight architecture, with 

fewer parameters than traditional CNNs, enhances its speed 

and efficiency. It also includes components like batch 

normalization to accelerate learning, rectified linear unit 

activation functions for non-linearity, and down sampling 

layers that reduce feature map sizes, retaining essential 

information. 

3.2.4 ResNet50 

ResNet50, a deep neural network architecture, is constructed 

by stacking multiple layers and commonly uses a 3-channel 

RGB image format in its input layer. Its key feature is the use 

of residual blocks, which include skip connections to mitigate 

the vanishing gradient problem in deep networks, enabling the 

training of deeper architectures. These blocks vary in the 

number of layers to capture different levels of abstraction. 
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ResNet50 employs pooling layers to reduce spatial dimensions 

and retain meaningful information, while batch normalization 

layers stabilize and accelerate the training process, despite 

occasional instability. The network introduces non-linearity 

through activation functions like ReLU, allowing it to 

recognize complex patterns in the input data [17].   

3.2.5 VGG16 
VGG16 is a straightforward yet effective convolutional neural 

network (CNN) architecture [14] consisting of 16 layers, 

including convolutional layers, pooling layers, fully connected 

layers, and an output layer. It processes 224x224 RGB images 

as input. The convolutional layers use small 3x3 filters with a 

stride of 1 pixel to extract detailed features from the images. 

Max pooling layers then reduce the spatial dimensions of the 

feature maps by selecting the maximum value from each group 

of pixels, retaining the most relevant information [23]. 

3.3 Hybrid Models 

3.3.1 Inception - CNN 
The hybrid model architecture combines the InceptionV3 

architecture for feature extraction with a customized CNN 

model, leveraging the pre-trained weights from ImageNet for 

the InceptionV3's top classification layers. With an input shape 

of (224, 224, 3), this hybrid model utilizes the multi-scale 

information extracted by InceptionV3 and passes it to 

subsequent CNN layers for further processing and 

classification. Initially, only the last four layers of each model 

were unfrozen to allow fine-tuning during training, while the 

rest retained their pre-trained weights, preserving the learned 

characteristics. Both models were then trained to produce flat 

outputs for concatenation, ensuring effective integration of 

features. This integration enables the hybrid model to learn 

diverse feature representations and reduces sensitivity to noise. 

The concatenated features are processed by two dense layers 

with ReLU activation functions and dropout layers to prevent 

overfitting. The final layer uses a softmax activation function 

to calculate class probabilities, categorizing input images into 

one of six specified classes.  

InceptionV3 and CNN for Plant Disease Detection  

Input: X  

d: dataset of RGB images of plant leaves 

l: true labels for the images 

Output: Score obtained for the hybrid model on the test dataset 

    

1: For each epoch do:  

2:   #CNN Feature Extraction    

3:        For each convolution layer do:  

4:            For each sample in X do:  

5:              Calculate 𝑎𝑖𝑗
𝑚 from X by the convolution 

layer process  

6:            End for  

7: #Dimensions of a is (512 – KernelSize + 1, FilterSize)        

8:                If 𝑎𝑖𝑗
𝑚 length < 512 do:   

9:                    Apply zero padding to 𝑎𝑖𝑗
𝑚 

10:                    #Dimension of a is (512, FilterSize)    

11:             End If  

12:      End For  

13:      #Dimension of a is (512, 512)   

#InceptionV3 Feature Extraction  

14:       For each convolution layer do:  

15:          For each sample in X do:     

16:            Apply Inception Module on X  

17:              Calculate 𝑎𝑖𝑗
𝑚 from X  

18:            End for  

19:       #Dimension of a is (1, num_filters)  

20:       End for  

  

#Hybrid Model  

21: let fet be the feature set of images in d  

22: for each image img in data do  

23:   preprocess img for input into CNN and Inception  

24: end for  

25: train_fet, test_fet, train_label, test_label split feature set and 

labels into train and test subset 26: train and test the Inception 

model  

27: M_inception <- InceptionModel (train_fet, train_label)   

28: inception_train <- M_inception.predict(train_fet)   

29: inception_test <- M_inception.predict(test_fet)   

30: train and test the CNN model  

31: M_CNN <- CNNModel(train_fet, train_label)   

32: CNN_train <- M_CNN.predict(train_fet)   

33: CNN_test <- M_CNN.predict(test_fet)  

34: model_train <- concatenate (CNN_train, inception_train)   

35: model_test <- concatenate (CNN_test, inception_test)   

36: merged_model <- Dense (inception_train, CNN_train)   

37: score <- evaluate(model_test, test_label)  

38: return score   

3.3.2 Inception - MobileNet 
The hybrid model architecture merges features from MobileNet 

and InceptionV3 for image classification, leveraging the 

strengths of both CNN architectures to enhance overall 

performance. This approach involves unfreezing the last four 

layers of both MobileNet and InceptionV3 models for fine-

tuning, while keeping the remaining layers frozen with their 

pre-trained weights [21]. This strategy allows the model to 

adapt to specific dataset characteristics while retaining the 

beneficial features learned from the original models. Once 

unfreezing is complete, the output features are flattened and 

merged into a unified feature vector, which is then processed 

through two dense layers with ReLU activation functions and 

dropout layers to mitigate overfitting. The final layer uses a 

softmax activation function to estimate class probabilities, 

categorizing input images into predefined classes. This 

combined architecture offers improved accuracy and 

robustness in classification by harnessing the diverse strengths 

of both MobileNet and InceptionV3. 

 

InceptionV3 and MobileNet for Plant Disease Detection  

 Input: X  

 d: dataset of RGB images of plant leaves 

 l: true labels for the images 

 Output: Score obtained for the hybrid model on the test dataset 

   

 1: For each epoch do:  

 2:   #MobileNet Feature Extraction  

 3:       For each convolution layer do:  

 4:          For each sample in X do:  

 5:            apply depth wise convolution layer       

 6:            apply point wise convolution layer  

       End for  

 7:        # Dimension of a is (1, num_filters)  

 8:              If 𝑎𝑖𝑗
𝑚 length < 512 do:  

 9:                    Apply zero padding to 𝑎𝑖𝑗
𝑚  

 10: # Dimension of a is (512, FilterSize)    
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 11:             End If  

 12:      End For  

 13:      #Dimension of a is (512, 512)   

   

 #InceptionV3 Feature Extraction  

 14:       For each convolution layer do:  

 15:          For each sample in X do:     

 16:            Apply Inception Module on X  

 17:              Calculate 𝑎𝑖𝑗
𝑚 from X  

 18:            End for  

 19:       #Dimension of a is (1, num_filters)  

 20:       End for  

 

 #Hybrid Model  

 21: let fet be the feature set of images in d  

 22: for each image img in data do  

 23:   preprocess img for input into Inception and 

MobileNet  

 24: end for  

 25: train_fet, test_fet, train_label, test_label split feature set 

and labels into train and test subset   

 26: train and test the Inception model  

 27: M_inception <- InceptionModel (train_fet, train_label)   

 28: inception_train <- M_inception.predict(train_fet)   

 29: inception_test <- M_inception.predict(test_fet)    

 30: train and test the MobileNet model  

 31: M_mobile <- MobileNetModel(train_fet, train_label)   

 32: mobile_train <- M_mobile.predict(train_fet)  

 33: mobile_test  <- M_mobile.predict(test_fet)  

 34: model_train <- concatenate (mobile_train, inception_train)   

 35: model_test  <- concatenate (mobile_test, inception_test)   

 36: merged_model <- Dense (inception_train, mobile_train)   

 37: score <- evaluate(model_test, test_label)  

 38: return score   

  

3.3.3 Inception - ResNet50 
The hybrid model integrates features from the powerful 

Inception and ResNet50 architectures, utilizing residual 

connections for enhanced training. Initially, the last four layers 

of each model are unfrozen for fine-tuning, while earlier layers 

remain fixed with their pre-trained weights. After unfreezing, 

outputs from both models are flattened and concatenated, 

enabling the model to combine extracted features effectively. 

This fusion captures a broader range of information from input 

images, enhancing the model's ability to learn discriminative 

representations. The concatenated features are then processed 

through additional layers, including two dense layers with 

ReLU activation functions, which refine the features for 

classification. Dropout layers are included after each dense 

layer to prevent overfitting. The final output layer uses a 

softmax activation function to predict class probabilities, 

categorizing images into one of six predefined classes. By 

combining Inception and ResNet50, this hybrid approach aims 

to improve generalization and predictive accuracy on unseen 

data 

.InceptionV3 and ResNet50 for Plant Disease Detection  

 Input: X  

 d: dataset of RGB images of plant leaves 

 l: true labels for the images 

 Output: Score obtained for the hybrid model on the test dataset 

 

 1: For each epoch do:  

 2:   #ResNet50 Feature Extraction  

 3:       For each convolution layer do:  

 4:          For each sample in X do:  

 5:            Apply convolution layer 1, 2, 3 

        Apply Shortcut Connection 

 6:          End for  

 7: #Dimensions of a is (height, width, FilterSize)    

 8:              If 𝑎𝑖𝑗
𝑚 length < 512 do:  

 9:                    Apply zero padding to 𝑎𝑖𝑗
𝑚    

 10: #Dimension of a is (512, FilterSize)    

 11:             End If  

 12:      End For  

 13:      #Dimension of a is (512, 512)   

   

 #InceptionV3 Feature Extraction  

 14:       For each convolution layer do:  

 15:          For each sample in X do:     

 16:            Apply Inception Module on X  

 17:              Calculate 𝑎𝑖𝑗𝑚 from X  

 18:            End for  

 19:       #Dimension of a is (1, num_filters)  

 20:       End for  

   

 #Hybrid Model  

 21: let fet be the feature set of images in d  

 22: for each image img in data do  

 23:   preprocess img for input into Inception and 

MobileNet  

 24: end for  

 25: train_fet, test_fet, train_label, test_label split  feature set 

and labels into train and test subset   

 26: train and test the Inception model  

 27: M_inception <- InceptionModel (train_fet, train_label)   

 28: inception_train <- M_inception.predict(train_fet)   

 29: inception_test <- M_inception.predict(test_fet)  

 30: train and test the ResNet model  

31: M_resnet <- ResNetModel(train_fet, train_label)   

32: resnet_train <- M_resnet.predict(train_fet)   

33: resnet_test <- M_resnet.predict(test_fet)  

34: model_train <- concatenate (resnet_train, inception_train)   

35: model_test <- concatenate (mobile_test, inception_test)   

36: merged_model <- Dense (resnet_train, inception_train)   

37: score <- evaluate(model_test, test_label)  

38: return score   

3.3.4 Inception - VGG16 
The proposed hybrid model integrates features from the 

InceptionV3 and VGG16 architectures, aiming to leverage their 

unique strengths for enhanced image classification 

performance. This approach involves unfreezing the last four 

layers of both models for fine-tuning, while keeping the 

remaining layers frozen with their pre-trained weights. This 

allows the model to adapt to the specific dataset while still 

benefiting from the robust features extracted by the original 

models. After unfreezing, the outputs from both models are 

flattened and concatenated into a single combined feature 

vector. This vector is then passed through a dropout layer to 

reduce overfitting, followed by two dense layers with ReLU 

activation functions to refine the features for better 

classification. The final layer uses a softmax activation 

function to predict class probabilities, categorizing images into 

one of six predefined classes. By combining the distinctive 

characteristics of InceptionV3 and VGG16, this hybrid model 

aims to achieve improved performance and generalization, 

potentially leading to more accurate and robust classification 

outcomes. 
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 InceptionV3 and VGG16 for Plant Disease Detection  

 Input: X  

 d: dataset of RGB images of plant leaves 

 l: true labels for the images 

 Output: Score obtained for the hybrid model on the test dataset 

   

 1: For each epoch do:  

 2:   #VGG16 Feature Extraction  

 3:       For each convolution layer do:  

 4:          For each sample in X do:  

 5:            Apply convolution   

             End for  

 6: #Dimensions of a is (height, width, FilterSize)   

 7:              If 𝑎𝑖𝑗
𝑚  length < 512 do:   

 8:                    Apply zero padding to 𝑎𝑖𝑗
𝑚    

 9: #Dimension of a is (512, FilterSize)    

 10:             End If  

 11:      End For  

12:      #Dimension of a is (512, 512)    

  

13:   #InceptionV3 Feature Extraction  

14:       For each convolution layer do:  

15:          For each sample in X do:     

16:            Apply Inception Module on X  

17:              Calculate 𝑎𝑖𝑗
𝑚  from X  

18:            End for  

19:       #Dimension of a is (1, num_filters) 

20:       End for  

 

#Hybrid Model  

21: let fet be the feature set of images in d  

22: for each image img in data do  

23:   preprocess img for input into Inception and 

MobileNet  

24: end for  

25: train_fet, test_fet, train_label, test_label split feature set and 

labels into train and test subset   

26: train and test the Inception model  

27:M_inception <- InceptionModel (train_fet, train_label)   

28: inception_train <- M_inception.predict(train_fet)   

29: inception_test <- M_inception.predict(test_fet)    

30: train and test the VGG model  

31: M_VGG <- VGGModel(train_fet, train_label)   

32: VGG_train <- M_VGG.predict(train_fet)   

33: VGG_test <- M_VGG.predict(test_fet)  

34:model_train <- concatenate (VGG_train, inception_train)   

35: model_test <- concatenate (VGG_test, inception_test)   

36: merged_model <- Dense (inception_train, VGG_train)   

37: score <- evaluate(model_test, test_label)  

38: return score   

4. RESULTS AND DISCUSSION 
Table 2 displays the accuracy scores achieved by various 

hybrid models in the plant disease detection task. The 

accuracies of hybrid models are comparative to those of single 

models when they are made by combining features from 

multiple pre-trained models. This would imply that overall 

performance can be improved if we leverage on the capabilities 

of different architectures through model fusion. The fact that 

these hybrid models have higher accuracies than others which 

involve InceptionV3 and MobileNet implies that these two 

networks are good at capturing diverse and complementary 

features, thus improving their detection capacity. Nonetheless, 

compared with separate implementations, InceptionV3-

ResNet50 is a better choice than Resnet50 with low accuracy. 

This may lead to slight decrease of accuracy by fused model 

such as InceptionV3-ResNet50 or less accurate individual 

model ResNet50. Pretrained architecture provides a new 

opportunity for detecting diseases due to their collective ability. 

Table 2. Accuracy Comparison of used models 

 

 

Fig. 4. InceptionV3 Accuracy Graph 

Fig. 5. ResNet50 Accuracy Graph 

 

Fig. 6.  CNN Accuracy Graph 

Model Accuracy 

InceptionV3+CNN 95.32 

InceptionV3+Resnet50 94.96 

InceptionV3+MobileNet 98.40 

InceptionV3+VGG16 97.84 
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Fig. 7. MobileNet Accuracy Graph 

 

Fig. 8. CNN + InceptionV3 Accuracy Graph 

        

                 

 

 

 

 

 

Fig. 9. VGG16 + InceptionV3 Accuracy Graph 

 

        Fig.10. ResNet50 + InceptionV3 Accuracy Graph 

 

 

 

 

 

 

Fig. 

11. MobileNet + InceptionV3 Accuracy Graph 

5. CONCLUSION AND FUTURE WORK 
The study illustrates the effectiveness of various pretrained 

models and hybrid methodologies in the detection of plant 

diseases. Our findings indicate that models such as MobileNet 

achieve notable accuracies, suggesting their suitability for this 

application. Additionally, hybrid models, particularly those 

combining InceptionV3, demonstrate competitive 

performance, underscoring the potential of model fusion 

techniques. 

In future research, we aim to explore several avenues for further 

improvement. This includes enhancing the hybrid models by 

integrating diverse architectures and exploring alternative 

fusion strategies. Furthermore, expanding the dataset to 

encompass a wider range of plant species and disease classes 

could enhance the generalization capabilities of the models. 

Additionally, there is potential to develop a user-friendly web 

application for real-time plant disease detection, leveraging the 

trained models for practical agricultural applications [18]. This 

study contributes to the advancement of methodologies for 

detecting plant diseases and provides a basis for future research 

in this field. Future research could involve comparing our 

results with alternative approaches that address the challenges 

faced in this study, as well as exploring enhancements to 

improve the efficiency of plant disease detection. 
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