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ABSTRACT 

The mahogany tree is widely used in various industries 

worldwide for its valuable timber. In response to the increasing 

scarcity of mahogany wood, particularly in Bangladesh, this 

study presents an automated process for detecting and 

classifying mahogany tree species. Focusing on the University 

of Chittagong, Bangladesh region where multi-polygons 

delineating mahogany trees and other land cover types were 

generated using Google Earth Engine. Sentinel-2 satellite 

imagery from 2019 and 2020 provided spectral band 

wavelength data, enabling the creation of datasets with two 

classes: mahogany tree and non-mahogany tree cover types. To 

enhance model performance and accuracy, the four satellite 

datasets removed irrelevant columns and eliminated 7,661 

duplicate entries, resulting in 2,339 unique entries. The refined 

dataset comprises 12 spectral band features and one class 

attribute, which significantly improves the classification 

accuracy.  Supervised classification employed a multilayer 

perceptron deep neural network with three hidden layers. The 

model achieved a training accuracy of 99.76% and testing 

accuracy of 96.58%, with a precision of 98.36%, recall of 

99.05%, and F1-Score of 97.6%. The optimal performance was 

observed with the Spectral band wavelength dataset of Satellite 

Surface Reflectance 2019 images using the Adam optimizer. 

This research contributes to advancing automated methods for 

mahogany tree detection, facilitating conservation efforts for 

tree species, and informing resource management practices in 

Bangladesh and beyond. 
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1. INTRODUCTION 
Mahogany (Swietenia spp.) is a semi-deciduous, medium-sized 

tree 30-35 meters long. It has a short but solid foundation, a 

wide canopy, plenty of thick trees, and dense shade. While 

several assorted trees are mentioned in Mahogany from around 

the world, the name refers to the Swietenia family species [1]. 

Swietenia mahagoni, West Indian mahogany, is all the more 

suitably alluded to as Mahogany by its logical name. 

Mahogany, known for its aromatic hardwood used in furniture 

production, is a tropical tree [2], [3].  A bright, dappled shadow 

is cast on the ground below by Mahogany, rendering it a perfect 

shade tree for landscapes with enough space to flourish [3]. 

Mahogany plants growing along streets on sidewalks, or even 

in private gardens, form a lovely overhead canopy that can be 

enjoyed by anyone [3]. It is temporarily deciduous and in spring 

it loses its leaves. Because of its color and longevity, wood is 

prized in the lumber industry for fine cabinets and furniture. It 

is possible to have smooth, interlocked, uneven, or wavy grain. 

Whitish or yellowish is the sapwood. When split, the 

heartwood color is reddish, pinkish, or yellowish and grows to 

a dark reddish-brown. 

Mahogany trees are prized for their durable timber, used in 

various applications from furniture to musical instruments, 

particularly in countries like Bangladesh where the wood is 

highly valued. However, due to its increasing scarcity and high 

cost, there's a pressing need to protect and identify mahogany 

tree species in different regions.  

In this research, the mahogany tree is considered as a sample to 

develop the solution method of detecting and classifying tree 

species. In other words, the proposed solution approach can be 

extended to other tree species using satellite imagery. 

Traditional methods of species classification, such as remote 

sensing and satellite imagery, are costly and time-consuming, 

posing challenges for surveillance efforts in tropical landscapes 

[4]. 

By delivering a cloud computing framework for earth 

observation data processing, Google Earth Engine (GEE) 

brings open access geospatial analysis one phase forward. It 

integrates a publicly available catalog which, from its creation 

in 1972 to the present day, consists of an almost complete 

collection of Landsat imagery, with a large-scale computing 

facility configured for parallel geospatial data processing. In a 

notable forest resources mapping exercise, to describe tree 

cover and eventual tree cover loss and gain over 2012, a total 

of 20 tera pixels of satellite imagery were processed on GEE, 

utilizing one million CPU-core hours on 10000 computers in 

parallel [6]. This process was finished on GEE in a matter of 

days, but it would have taken 15 years to finish on a single 

machine [7]. GEE also offers a cloud-based system for real-

time supervised learning on large datasets, using hand-drawn 

inputs to rapidly classify ground cover types online, 

revolutionizing and accelerating remote sensing processes. 

This study proposes a methodology to address the 

aforementioned issue by utilizing Google Earth Engine. 

Randomly chosen training points represented as polygons are 

employed to acquire spectral band wavelength data for various 

satellites, enabling the classification of mahogany tree species. 

This approach leverages multilayer perceptron (MLP) deep 

neural networks (DNN) for accurate classification 

2. RELATED WORK 
The remote-sensing community has long drawn the interest of 

remote-sensing studies based on image classification since the 

classification findings are the basis for many socioeconomic 

and ecological applications [8]. The first important step for an 

effective classification for a particular reason is the collection 
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of appropriate sensor data [9] [10]. Different selection 

techniques could be used, such as single image, seed, and 

polygon, but they affect the results of classification, 

specifically for classifications of image data of high spatial 

resolution [11]. 

The related work of this thesis has been divided into two 

categories. 

❖ Lidar image-based tree species identification 

Research 

❖ Satellite image-based tree species identification 

Research 

2.1 Lidar image-based tree species 

identification 
In both botanical taxonomy and computer vision, plant image 

recognition has been an interdisciplinary subject. The first 

dataset of plant photographs taken by cell phones in the natural 

scene is presented, containing 10000 photos of 100 species of 

ornamental plants on the campus of the Beijing Forestry 

University [12]. For large-scale plant classification in natural 

ecosystems, a 26-layer deep learning model consisting of eight 

residual basic components is planned. The proposed model 

achieves a 91.78 percent identification score on the BJFU100 

dataset, showing that a useful approach for smart forestry is 

deep learning [12]. Specific tree species classification based on 

lidar using Convolutional Neural Network uses terrestrial lidar 

since in the dark forest it can achieve high-resolution point 

clouds [13]. The classification of individual urban tree species 

using very High Airborne Multi-Spectral imagery using spatial 

resolution profiles longitudinal, suggests an approach to 

improving the classification of individual tree species using 

longitudinal profiles from airborne imagery with a very high 

spatial resolution [14]. 

2.2 Satellite image-based tree species 

identification 
Detection on Landsat images with GEE of industrial oil palm 

plantations is most relevant to this paper. This Research 

demonstrates the use of GEE for the identification in Tripa, 

Aceh, Indonesia of commercial oil palm plantations [15]. Using 

separate spectral bands (RGB, NIR, SWIR, TIR, all bands), 

ground cover classification of the picture of Landsat 8 images 

was carried out, defining the following groups of ground cover: 

immature oil palm, mature oil palm, non-oil palm, forest, water, 

and clouds [15]. Using all bands for the classification of land 

cover, the total precision and Kappa coefficient were the best, 

followed by RGB, SWIR, TIR, and NIR. Trees for regression 

and grouping (Classification And Regression Tree) and random 

forest tree algorithms provided categorized land cover maps 

with higher overall accuracies and coefficients of Kappa than 

the algorithm for minimum distance (MD). GEE can be further 

evolved into an open and low-cost instrument for autonomous 

bodies to track and control the growth of tropical oil palm 

plantations [15]. This oil palm detection research was done 

using a pixel-based spectral band wavelength dataset which 

was trained and classified in GEE. However, this research 

accuracy is poor due to using 30-meter resolution Landsat-8 

images and many duplications of spectral band wavelength. 

This research does not use any neural networks to improve 

accuracy. 

3. LOCATION AREA 
The experimental site is situated within the University of 

Chittagong (22.4716° N, 91.7877° E), approximately 22 

kilometers north of Chittagong, Bangladesh. Spanning around 

2110 acres in Fatehpur Union, Hathazari Upazila, Chittagong, 

the university is enveloped by a diverse landscape of evergreen 

forests, hills, cropland, and ponds. Over the years, the 

university administration has systematically planted various 

tree species, including the highly prized mahogany tree, 

renowned for its value, aesthetics, fragrance, and resilience to 

strong winds. Initially planted along a 2km stretch from zero 

point to gate no. 1, the mahogany trees have flourished, forming 

distinct patches across the campus. Motivated by this 

proliferation, numerous additional mahogany trees have been 

planted in different locations within the university grounds. 

Thus, the University of Chittagong has been chosen as the focal 

point for a case study aimed at detecting and classifying 

mahogany tree species using deep neural networks 

4. METHODOLOGY 

4.1 Dataset generation using the Google 

Earth Engine 
Google Earth Engine is a cloud-computing platform for 

processing satellite picturing and geospatial datasets with 

planetary-scale inspection. The unlimited access GEE portal 

offers access to (1) petabytes of freely accessible remote 

sensing data and other fully prepared explorer web software 

products; (2) parallel high-speed computing and machine 

learning algorithms utilizing Google's computing resources; 

and (3) a repository of Application Programming Interfaces 

(APIs) that support common coding languages, such as 

JavaScript and Python, with development environments. All of 

these key features enable users to powerfully explore, interpret, 

and simulate geospatial big data without having access to 

supercomputers or advanced skills in coding. For interactive 

data and algorithm creation, the accessible and user-friendly 

front end provides a convenient atmosphere. Users get the 

ability also to incorporate and customize their data and 

collections while doing all the processing using Google's cloud 

tools. The application areas, ranging from woodland and 

vegetation studies to fields of medicine such as malaria, were 

very varied. The most commonly used dataset was Landsat; it 

is the largest portion of the GEE data portal, with data 

accessible for use and download from the first through the latest 

Landsat collection. 

4.1.1 Creation of Multi-polygon and Random 

GPS Coordinates: 
To identify mahogany tree species, the process began by 

delineating multi-polygons representing various land cover 

types—mahogany tree areas, forests excluding mahogany 

trees, water bodies, croplands, and buildings—within the 

satellite imagery of the study area using GEE. Data on 

mahogany tree locations and attributes were gathered from 

local sources and the Institute of Forestry and Environmental 

Sciences at the University of Chittagong. Using Google 

satellite imagery, 24 polygons were manually created for 

mahogany trees, 22 for non-mahogany forests, 15 for water 

bodies, 15 for croplands, and 25 for buildings 
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Fig 1: Polygons Representing Non-Mahogany and 

Mahogany Trees in Google Earth Engine (GEE) 

 

 
Fig 2: Polygon of building and water in Google Earth 

Engine 

 
Fig 3: Polygon of Satellite view of the different polygon 

data in Google Earth Engine 

Each polygon was assigned a distinct color scheme: gray for 

mahogany tree areas, green for non-mahogany forests, blue for 

water bodies, yellow for croplands, and cyan for buildings. 

Subsequently, 5000 random GPS coordinates (Longitude and 

Latitude) were generated within the mahogany tree polygons 

and stored as variables using the GEE editor. Next, 2000 

random GPS coordinates were systematically generated from 

the non-mahogany forest polygon, followed by 1000 

coordinates each from the cropland, buildings, and water 

polygons. These coordinates were stored as variables using the 

Google Earth Engine editor. Assigning class names, the 5000 

random GPS coordinates within mahogany tree areas were 

labeled as "mahogany," corresponding to class level "0". For 

the remaining coordinates—2000 from non-mahogany forests, 

1000 from croplands, 1000 from water bodies, and 1000 from 

buildings—they were grouped under the class name "not a 

mahogany tree," representing class level "1". 

4.1.2 Generate and Export Spectral Band 

Wavelength Data: 
Two satellite images were utilized to retrieve spectral band 

wavelengths corresponding to the generated random GPS 

coordinates. 

❖ Sentinel-2 Satellite Surface Reflectance (SR) [17]  

❖ Sentinel-2 Satellite Top of Atmosphere (TOA)[17] 

The search for Satellite Surface Reflectance (SR) images began 

from May 1st, 2019 to July 30th, 2019 in the GEE data catalog. 

Specifically, an image with a 20% cloud cover was selected, 

utilizing cloud masking techniques facilitated by the QA60 

spectral band of the SR Satellite and bit masking. 

Table 1. Level 2A Surface Reflectance spectral bands 

Featur

e 

Band 

Name 

Band 

Resolution  

Band Description 

1 B1 Band 60 m Aerosols Band 

2 B2 Band 10 m Blue Band 

3 B3 Band 10 m Green Band 

4 B4 Band 10 m Red Band 

5 B5 Band 20 m Red Edge 1 Band 

6 B6 Band 20 m Red Edge 2 Band 

7 B7 Band 20 m Red Edge 3 Band 

8 B8 Band 10 m NIR Band 

9 B8A Band 20 m Red Edge 4 Band 

10 B9 Band 60 m Water Vapor Band 

11 B11 Band 60 m SWIR 1 Band 

12 B12 Band 60 m SWIR 2 Band 
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The SR dataset encompasses 13 distinct spectral bands with 

variable resolutions ranging from 10 to 60 meters. The 12 

spectral bands listed in Table 1 below are also utilized in the 

Satellite Top of Atmosphere (TOA) dataset. From these 

images, wavelengths of the 12 spectral bands were retrieved for 

various random geographic locations generated through GEE. 

These wavelengths were stored as variables representing the 

input vectors of the dataset. Subsequently, the band 

wavelengths were exported to Google Drive, saving the dataset 

in CSV format for further analysis. Following a similar 

procedure, TOA images from May 1st, 2019 to July 30th, 2019 

were searched for, selecting images with the least cloud cover. 

These images comprise 13 spectral bands and three QA bands 

for cloud masking, providing data for analysis. Similarly, 

wavelengths of the 12 spectral bands mentioned earlier were 

fetched for different geographic locations and stored as 

variables representing input vectors. The resulting dataset was 

then exported to Google Drive. Utilizing the same 

methodology, two additional spectral band wavelength datasets 

were created: one from Satellite SR images spanning May 1st, 

2020 to July 30th, 2020, and another from TOA images during 

the same period. Finally, employing Deep Neural Networks, 

the performance of these four different datasets was compared 

to identify mahogany tree species. 

4.2 Data Preprocessing 
In this subsection, data preprocessing techniques are 

delineated, encompassing two distinct approaches outlined 

below: In the preceding section, four distinct datasets were 

produced, namely: 

✔ SR Satellite spectral band wavelength of the 2019 

dataset  

✔ SR Satellite spectral band wavelength of 2020 

dataset 

✔ TOA Satellite spectral band wavelength of 2019 

dataset   

✔ TOA Satellite spectral band wavelength of 2020 

dataset  

After generation using Google Earth Engine, each of the four 

datasets comprises 15 feature attributes or input vectors. 

Among the 15 feature attributes, 12 represent the spectral band 

wavelengths of different satellites. The "Forest" feature 

attribute serves as the class attribute, with values of "0" 

denoting mahogany trees and "1" indicating non-mahogany 

trees. The ".geo" attribute, autogenerated by GEE, holds null 

values and doesn't impact the model. Similarly, the "system: 

index" attribute, also generated by GEE, contains dataset serial 

numbers. For enhanced model performance, preprocessing 

steps begin with noise elimination. The "geo" column, solely 

containing null values and irrelevant to the deep learning 

model, is removed. As for the "system: index" attribute, used 

for assigning serial numbers to the dataset, its correlations are 

explored using Principal Component Analysis (PCA). PCA 

reveals that the "system: index" feature is independent of other 

attributes, and no significant correlations exist among the 

remaining features. Consequently, the "system: index" feature 

is removed from all four datasets iteratively. After removing 

the unnecessary columns "system: index" and ".geo" from the 

four datasets, a total of 13 feature attributes remain, including 

12 spectral bands and 1 class attribute. These spectral bands are 

captured at resolutions of 10 meters, 20 meters, and 60 meters 

per pixel. Given the varying resolutions, numerous duplicate 

entries are expected within the datasets, especially in areas with 

different pixel resolutions. To address this, the datasets are 

imported into Google Colab for duplicate and redundant row 

detection. Using Python libraries, redundant data is identified 

and removed. This process identifies 7661 redundant entries 

across the datasets, significantly enhancing performance. Post-

removal, there are 2339 unique entries remaining. Among 

these, 488 belong to the mahogany class (class level "0"), with 

the remaining classified as non-mahogany (class level "1"). 

This duplicate data detection and deletion process is applied 

iteratively across all four datasets, ensuring data integrity and 

enhancing model accuracy 

4.3 Multilayer Perceptron 
Artificial Neural Networks, particularly the multilayer 

perceptron (MLP), emulate the brain's microstructure and are 

crucial for various Artificial Intelligence tasks. MLPs use 

backpropagation for supervised learning and feature multiple 

layers with nonlinear activation functions, allowing them to 

handle complex data. In an MLP, perceptrons in the input layer 

transmit outputs to those in the hidden layer, which then relay 

them to the output layer. With multiple weights per signal, 

MLPs construct elaborate structures that facilitate advanced 

data processing. Deep neural networks, such as a three-layer 

MLP, form the basis of deep learning, which enables computers 

to learn and comprehend data hierarchically. This approach 

allows systems to derive insights from experience without 

explicit human intervention in defining data features. By 

employing multiple processing layers, deep learning facilitates 

the acquisition of diverse data representations across various 

levels of abstraction. 

 

Fig 4: Multilayer Perceptron Diagram 

4.4 The process flow for supervised 

classification using MLP DNN  
Utilizing Google Earth Engine (GEE), a comprehensive dataset 

for Mahogany tree species identification was constructed. This 

dataset included various geographical and environmental 

features. The dataset underwent preprocessing steps, which 

involved feature reduction to eliminate redundant and 

irrelevant features and duplicate data deletion to ensure data 

integrity. 

The preprocessed data was split into training and testing subsets 

using various validation splits, including 90-10, 80-20, 70-30, 

60-40, and 50-50. This approach ensured a robust evaluation of 

the model's performance across different proportions of 

training and testing data. For the supervised classification task, 

a Multilayer Perceptron Deep Neural Network (MLP DNN) 

was chosen, facilitated by the Keras library. The MLP model 

architecture consisted of one input layer, three hidden layers, 

and one output layer. The input layer comprised 12 input 

vectors representing the 13 feature attributes obtained post-

preprocessing. The hidden layers were structured with a 

cascading architecture, with the first layer containing 256 

neurons, the second layer 128 neurons, and the third layer 64 



International Journal of Computer Applications (0975 – 8887) 

Volume 186 – No.31, July 2024 

22 

neurons. The output layer consisted of a single neuron with 

Sigmoid activation for binary classification. 

Activation functions played a crucial role in determining 

neuron activation based on weighted sums and biases. The 

training model employed a combined activation function 

approach, using Rectified Linear Unit (ReLU) activation for 

the hidden layers and Sigmoid activation for the output layer. 

For training loss calculation, the "binary_crossentropy" 

function was utilized to measure the disparity between 

predicted and actual class labels. 

Hyperparameter tuning was employed to optimize model 

performance, experimenting with optimizers such as "Adam" 

and "Stochastic Gradient Descent (SGD)" to minimize training 

losses and optimize dataset weights. Additionally, techniques 

like dropout regularization and batch normalization were 

incorporated to prevent overfitting and enhance model 

generalization. Dropout regularization was applied to the 

hidden layers, randomly dropping a fraction of neurons during 

training to prevent overfitting. Batch normalization was 

employed to normalize the inputs of each layer, stabilizing the 

learning process and speeding up convergence. Each model 

was configured with 12 input vectors, a batch size of 5, and 

trained over 1000 epochs. 

Performance metrics such as accuracy, precision, recall, and 

F1-score were evaluated to assess the classification 

performance across different validation splits. Confusion 

matrices were generated to visualize the classification results 

and identify any misclassifications. The model's robustness and 

generalizability were further tested using cross-validation, 

ensuring the model's performance was consistent across 

different subsets of the data. 

The optimized model was validated on a separate validation set 

to ensure its ability to accurately identify Mahogany tree 

species, providing insights into its practical applicability and 

performance in real-world scenarios. The results were 

documented, highlighting the effectiveness of the 

preprocessing steps, the chosen architecture, and the 

optimization strategies employed. 

In conclusion, this methodology provided a structured 

approach to developing an accurate and reliable model for 

Mahogany tree species identification. The use of GEE for data 

collection and preprocessing, combined with the application of 

advanced machine learning techniques using the MLP DNN 

model, ensured a robust and effective solution for this 

classification task. The comprehensive evaluation and 

optimization strategies employed ensured the model's 

applicability and reliability in real-world scenarios. 

     

                                                                                            

Fig 5:  Process flow for Supervised Classification using Multilayer Deep Neural Network

5. EXPERIMENTAL RESULTS  
In this section, the outcomes of the experiment were obtained 

using the dataset and deep learning model. All experiments 

were conducted on Google Colab utilizing Google Cloud 

resources, which provided 12.72 GB RAM and 107.77 GB 

storage capacity and facilitated the Keras library. The 

performance is assessed across different categories in terms of 

accuracy, recall, and precision. The results are categorized into 

two sections 
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5.1 SR satellite spectral band wavelength 

dataset results 
For Mahogany tree species identification, MLP DNN is 

utilized. Initially, the MLP DNN model is trained using the SR 

satellite spectral band wavelength dataset, comprising 2339 

data points. This dataset is split into training and testing sets for 

model validation: (90, 10), (80, 20), (70, 30), (60, 40), and (50, 

50). Each split allocates a specific percentage of the dataset for 

training and testing, resulting in varying numbers of data points 

for each subset. Additionally, two spectral band wavelength 

datasets for SR Satellite are generated, covering periods from 

May 1st, 2019 to July 30th, 2019, and May 1st, 2020 to July 

30th, 2020. The subsequent analysis is based on these datasets, 

considering the distribution of data points across the splits. 

5.1.1 SR satellite spectral band wavelength 

dataset of 2019 results 
Initially, the MLP DNN model used the SR satellite spectral 

band wavelength dataset from May 1st, 2019 to July 30th, 

2019, employing various splitting methods outlined earlier. For 

training loss calculation, binary cross-entropy was utilized, and 

two optimizers were experimented with: Adam and SGD. 

Below, the results of the 2019 spectral band wavelength dataset 

were discussed, and the performance achieved with the Adam 

and SGD optimizers was analyzed. 

Table 2:  SR satellite spectral bands (2019) results using 

Adam optimizer 

Split 

Method 

Training 

Accurac

y 

Testing 

Accurac

y 

Precis

-ion 

Recall F1 – 

Score 

(90, 10) 99.71 96.58 98.36 96.26 97.3 

(80, 20) 98.5 93.8 97.34 97.86 97.6 

(70, 30) 99.76 96.3 97.45 95.71 96.58 

(60, 40) 99.64 95.3 92.4 99.05 95.61 

(50, 50) 99.4 95.47 97.27 97.37 97.32 

 

Table 3:  SR satellite spectral bands (2019) results using 

SGD optimizer 

Split 

Method 

Training 

Accuracy 

Testing  

Accurac

y 

Precis-

ion  

Recal

l  

F1 – 

Score 

(90, 10) 96.96 92.74 92.89 97.86 95.31 

(80, 20) 91.56 89.10 97.74 92.51 95.05 

(70, 30) 95.85 92.31 88.21 94.82 91.39 

(60, 40) 94.23 91.24 96.39 94.43 95.40 

(50, 50) 94.10 93.08 95.38 94.97 95.18 

 

Fig 6: SR satellite spectral band wavelength dataset of 

2019 results using SGD optimizer 

 

Fig 7: SR satellite spectral band wavelength dataset of 

2019 results using Adam optimizer  

5.1.2 SR satellite spectral band wavelength 

dataset of 2020 results 
For the analysis of the SR satellite spectral band wavelength 

dataset from May 1st, 2020, to July 30th, 2020, the MLP DNN 

model was trained using different splitting ratios. Binary cross-

entropy was used for training loss calculation, and two 

optimizers were experimented with: Adam and SGD. Below 

are the results of the 2020 spectral band wavelength dataset, 

focusing on the performance achieved with the Adam and SGD 

optimizers. 

Table 4:  SR satellite spectral bands (2020) results with 

Adam optimizer 

Split 

Method 

Training 

Accuracy 

Testing 

Accuracy 

Precis

ion 

Recal

l 

Score 

F1 - 

Score 

(90, 10) 99.19 94.44 94.27 93.93 96.04 

(80, 20) 98.61 94.66 97.3 96.26 96.77 

(70, 30) 99.57 93.73 93.88 98.57 96.17 

(60, 40) 99.79 94.02 96.24 94.02 95.12 

(50, 50) 94.7 90.26 93.07 98.47 95.69 
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Table 5:  SR satellite spectral bands (2020) results with 

SGD optimizer 

Split 

Method 

Training 

Accuracy 

Testing 

Accuracy 

Precis

ion  

Recal

l 

Score 

F1 - 

Score 

(90, 10) 93.35 89.74 93.12 94.12 93.62 

(80, 20) 92.73 89.74 94.65 94.65 94.65 

(70, 30) 91.39 89.74 94.27 93.93 94.1 

(60, 40) 93.44 89.32 89.94 98.37 93.96 

(50, 50) 92.13 89.91 94.23 94.64 94.43 

 

Fig 8: 2020 SR spectral band wavelength results using 

Adam optimizer  

 

Fig 9: SR satellite spectral band wavelength dataset of 

2020 results using SGD optimizer 

5.2 TOA satellite spectral band wavelength 

dataset results 
In the Mahogany tree species identification analysis, an MLP 

DNN was trained with the SR satellite spectral band 

wavelength dataset consisting of 2339 data points. This dataset 

was split into training and testing subsets using various ratios: 

(90,10), (80,20), (70,30), (60,40), and (50,50). Additionally, 

two distinct spectral band wavelength datasets were generated 

for TOA Satellite: one spanning from May 1st, 2019, to July 

30th, 2019, and the other covering May 1st, 2020, to July 30th, 

2020. The following sections will discuss the results of the 

analysis of these datasets and their effectiveness in Mahogany 

tree species identification. 

5.2.1 TOA satellite spectral band wavelength 

Dataset of 2019 results 
Initially, the MLP DNN model was trained using the TOA 

satellite spectral band wavelength dataset from May 1st, 2019, 

to July 30th, 2019, employing various splitting methods as 

discussed earlier. For training loss calculation, binary cross-

entropy was utilized, and two optimizers were experimented 

with: Adam and SGD. Below are the results of the 2019 

spectral band wavelength dataset, analyzing the performance 

achieved with the Adam and SGD optimizers. 

 

Table 6:  TOA satellite spectral band wavelength dataset 

of 2019 results using Adam optimizer 

Split 

Method 

Training  

Accuracy 

Testing 

Accuracy 

Precis

ion  

Recal

l  

F1 – 

Score 

(90, 10) 96.91 94.02 94.24 96.26 95.24 

(80, 20) 94.55 90.17 94.15 94.65 94.4 

(70, 30) 93.22 90.74 95.19 91.79 93.45 

(60, 40) 89.88 89.42 92.38 92.26 92.32 

(50, 50) 87.08 86.07 92.64 88.18 90.36 

 

Table 7:  TOA satellite spectral band wavelength dataset 

of 2019 results using SGD optimizer 

Split  

Method 

Training  

Accuracy 

Testing  

Accuracy 

Precis

ion  

Recal

l  

F1 – 

Score 

(90, 10) 89.79 88.89 92.61 87.17 89.81 

(80, 20) 85.46 81.41 89.23 93.05 91.1 

(70, 30) 87.42 87.46 90.64 91.61 91.12 

(60, 40) 86.74 84.83 93.1 89.81 91.42 

(50, 50) 85.12 85.81 87.19 95.3 91.06 

Fig 

10: TOA satellite spectral band wavelength dataset of 

2019 results using SGD optimizer 

 

Fig 11: TOA satellite spectral band wavelength dataset of 

2019 results using Adam optimizer 
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5.2.2 TOA satellite spectral band wavelength 

dataset of 2020 results 
In this study, the MLP DNN model is trained using the TOA 

satellite spectral band wavelength dataset covering the period 

from May 1st, 2020, to July 30th, 2020. Two optimization 

algorithms are experimented with: Adam and SGD. In the 

subsequent sections, the results obtained from the spectral band 

wavelength dataset of 2020 are analyzed and displayed, 

focusing on the performance achieved with the Adam and SGD 

optimizers. 

Table 8:  TOA satellite spectral band wavelength dataset 

of 2020 results using Adam optimizer 

Split  

Method 

Training  

Accuracy 

Testing  

Accuracy 

Precis

ion  

Recal

l  

F1 – 

Score 

(90, 10) 97.77 91.03 95.03 91.98 93.48 

(80, 20) 97.54 90.38 92.99 92.25 92.62 

(70, 30) 89.8 84.9 91.46 97.5 94.38 

(60, 40) 94.58 89.96 93.7 92.93 94.21 

(50, 50) 94.78 86.32 93.94 93.22 93.57 

 

Table 9:  TOA satellite spectral band wavelength dataset 

of 2020 results using SGD optimizer 

Split  

Method 

Training  

Accuracy 

Testing  

Accuracy 

Precis

ion  

Recal

l  

F1 – 

Score 

(90, 10) 86.46 80.77 87.62 94.65 91.00 

(80, 20) 82.26 82.05 89.62 94.65 92.07 

(70, 30) 86.99 86.32 89.37 96.07 92.6 

(60, 40) 85.53 86.32 87.98 96.47 92.03 

(50, 50) 88.96 88.97 91.19 95.08 93.09 

 

 

Fig 12:TOA satellite results with Adam & SGD optimizers 

 

6. RESULT ANALYSIS AND 

DISCUSSION 
In the SR satellite spectral band wavelength datasets from 2019 

and 2020, as well as the TOA satellite spectral band wavelength 

datasets from the same years, distinct performance trends were 

observed when employing two different optimization 

algorithms, Adam and SGD. For both the SR and TOA datasets 

from 2019 and 2020, the MLP DNN models utilizing the Adam 

optimizer consistently outperformed those using the SGD 

optimizer. Across all validation split methods, models trained 

with Adam exhibited higher training accuracy, testing 

accuracy, precision scores, recall scores, and F1-measure 

scores. Additionally, the average testing accuracy was also 

maximized in models trained with Adam. In particular, the 

MLP DNN models trained with the Adam optimizer achieved 

remarkable performance metrics. For the SR dataset of 2019, 

the training accuracy reached 99.76%, while the testing 

accuracy peaked at 96.58%. Similarly, for the SR dataset of 

2020, the training accuracy attained 99.79%, with a testing 

accuracy of 94.66%. The precision, recall, and F1-measure 

scores were also notably higher for the Adam-trained models 

compared to those trained with SGD.On the other hand, while 

the models trained with SGD optimizer still demonstrated 

respectable performance, they consistently lagged behind those 

trained with Adam. In terms of training and testing accuracy, 

precision, recall, and F1-measure scores, the models trained 

with SGD consistently scored lower across all validation split 

methods. 

Based on a comprehensive analysis, the conclusion is that the 

MLP DNN model is best suited for the SR satellite spectral 

band wavelength datasets from 2019. These datasets 

consistently yielded superior performance metrics compared to 

the TOA datasets and those from 2020. Moreover, the Adam 

optimizer proved to be the optimal choice for training the 

model, consistently producing superior results across all 

datasets and split methods. The most efficient combination is 

the SR satellite spectral band wavelength dataset from 2019 

using the (90, 10) split method. This combination achieves the 

highest testing accuracy of 96.58% and an F1-score of 97.30, 

making it the optimal choice for robust and reliable model 

performance. 

7. CONCLUSIONS 
There are many practical applications for detecting and 

classifying specific tree species. This research evaluated 

sample mahogany tree species detection and classification 

using a combination of Google Earth Engine and multi-layer 

perceptron deep neural networks at the University of 

Chittagong, Bangladesh. The findings reveal that the 3-layer 

MLP model demonstrates a remarkable classification accuracy 

of 96.58% when applied to the Sentinel-2 Satellite Surface 

Reflectance dataset. These results show the effectiveness of the 

proposed approach in accurately identifying and classifying 

mahogany tree species. The simplicity and efficacy of the 3-

layer MLP model make it a valuable tool for identifying 

mahogany trees that can be extended to other tree species. By 

providing geographical coordinates, users can quickly 

determine whether a given location hosts a mahogany tree 

based on its spectral band wavelength.  

Ultimately, this research contributes to the broader goal of 

promoting sustainability and conservation efforts, particularly 

in monitoring mahogany tree production with zero 

deforestation. Moreover, the methodology holds promise for 

classifying various tree species beyond mahogany. By 

expanding the dataset to include additional known tree species, 
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the 3-layer MLP model can achieve even greater accuracy. This 

capability can be extended beyond Bangladesh, offering global 

applicability for tree identification. This expansion opens 

avenues for near real-time identification and tracking of tree 

species expansion within tropical regions. Through continued 

refinement and expansion of the dataset, this approach has the 

potential to make significant contributions to the field of 

forestry management and environmental preservation. 
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