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ABSTRACT 

The increasing complexity of cyber threats necessitates 

innovative approaches for pre-emptive defense mechanisms. 

This research paper focuses on the application of deep learning 

techniques as a critical tool for monitoring and preventing 

cyber-attacks. In the realm of cybersecurity, machine learning, 

and deep learning classification algorithms play pivotal roles in 

identifying system irregularities indicative of ongoing attacks. 

Six classification techniques were employed in this study, 

including traditional machine learning algorithms (Decision 

Tree, Random Forest, and Gradient Boosting) and advanced 

deep learning algorithms (Convolutional Neural Network 

[CNN], Long Short-Term Memory [LSTM], and LSTM plus 

CNN). Using metrics such as precision, accuracy, F1-score, 

and recall, their performance was evaluated on the widely used 

Kaggle dataset CSIC 2010 Web Application Attacks. The 

findings of the study reveal that the LSTM with CNN exhibits 

superior performance, showcasing its effectiveness in detecting 

and defending against diverse cyber threats. This study 

underscores the urgency and practical benefits of integrating 

deep learning into cybersecurity protocols to safeguard 

networks from external and internal threats. 
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1. INTRODUCTION 
Cybersecurity plays a pivotal role in protecting computers, 

servers, and networks from unauthorized access, theft, and 

disruptions. In today's world, where people are heavily 

dependent on technologies like the Internet, wireless 

connections, and smart devices, cybersecurity has become a 

major concern of the twenty-first century [1]. It is a complex 

challenge that involves ensuring that systems operate reliably, 

data stays intact, and sensitive information remains secure [2]. 

The increasing reliance on digital technologies and the Internet 

of Things (IoT) has heightened the complexity of cybersecurity 

challenges. With the rise of cyber threats, cyber-attacks have 

become more sophisticated, involving attempts to gain 

unauthorized access to computer systems or compromise user 

information [3]. These attacks can be financially motivated or 

aimed at disrupting operations. Some attacks are even 

orchestrated by state-sponsored actors, making them more 

complex and capable of affecting global entities [4]. The 2017 

NotPetya outbreak is a notable example, originating from a 

cyber-attack on Ukrainian banks and causing widespread 

damage globally [2, 3, 4]. 

This paper explores the application of deep learning, a subset 

of machine learning, in addressing cybersecurity challenges. 

By employing artificial neural networks to simulate human 

cognitive processes, deep learning enhances the ability of 

cybersecurity systems to recognize and adapt to evolving attack 

patterns swiftly. This research paper employs various 

classification algorithms, including machine learning and deep 

learning, on a relevant network intrusion dataset. The study 

aims to evaluate the effectiveness of these methods in 

distinguishing between typical and atypical network assaults. 

Key findings indicate that deep learning, when applied 

effectively, can enhance cybersecurity by improving response 

times, mitigating risks, and optimizing resource allocation. 

However, the success of these approaches hinges on the 

accuracy of the data used for machine learning. 

2. RELATED WORK 
The realm of cybersecurity has undergone extensive 

exploration, particularly concerning the integration of deep 

learning techniques. The surge in studies leveraging machine 

learning algorithms to detect and mitigate diverse cyber threats 

is a testament to the dynamic nature of this field. Researchers 

have utilized both real-time datasets and established datasets 

from various sources, shedding light on the efficacy of these 

approaches. A comprehensive understanding of the existing 

body of work not only offers valuable insights into the current 

state of cybersecurity but also helps identify gaps in 

knowledge, setting the stage for further advancements. 

One significant contribution comes from Kim et al. [5], who 

introduced a pioneering approach incorporating Convolutional 

Neural Network (CNN) with Long Short-Term Memory 

(LSTM) and Deep Neural Network (DNN) techniques. Their 

focus was on classifying instances as normal or abnormal, 

utilizing the HTTP DATASET CSIC 2010, a dataset 

comprising 61,065 instances. Impressively, their evaluation 

demonstrated an outstanding accuracy of 91.54%, showcasing 

the potential effectiveness of this hybrid model in cybersecurity 

applications. 

Expanding on the application of deep neural networks (DNNs), 

Kang et al. devised a DNN-based Intrusion Detection System 

(IDS) to enhance network safety. The parameters constituting 

the DNN structure were trained using feature vectors derived 

from network packets. The DNN calculated probability values 

for different classes, enabling the model to differentiate 

between normal and attack packages. This approach 

significantly contributed to the advancement of network 

security through the application of deep learning. 

Vartouni et al. [6] introduced a novel approach by employing 

Stacked AutoEncoder on the HTTP DATASET CSIC 2010. 

The model achieved a notable accuracy of 88.32%, showcasing 

the efficacy of this distinctive algorithm in anomaly detection.  

Additionally, Betarte et al. [7] employed three distinct machine 

learning techniques—Random Forest, K-Nearest Neighbors 

(K-NN), and Support Vector Machine (SVM)—on the same 

HTTP DATASET CSIC 2010. Notably, Random Forest 

outperformed other methods, achieving an accuracy of 91.54%, 

emphasizing the significance of algorithm selection in 

cybersecurity applications. 
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Tuan et al. [8] extended their study to the UNSW-NB15 

dataset, encompassing various network assault types. With 

machine learning algorithms such as SVM, ANN, Naive Bayes 

(NB), and Unsupervised Learning (USML), they showcased 

the high precision of USML at 94.78%. Anwer et al. [9] turned 

their focus to detecting malicious network traffic using four 

machine-learning techniques on the well-known NSL-KDD 

dataset. Their comprehensive evaluation, covering accuracy, 

specificity, training time, and prediction time, identified 

Random Forest as the top performer with an accuracy of 

85.34%. 

Su et al. [10] introduced the BAT model, a deep learning 

technique designed for identifying hostile network infiltration. 

Leveraging the NSL-KDD dataset, they achieved an intrusion 

detection accuracy of 84.25%. Xu et al. [11] proposed a five-

layer autoencoder model to enhance the detection of network 

anomalies on the NSL KDD dataset, achieving an accuracy of 

90.61%. Kavitha et al. [12] presented a One-Class Support 

Vector Machine (OCSVM) approach on NSL-KDD, achieving 

81.29% accuracy in intrusion detection. 

Ferriyan et al. [13] made significant strides by developing 

multiple machine-learning models for detecting cyberattacks 

on the ALLFLOWMETER HIKARI2021 dataset. The dataset 

includes six types of attacks represented among 555,278 

instances and 86 features. Employing KNN, SVM, RF, and 

MultiLayer Perceptron (MLP) models, they demonstrated an 

outstanding detection accuracy of approximately 99%. 

These diverse studies collectively highlight the versatility and 

efficacy of machine learning and deep learning techniques in 

addressing cybersecurity challenges, providing valuable 

insights that inform the approach to vulnerability testing in this 

study using CSIC 2010 Web Application Attacks.  

Table 1 provides a concise overview of the related work, 

including the year of the study, the dataset used, the types of 

attacks considered, the machine learning or deep learning 

algorithms applied, and the resultant accuracy achieved by each 

method

Table 1. Previous related Work 

Ref Paper Year Dataset Attack Algorithm Accuracy 

Kang et al. 2016 
Handcrafted Vehicular 

Network Data 

Normal, 

Anomalous 
DBN 84% 

Kim et al. 2020 
HTTP DATASET CSIC 

2010 

Normal 

Abnormal 
CNN with LSTM 91.54% 

Vartouni et al. 2018 
HTTP DATASET CSIC 

2010 

Normal 

Abnormal 
Stacked AutoEncoder 88.32% 

Betarte et al. 2018 
HTTP DATASET CSIC 

2010 

Normal 

Abnormal 
Random Forest 72% 

Tuan et al. 2019 UNSW-NB15 

DoS, 

Reconnaissance, 

Backdoor, 

Fuzzers, 

Analysis, 

Exploits, 

Worms, 

Shellcode, 

Generic 

USML 94.78%  

Anwer et al. 2021 NSL-KDD 

DoS, 

R2L, 

U2R, 

Probe 

Random Forest  85.34% 

Su et al. 2020 NSL-KDD 

DoS, 

Probe, 

R2L, 

U2R 

BAT Model (Deep 

Learning) 
84.25% 

Xu et al. 2021 NSL KDD 

DoS, 

Probe, 

R2L, 

U2R 

Five-layer 

Autoencoder 
90.61% 

Kavitha et al. 2021 NSL-KDD DoS, OCSVM 81.29% 
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Probe, 

R2L, 

U2R 

Kavitha et al. 2021 
ALLFLOWMETER 

HIKARI2021 

Background, 

Benign, 

Bruteforce, 

Bruteforce-XML, 

Probing, 

XMRIGCC 

CryptoMiner 

KNN, SVM, RF, MLP 99.00% 

 

3. METHODOLOGY 
The methodology for this research paper involves a systematic 

and comprehensive approach to evaluate the performance of 

various machine learning and deep learning algorithms. The 

primary objective is to assess their efficacy in identifying and 

classifying different types of cyber threats. The CSIC 2010 

Web Application Attacks dataset is utilized to conduct 

experiments and gauge the algorithms' performance. 

 

3.1 Dataset 
The CSIC 2010 Web Application Attacks, consisting of 61,065 

instances and 17 features, is chosen for its representation of 

real-world network traffic scenarios. The dataset encompasses 

attack types, Normal at 51% and Anomalous at 49%.  

The dataset is split into training and testing sets to facilitate 

unbiased model evaluation. Each algorithm is trained on the 

training set, and its performance is assessed on the testing set. 

To enable the application of various deep learning algorithms 

to each dataset, a standard method is employed to convert their 

non-numerical attributes into numerical features [15]. The 

LabelEncoder function from sklearn.preprocessing library is 

utilized for this purpose, facilitating the conversion of non-

numerical data into a computer-understandable form by 

assigning a unique number to each value, starting from zero 

[15]. Given that all features in the dataset are categorical, this 

transformation is essential for numerical representation. 

The Holdout method is applied to partition the dataset. 

Consequently, in the experimental setup, only 20% of the total 

dataset is reserved for evaluation, while the remaining 80% is 

utilized as training data. This segregation ensures a robust 

evaluation of the deep learning algorithms, allowing for 

unbiased testing on a distinct subset of the data while enabling 

effective training on the majority of the dataset. 

3.2 Algorithmic Framework 
A set of machine learning and deep learning algorithms is 

selected for evaluation, building on previous works and 

industry-standard practices. Upon data preparation, the dataset 

undergoes fitting to distinct machine learning algorithms, each 

configured with a test size of 0.1, for the identification of the 

specified cybersecurity attacks. The application of a hold-out 

approach facilitates the division of the dataset into training and 

testing datasets, with 90% of the total datasets dedicated to 

training and 10% to testing. Multiple machine learning models 

are then constructed leveraging the training dataset, and their 

effectiveness is subsequently evaluated using the designated 

testing dataset. This methodology ensures a comprehensive 

assessment of the models' performance, allowing for rigorous 

testing on a distinct subset of the data while employing the 

majority for robust training. Fig. 1 depicts an illustrative flow 

chart for the proposed strategy utilized in this study to identify 

cyber threats.  

3.3 Random Forest Algorithm 
The Random Forest algorithm stands as a stalwart in 

cybersecurity applications, adept at identifying and mitigating 

a spectrum of cyber threats. It is a versatile ensemble 

supervised learning method that employs numerous decision 

trees for regression and classification tasks. In classification, 

the most frequently chosen class by the trees serves as the 

solution, while regression tasks consider the average prediction 

from all trees [16]. Leveraging an ensemble of decision trees, 

the algorithm excels in discerning intricate patterns within 

extensive and diverse datasets of network traffic. Introducing 

variability through bootstrapping and feature randomness 

ensures that each decision tree is trained on a unique data 

subset, enhancing the model's generalization and resilience 

against overfitting. Optimization of hyperparameters, including 

the number of trees, maximum depth, and minimum samples 

for node splitting, fine-tunes the algorithm's performance to 

adeptly handle the intricacies of cybersecurity datasets. The 

Random Forest classifier was leveraged to categorize each 

cyber-attack dataset [17][18]. Given the categorical nature of 

the label, a classification-type random forest was chosen with 

specific parameters including 100 for max-leaf nodes, a 

max_depth of ‘None’, and a fixed random-state value of 42. 
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Fig 1: Illustrative Flow chart for the proposed methodology 

3.4 Decision Tree Algorithm 
In the dynamic landscape of cybersecurity, the Decision Tree 

algorithm emerges as a proficient guide, making decisions akin 

to human thought processes based on predefined criteria [19]. 

Applied in data mining, statistics, and machine learning, 

decision tree learning is a method employed for predictive 

modeling [20]. Consider a decision tree as a virtual tree. It 

begins by examining a sample (similar to the trunk) and 

concludes by understanding the target value of that sample 

(represented by the leaves, symbolizing different attack types) 

[21]. It's a way of organizing and interpreting diverse cyber 

threats based on the collected information. 

Specifically, in the context of this study, a subtype called 

classification trees was employed, where the target variable is 

discrete. Here, the "leaves" signify different attack types, and 

the "branches" represent characteristics of the dataset aiding in 

predicting class labels [22][23]. Another variant, the regression 

tree, addresses scenarios with a continuous objective variable, 

typically real numbers [22]. Renowned for their clarity and 

user-friendly nature, decision trees are among the most well-

known machine learning algorithms. In this cybersecurity 

experiment, a Decision Tree with a classification type was 

utilized, necessitated by the discrete nature of the label 

The Decision Tree proves invaluable in unraveling complex 

patterns within cybersecurity datasets. By comprehending the 

discrete nature of attack labels, this algorithm aids in 

classifying and understanding various cyber threats. Its 

transparent decision-making process, guided by predefined 

criteria, enhances the interpretability and practical application 

of the model, reinforcing its significance in fortifying computer 

systems against evolving cyber challenges. 

3.5 Gradient Boosting Algorithm 
In the intricate realm of machine learning, "gradient boosting" 

emerges as a versatile technique with applications ranging from 

classification to regression. The focus of this study lies in 

harnessing the power of gradient boosting specifically for 

cybersecurity, where the accuracy of predictive models is 

paramount. 

Gradient boosting constructs a predictive model in the form of 

interconnected decision trees. Although individual trees may be 

unreliable, the magic lies in their collaboration. This technique 

amalgamates multiple less effective learners into a singular, 

robust entity. In the cybersecurity context, where individual 

decision trees may fall short, each tree in the sequence corrects 

the errors of its predecessor, creating a cascading effect that 

refines the overall model. 

While boosting algorithms demand considerable training time, 

their strength lies in the consequential relationship among trees, 

leading to heightened accuracy. The learning rate, a critical 

parameter, dictates the speed of model improvement, favoring 

a gradual approach for optimal results. 

The Gradient Boosting settings used here align with the 

philosophy of incremental learning. As each new learner 

integrates within the residuals of the previous stage, the model 

evolves into a comprehensive and robust learner. Residuals, 

calculated using specific loss functions like mean square error 

(MSE) for classification or logarithmic loss (log loss) for 

regression, guide the assimilation of each new decision tree 

without altering the existing model. 

In this experiment, categorized as discrete, Gradient Boosting 

proves instrumental. The configuration preferences, including 

a subsample of 1.0, a learning rate of 0.1, a loss function of 

‘friedman_mse’, number-of-trees as 100, and a fixed random 

state of 42, ensure a finely tuned model. The synergy of these 

settings and the inherent strength of gradient boosting 

contribute significantly to fortifying cybersecurity measures, a 

crucial aspect explored in subsequent sections. 

3.6 Long Short-Term Memory (LSTM)  
Long Short-Term Memory (LSTM) neural networks, at the 

forefront of deep learning and artificial intelligence, redefine 

the approach  followed in this study to understanding 
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and categorizing complex sequences, particularly in the 

dynamic landscape of cybersecurity. Unlike traditional 

feedforward neural networks, LSTM's distinctive advantage 

lies in its ability to evolve through feedback connections. This 

recurrent neural network proves adept at analyzing entire data 

sequences, encompassing diverse data points such as photos, 

speech, or video, marking a paradigm shift in its applicability. 

The LSTM model, a subject of extensive research over the past 

century, showcases its prowess in diverse domains, including 

healthcare, video game creation, healthcare analytics, and 

unsegmented handwriting recognition within networked 

environments. Its architectural components, comprising cells, 

input gates, output gates, and forget gates, facilitate the 

retention of values inside the cell indefinitely, governed by the 

precise control exerted by these gates over the flow of data [24]. 

Particularly noteworthy is LSTM's exceptional performance in 

tasks involving the categorization, processing, and prediction 

of time series data, where variable delays may exist between 

significant occurrences [24]. Recognizing the limitations of 

standard recurrent neural networks (RNNs) prone to the 

vanishing gradient problem during training, LSTM emerges as 

a resilient solution, showcasing heightened sensitivity to gap 

length and outperforming RNNs, hidden Markov models, and 

other sequence learning strategies [24]. 

In the realm of cybersecurity, LSTM emerges as a powerful 

mechanism, leveraging its unique capabilities to decipher 

intricate sequences of cyber threats and contribute to a more 

robust defense mechanism. Delving into the specifics of this 

LSTM implementation (Table 2) in the subsequent sections, the 

convergence of LSTM's innate characteristics with the 

demands of cybersecurity unveils a robust combination, 

enhancing the model’s ability to combat evolving cyber threats 

effectively. 

Table 2. LSTM Model Summary 

Layer (Type) 

 

Output Shape 

 

Param # 

 

lstm (LSTM) (None, 240) 245760 

dropout 

(Dropout) 

(None, 240) 0 

dense (Dense) (None, 2) 482 

Total Params 246242 (961.88 KB) 

Trainable params 246242 (961.88 KB) 

Non-trainable params 0 (0.00 Byte) 

 

3.7 Convolutional Neural Network 

(CNN) Algorithm 
The Convolutional Neural Network (CNN) stands as a 

powerful deep learning architecture widely utilized in various 

domains, including cybersecurity, for its proficiency in 

analyzing sequences of data and extracting hierarchical 

features automatically. In the CNN architecture used here, a 

Convolutional Layer employs multiple filters with Rectified 

Linear Unit (ReLU) activation, followed by a Max Pooling 

Layer for down-sampling, and a Dense (fully connected) Layer 

for final classification. This configuration enables the network 

to capture spatial dependencies, making it effective in tasks 

such as malware detection and intrusion detection in 

cybersecurity. 

Visual imaging assessment commonly employs CNNs, which 

are artificial neural networks that exhibit translation-

equivariant responses through convolution kernels or filters. 

Contrary to popular belief, while CNNs downsample input, 

they are not necessarily translation-invariant. They find 

applications in diverse fields such as natural language 

processing, image and video recognition, brain-computer 

interfaces, classification, segmentation, recommender systems, 

medical image analysis, and financial time series. Inspired by 

the structure of the visual cortex in animals, CNNs mimic the 

concept of receptive fields, where neurons respond to stimuli 

within specific regions. This approach requires less 

preprocessing, allowing the network to autonomously optimize 

filters. Unlike conventional methods, CNNs excel in self-

learning feature extraction without the need for human input or 

contextual information. This versatility positions CNNs as 

invaluable tools in various domains, providing efficient 

solutions for complex tasks in image analysis and pattern 

recognition. CNN model summary of the implementation is 

shown in Tabel 3. 

Table 3. CNN Model Summary 

Layer (Type) 

 

Output Shape 

 

Param # 

 

Conv1d 

(Conv1D) 

(None, 13,32) 128 

max_pooling1D (None, 6, 32) 0 

flatten (Flatten) (None, 192) 0 

dense (Dense) (None, 64) 12352 

dense_1 (Dense) (None, 2) 130 

Total Params 12610 (49.26 KB) 

Trainable params 12610 (49.26 KB) 

Non-trainable params 0 (0.00 Byte) 

 

3.8 LSTM with CNN Algorithm 
The integration of Long Short-Term Memory (LSTM) with 

Convolutional Neural Networks (CNN) forms a powerful 

hybrid model, addressing the shortcomings of each algorithm 

individually. This combination is particularly advantageous in 

cybersecurity for analyzing sequential data and extracting 

spatial features simultaneously. 

LSTMs, renowned for their ability to process and remember 

sequential information, contribute a temporal understanding to 

the model. In the architecture used here, a Bi-directional LSTM 

layer, comprising an LSTM layer with 64 units and ReLU 

activation, is employed. This layer enables bidirectional 
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information flow, capturing dependencies in both forward and 

backward sequences. The output from the LSTM layer serves 

as input to a Dense layer with a single unit and Sigmoid 

activation, facilitating the final classification of the cyber attack 

types. 

When combined with CNN, the model gains the capability to 

extract spatial features from the input data effectively. The 

CNN layer in the architecture uses filters to convolve over the 

input, identifying patterns and spatial dependencies. This layer 

enhances the model's ability to discern relevant features in 

cybersecurity data, such as identifying patterns indicative of 

malicious activities. 

The fusion of LSTM and CNN allows the model to harness the 

strengths of both algorithms—LSTM for understanding 

sequential patterns and CNN for spatial feature extraction. This 

is particularly advantageous in cybersecurity tasks, where 

attacks often exhibit both temporal and spatial characteristics. 

The hybrid architecture proves valuable in the intricate task of 

identifying and classifying cyber threats, leveraging the 

complementary strengths of LSTM and CNN to enhance the 

overall predictive capability of the model. Table 3. shows the 

summary of LSTM with the CNN model used. 

Table 4. LSTM with CNN Model Summary 

Layer (Type) 

 

Output Shape 

 

Param # 

 

sequential_3 

(Sequential) 

(None, 192) 101993 

dense_1 (Dense) (None, 64) 12352 

dense_2 (Dense) (None, 2) 130 

Total Params 114475 (447.17 KB) 

Trainable params 114475 (447.17 KB) 

Non-trainable params 0 (0.00 Byte) 

 

4. RESULTS AND DISCUSSION 
The results of the experiments in this study demonstrate the 

effectiveness of the proposed model, conducting extensive 

evaluations using the dataset, CSIC 2010 Web Application 

Attacks on Random Forest, Decision Tree, Gradient Boosting, 

and the integrated LSTM-CNN architecture, in classifying 

cyber threats.  

The Random Forest algorithm demonstrated robust 

performance, particularly in scenarios where ensemble learning 

proved beneficial. Its ability to mitigate overfitting and handle 

complex datasets contributed to reliable and accurate cyber 

threat classification. The confusion matrix based on the 

prediction results is shown in Fig. 2. 

 

 

Fig. 2. Confusion matrix for Random Forest 
 

Decision Tree, while simpler in structure, showcased 

competitive results, especially with well-defined decision 

boundaries. The confusion matrix for the implementation is 

shown in Fig. 3. 

 

Fig. 3. Confusion matrix for Decision Tree 

Gradient Boosting exhibited strong predictive power, 

leveraging the sequential learning approach to refine 

predictions progressively. The ensemble nature of Gradient 

Boosting allowed it to adapt to complex patterns in 

cybersecurity data, achieving high accuracy across various 

datasets. The confusion matrix based on the prediction results 

is shown in Fig. 4. 

 

 

Fig. 4. Confusion matrix for Gradient Boosting 

Across all experiments, the hybrid LSTM-CNN model 

consistently outperformed individual algorithms and traditional 

machine-learning models. The accuracy, precision, recall, and 

F1-score metrics exhibited notable improvements, showcasing 

the model's enhanced ability to detect and classify diverse 

cyber threats. Notably, the integrated LSTM-CNN architecture 

excelled in capturing both sequential and spatial patterns 
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inherent in cybersecurity data, providing a comprehensive 

approach to threat identification. 

 

Fig. 5. Confusion matrix for LSTM 
 

 

Fig. 6. Confusion matrix for CNN 

 

In conclusion, the hybrid model used here, incorporating 

LSTM-CNN and traditional machine learning algorithms, 

offers a comprehensive solution for cyber threat classification. 

The results suggest that combining the strengths of sequential 

and spatial learning yields superior performance compared to 

individual algorithms. The adaptability of the model to diverse 

datasets underscores its potential for real-world applications in 

cybersecurity, providing a robust defense against evolving 

cyber threats. The confusion matrices from the 

implementations of LSTM, CNN, and LSTM with CNN are 

shown respectively in Figures 5, 6, and 7. 

 

 

Fig. 7 Confusion matrix for LSTM with CNN 

 

 

5. EVALUATION METRICS 
The evaluation metrics used here provide a comprehensive 

assessment of the performance of the proposed hybrid model, 

integrating Random Forest, Decision Tree, Gradient Boosting, 

and the LSTM-CNN architecture, across multiple 

cybersecurity datasets. The following metrics were employed 

to measure the classification performance: 

 

Accuracy: Accuracy represents the ratio of correctly classified 

instances to the total instances in the dataset. It provides an 

overall measure of the model's correctness and is calculated 

using the formula: 

 

ACCURACY = (TRUE POSITIVES + TRUE NEGATIVES) / 

TOTAL NUMBER OF PREDICTIONS 

 

Precision: Precision measures the accuracy of positive 

predictions made by the model. It is the ratio of true positives 

to the sum of true positives and false positives: 

 

PRECISION = TRUE POSITIVES / (TRUE POSITIVES + 

FALSE POSITIVES) 

 

Recall (Sensitivity): Recall quantifies the ability of the model 

to capture all relevant instances. It is the ratio of true positives 

to the sum of true positives and false negatives: 

 

RECALL = TRUE POSITIVES / (TRUE POSITIVES + 

FALSE NEGATIVES) 

 

F1-Score: The F1-Score is the harmonic mean of precision and 

recall, providing a balanced measure that considers both false 

positives and false negatives. It is calculated using the formula: 

 

F1 = 2 X (PRECISION X RECALL) / (PRECISION X 

RECALL) 

Table 5 summarizes the performance results of the hybrid 

model, integrating Random Forest, Decision Tree, Gradient 

Boosting, LSTM, CNN, and the LSTM with CNN architecture, 

across multiple cybersecurity datasets: 

Accuracy graphs across the 10 epochs for the training and 

validation (testing) for the LSTM with CNN model are shown 

in Fig. 8. 

  

Fig. 8. LSTM with CNN Train and Test Accuracy Graph 
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Table 5. Performance Results 

Model 

 

Accuracy 

 

Precision 

 

Recall 

 

F1 

Score 

RF 0.8699 0.8479 0.8372 0.8425 

DT 0.8842 0.8642 0.8545 0.8593 

GB 0.8493 0.8245 0.8125 0.8184 

LSTM 0.9352 0.9232 0.9173 0.9203 

CNN 0.9202 0.9057 0.8987 0.9022 

LSTM with 

CNN 

0.9512 0.9420 0.9375 0.9397 

6. CONCLUSION AND FUTURE 

WORK 
In conclusion, the evaluation of various machine learning 

models, including LSTM, CNN, and the hybrid LSTM with 

CNN, demonstrates their efficacy in addressing cybersecurity 

threats. The LSTM model excels in capturing temporal 

dependencies, while the CNN model exhibits strong 

performance in image-based threat detection. Remarkably, the 

hybrid LSTM with CNN surpasses individual models, 

showcasing superior accuracy and precision in cybersecurity 

threat classification. 

The findings emphasize the importance of combining diverse 

architectures to enhance the robustness and versatility of threat 

detection systems. The synergy of LSTM and CNN leverages 

the strengths of both sequential and spatial modeling, resulting 

in a more comprehensive and effective cybersecurity solution. 

The LSTM with CNN emerged as the superior model for 

anomalous detection, achieving remarkable scores of 0.95, 

0.94, 0.93, and 0.94 for accuracy, precision, recall, and the F1-

score, respectively. Notably, Random Forest and Voting 

classifiers surpassed traditional machine learning methods in 

this context.  

While this study provides valuable insights, there are avenues 

for future exploration and enhancement in the field of 

cybersecurity threat detection. To strengthen the performance 

of the models, datasets from more e-commerce applications as 

well as other domains (e.g., finance, healthcare, social media) 

could be included for training. This would ensure 

generalizability of the model. Also, it would be good to test 

how the classifier performs over time. Using data from 

different time periods to assess robustness. 

In future studies, investigating the potential benefits of 

ensemble methods by combining predictions from multiple 

models may be undertaken, to further improve the overall 

accuracy and reliability. It is planned to transition the models 

into real-time applications, addressing the challenges 

associated with processing data streams and ensuring swift 

responses to emerging threats. Explore techniques to enhance 

the models' robustness against adversarial attacks, which is 

essential in the context of cybersecurity where attackers may 

attempt to manipulate or deceive the detection systems. 
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