
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

61

Web-based Application Services Orchestration using

Docker and Kubernetes

Apridan Husaeni Muharam
Department Information System

Universitas Ahmad Dahlan
Yogyakarta of Indonesia

Imam Riadi
Department Information System

Universitas Ahmad Dahlan
Yogyakarta of Indonesia

ABSTRACT

Ahmad Dahlan University comprises a multitude of institutions

and bureaus, each of which maintains a website that serves as

a repository of profiles and services for students and staff

within the university environment. These websites are managed

by the Bureau of Information Systems (BSI), which is

responsible for the administration of all information technology

within Ahmad Dahlan University. BSI employs a

virtualisation-based shared hosting architecture. The

virtualisation-based shared hosting architecture, which is

employed to host the bureau's website, is prone to failure,

resulting in the server becoming inaccessible, thereby

rendering the website inaccessible. In order to implement the

proposed solution, architectural changes are required. These

changes will involve the use of containerisation and

orchestration techniques, utilising Docker and Kubernetes. The

process of implementing these changes will begin by

containerising each existing website, which will then be

orchestrated by a Kubernetes cluster. This cluster will manage

each container, perform scheduling and monitoring. The

outcome of this research is the establishment of a Kubernetes

cluster, which is employed to host web-based bureaus within

the Ahmad Dahlan University environment. This solution

offers enhanced levels of availability and reliability.

General Terms

Cloud Computing

Keywords

Kubernetes, Docker, Containers, Orchestration, Web Server,

Web App.

1. INTRODUCTION
The website is currently one of the most effective tools used by

organisations to interact with customers [1]. The reliability of

the performance and availability of information technology,

such as the web, is of great importance. If the information

technology used cannot run properly, the pace of business

process work will be disrupted [2].

The reliability of web applications is contingent upon the

reliability and availability of the web server utilized. The

architecture and implementation of the architecture can

influence the reliability and availability of web servers [3].

Therefore, it is essential to design and build web server

architectures and infrastructures in a manner that ensures

optimal reliability and availability. This can be achieved by

following best practices and utilizing appropriate design

principles [4].

The responsibility for information technology at Universitas

Ahmad Dahlan lies with the Information Systems Bureau. The

Bureau of Information Systems plays a pivotal role in the

development of applications, including web applications,

network infrastructure, and servers, within the university

environment. All institutional or bureau websites used at

Ahmad Dahlan University (UAD) employ a virtualisation

architecture and shared hosting. These institutional websites

are utilised as institutional profiles and administrative services

for students and staff.

The virtualisation architecture with shared hosting has inherent

limitations in the separation of resources and other

dependencies [5]. If the supporting dependencies experience

problems, it will result in the web being inaccessible or even

the server being down [6]. The data obtained during

observation shows that on 12-27 October 2023, there were 15

server downs caused by one of the supporting dependencies

having problems, which caused the entire web to be

inaccessible.

Containerisation and orchestration technologies offer improved

reliability and better availability of web servers by efficiently

running and managing applications in containers [7]. These

technologies have the advantages of isolating applications from

other applications, portability, and consistent running in all

environments, whether development or production [8].

Containerisation prevents interference between applications,

while orchestration allows containers to be automated, such as

deployment and on-demand scalability adjustments.

Furthermore, orchestrator tools such as kubenetes have the

ability to automatically fix problematic containers or pod [9].

There are a number of container technologies that can be

employed, including docker, podman, and CRI-O. similarly,

there are a variety of orchestrator technologies that can be

utilised, such as kubernetes, apache mesos, and amazon ECS.

This research employs kubernetes as the orchestrator and

docker as the container isolator, due to its robust developer

support, extensive community, and open-source nature, which

is freely modifiable [10].

2. RELATED WORKS
In 2020, Saleh Dwiyatno, Edy Rakhmat, and Oki Gustiawan

conducted research on docker container-based server

virtualisation. This research utilises docker containers. The

objective of this research is to replace the virtualisation

architecture with docker containers in order to deploy a number

of applications, and to test the effectiveness of Docker in

utilising CPU and memory. The results of this research

demonstrate that the use of a docker container-based

architecture installed on ubuntu 18.04 LTS leads to enhanced

stability of deployed web applications, with CPU and memory

levels remaining below reasonable limits [11].

In 2020, Karim Manaouil and Adrien Lebre conducted research

by testing kubernetes in an edge environment. The objective

was to ascertain the behaviour of kubernetes in that

environment and to identify the concepts and architecture used

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

62

by kubernetes. The results of this research will be used to

determine the impact of WAN on kubernetes. The findings of

this study indicate that kubernetes demonstrates reliable results

on the WAN architecture [12].

In 2021, Alowolodu Olufunso Dayo conducted research

comparing the performance of virtual machines with Docker

containers and kubernetes orchestrators. Calculators and

fibonacci sequences were run on both architectures to ascertain

the relative efficiency of the two architectures. The results

demonstrated that the docker container architecture with

kubernetes orchestrators was more efficient than the virtual

machine architecture in running these calculations [13].

Lluís Baró Cayetano (2021) conducted research on kubernetes,

docker compose, microk8s, and nested LXC containers with

the objective of creating a kubernetes cluster built using three

different container types. This research produces a kubernetes

cluster that runs in three clusters simultaneously, namely in

docker compose, microk8s, and nested LXC containers

clusters. It also deploys a number of applications, including

adminer, GitLab, jitsi, mattermost, nginx proxy manager,

NextCloud, openLDAP, openVPN, redmine, and wxiki, in the

aforementioned clusters [14].

In 2023, Faudji, Weda Adistianaya Dewa, and Nasrul Firdaus

conducted research on the Siakad Stimata API. They

implemented a docker container-based web server cluster

architecture and kubernetes orchestrator with the goal of

increasing server availability, optimising application resources,

and reducing the failure rate of the server. The outcome of the

research was the creation of a web server with a high level of

availability, achieved by increasing the number of nodes in the

cluster [15].

3. METHODOLOGY
The system comprises a kubernetes cluster, which will host

WordPress-based bureau web services. Each web will be

packaged using docker containers and combined with

Kubernetes, which will manage these containers. A total of 16

bureau webs will be packaged into containers, including the

Academic and Admissions Bureau (BAA), Student and Alumni

Bureau (Bimawa), Bureau of Quality Assurance (KEP), Bureau

of Human Resources (BSDM), Bureau of Information Systems

(BSI), Islamic Centre (IC), Research Ethics Committee (KEP),

Real Work Lectures (KKN), Office of Business Affairs and

Investment (KUBI), Education Development Institute (LP2),

Research and Community Service Institute (LPPM), Islamic

Studies Development Institute (LPSI), Professional

Certification Institute (LSP), Office of International Affairs

(OIA), Educational Professional Development Centre (P3K),

Bureau of Facilities and Infrastructure (Sarpras).

3.1 Docker Container
Docker is a technology developed by Docker Inc. to package

applications into isolated environments, referred to as

containers. This approach allows for the separation of

applications and other dependencies from the environment

within the container [16]. Containers offer a high level of

consistency, ensuring that the environment remains consistent

across different contexts, including the development and

production environments [17]. Prior to the advent of containers,

the transfer of applications from the development environment

to the production environment often resulted in inconsistency

issues. While the developed application appeared to function

correctly within the development environment, it would

sometimes malfunction when deployed in the production

environment due to the presence of different supporting

dependencies [18].

Docker comprises several principal components, the most

significant of which is the docker engine. This is the core of

docker and is useful for the creation and management of

containers. A container is a runtime instance of an image that

runs on top of the Docker engine, which runs using the host's

operation system. Dockerhub is a registry that can be used

publicly or can be installed on a private server.

Figure 1: Docker architecture

Figure 1 provides an overview of the Docker container

architecture. The Docker engine runs on top of the host

operating system, which in turn supports the execution of

applications in containers. This architectural approach is

similar to the concept of virtualisation, but differs in that it is

replaced by container engines such as docker.

3.2 Kubernetes
Kubernetes is a container orchestration tool that can be

combined with docker containers to enhance the efficiency of

container management [7]. Kubernetes automates the

deployment, start-up, scheduling, and monitoring of containers,

thereby reducing the manual effort required for container

management [19]. Containers are run in pods by Kubernetes,

preventing them from running independently [20].

Kubernetes is comprised of five primary objects: pods,

application containers, services, volumes, and namespaces.

Pods are the smallest components of kubernetes, within which

application containers reside [21]. Services are entities that

facilitate the exposure of pods within a cluster. Volumes are

kubernetes objects that store data. Namespaces facilitate the

sharing of resources within a cluster, even in the event of a pod

failure or deletion. Containers, which are applications running

within a pod, are designed to be resilient, ensuring that data is

not lost in the event of a failure. Nodes, which are hosts or

worker machines in the kubernetes environment, are

responsible for executing containers and providing the

necessary resources [9].

Figure 2: Kubernetes components

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

63

The kubernetes cluster comprises at least two nodes, each of

which serves as a master node and worker node, as illustrated

in Figure 2. The master node acts as a command centre for

worker nodes, while the worker node is responsible for

executing tasks assigned by the master node. In order to fulfil

its duties, kubernetes is comprised of a number of key

components. These include the kubernetes API, which serves

as an interface for all operations within the cluster. The etcd

system acts as a distributed data storage centre, while the

scheduler is responsible for managing pod scheduling against

nodes within the cluster. Finally, the controller manager

ensures that the cluster runs in accordance with the

configuration that has been set.

Figure 3: Cluster architecture

Figure 3 illustrates the architecture of kubernetes, particularly

on the worker node. In this instance, the container manager,

kubernetes, runs on the host operating system, while kubernetes

also runs the pod, which is instructed to do so by the worker

node based on the configuration that has been set before. The

pod contains a container in which there is an application

running. The cluster will be constructed using two nodes,

comprising a master node and a worker node.

3.3 Data Collection Methods
The objective of data collection is to gain insight into the

requirements of the system that will be deployed in the

kubernetes cluster and to ascertain the current state of the

operational system.

3.3.1 Observation

Observation is an activity that aims to observe the behaviour of

the research object under study. In the context of this research,

observations are made to determine the performance of the

system currently in use and the results of these observations

will be used as study materials in the research.

3.3.2 Literature study

The objective of a literature study is to examine a range of

written sources on the subject of container technology and

orchestration. The findings of such a study can then be used as

a reference for subsequent experiments.

3.3.3 Experiment

The experimental method is a method used to test a hypothesis

by controlling variables in a well-defined manner. This allows

for the measurement of results and the generation of accurate

data.

3.4 Implementation
The implementation process is conducted in a series of stages,

as illustrated in Figure 4.

Figure 4: Stages of implementation

3.4.1 Specify System Requirements

The specification of the system to be used by the cluster is

determined by considering the number of users who access the

web in a given period, the size of each web file, the size of the

database, and the minimum recommended specifications for

the system to be used in the cluster [22].

3.4.2 Implementation

The implementation process is concerned with the installation

of orchestration technology (kubernetes) and the docker

container on a cluster that has been prepared and is capable of

running well by orchestrating the existing containers.

Activity 1: Server Installation

The depelopment of a kubernetes cluster necessitates the

presence of at least two hosts, which will serve as the master

node and worker node, respectively [23]. While the operating

system utilized on the two nodes may differ, it is recommended

that they utilize the same operating system for the sake of ease

of configuration. Once the operating system has been installed,

the network configuration must be carried out in order for the

two nodes to be able to communicate with each other. The two

nodes can be configured to use the same LAN or even different

ones, although it is preferable to place them on the same LAN

for the sake of computing speed.

Activity 2: Containerisation

This stage involves the packaging of the application into a

container. This process begins with the creation of a Dockerfile,

which contains the configuration of the supporting

dependencies of the application. Once the dockerfile has been

executed, an image is formed that is ready to be pushed to the

Dockerhub registry. This stage is completed when one wishes

to create their own custom image, such as for a homemade

application, for a commonly used application or tool, such as

nginx or MySQL, which are already available on dockerhub

[16].

Activity 3: Orchestration

Orchestration is the process of managing, automating, and

operating containers. The orchestration tool employed in this

research is Kubernetes. Each application that has been

packaged into a container is pulled into the Kubernetes cluster,

where it will run as a pod. The pod is exposed, and its service

type is adjusted to align with the needs of the user. Among the

service types in kubernetes are NodePort, clusterIP, and

LoadBalancer. Each pod-exposed service within the

Kubernetes cluster is assigned a virtual IP address and port,

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

64

which can be accessed from both within and outside the cluster

[24].

Activity 4: Reverse Proxy

A reverse proxy is a server that acts as an intermediary between

the client and the backend server. When an incoming request is

received, the reverse proxy will receive and forward it to the

backend server [25]. In the context of this research, the backend

server is the Kubernetes cluster, and the reverse proxy used is

nginx. The configuration of Nginx involves entering the port

and IP address used by each container in the pod. This enables

Nginx to direct client requests to the configured port and IP

address, thus facilitating access to the desired web content.

3.4.3 Testing

The objective of testing is to ascertain the extent to which the

kubernetes cluster is capable of handling the load imposed by

the client. This is achieved through the use of benchmarking

tools such as apache beach, which are employed to simulate the

simultaneous access of a defined number of users to the cluster.

The results of the tests conducted were used to ascertain the

number of successful requests and the time taken to respond to

requests received [26].

4. RESULTS AND DISCUSSION
This research employs a containerised approach to web-based

applications, utilising docker containers and orchestrated with

kubernetes, The Kubernetes cluster, which has been

constructed, comprises two nodes that have been customised to

meet the specific requirements of. This represents a departure

from the conventional shared hosting virtualisation architecture

previously employed. The web application is based on word

press, which has been adapted to align with the institution's

profile and to benefit students and staff at Ahmad Dahlan

University.

4.1 System Specification
The system specifications utilised by the two nodes were

determined by observing the number of users, the size of web

files, the size of the database, and calculating the minimum

standard specifications required by kubernetes. The high

number of users and the volume of traffic necessitate that the

system be equipped with sufficient resources and be capable of

processing the requests made by users to the system. Each of

these parameters will be taken into consideration in order to

determine the specifications that will be used by the kubenets

cluster that will be created.

Figure 5: User graph

Figure 5 presents a graph of web user data from web bureaus at

Ahmad Dahlan University, spanning the period from January

to March 2024. The total number of users is in excess of 80,000.

The Bimawa web ranks highest with a total of 27,000 users.

Figure 6: Web file graph

Figure 6 presents a graph illustrating the size of the web files

to be containerised in megabytes. The total average file size of

these web files is 734,125 megabytes. The OIA (Office of

International) web occupies the largest position, while the web

with the smallest file size is the Sarpras web (Sarana and

Prasarana), with a total file size of 200 megabytes.

Figure 7: Database graph

Figure 7 presents a graph illustrating the size of the web

database in megabytes, with an overall average of 25.98

megabytes. The BSI (Bureau of Information Systems) The web

database occupies the largest position, with a size of 105

megabytes. In contrast, the Sarpras (Sarana and Prasarana) web

database is the smallest, with a total file size of 2.2 megabytes.

In consideration of the number of users, the size of web files

and the size of databases associated with each existing web, the

system specifications employed are as follows, as detailed in

Table 1.

Table 1. Cluster Spesification

Host CPU RAM (GB) Storage (GB)

Master Node 4 8 40

Worker Node

1
4 16 80

4.2 Containerisation
The entire existing web bureau is containerised using a Docker

container. This is achieved by creating a Dockerfile that defines

the dependencies that will be used by the existing web. As the

application to be deployed is a web-based application, the

Docker file must be defined to install a web server.

Furthermore, a command is also needed to define the PHP

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

65

version if PHP is to be used. Once the image has been created,

it is ready to be pushed to the Dockerhub registry container.

Figure 8: Dockerhub

Dockerhub is an official registry created by docker for the

storage of images created by users. These images can be

accessed from various environments, including the Kubernetes

cluster used for the production environment. Figure 8 presents

the creation of the entire web in the form of an image, which

has been subsequently pushed to the Dockerhub. Each web is

created as a new repository, with the objective of facilitating

the updating of each web version and enabling its deployment

to the Kubernetes cluster.

4.3 Orchestration
The image stored in the dockerhub registry is imported into the

Kubernetes environment for orchestration. To transfer the

image from the dockerhub to the kubernetes cluster

environment, a YAML file is required that defines the rules that

will subsequently serve as a reference for kubernetes. The

objective is to sell containers as pods in the cluster. The

contents of the YAML file are commands to pull images from

dockerhub by defining tags and repository names that have

been created, defining replicasets, and defining the internal port

exposure of the container to be used. Each web has its own

YAML file, with the same content but differing repository

names and tags..

Figure 9: Pod

Upon execution of the YAML file, pods will be formed. The

pod status can be ascertained via the kubctl get pods command.

This command will display the pod name, pod status, number

of restarts, and age for each pod in the cluster, as illustrated in

Figure 9.

Figure 10: Service

Pods that are functioning optimally are prepared for exposure.

The exposure process determines which services will be

utilized by the pod. Each web is exposed with the NodePort

service, enabling it to be accessed from outside the cluster as

illustrate in Figure 10. Each pod is assigned its own internal IP

and port, or what is referred to as a cluster IP. If the pod is

exposed using NodePort, an external port will be present

outside the cluster. The port is a means of accessing the

container from outside the cluster using the IP address of the

host machine.

Figure 11: Kubernetes Dashboard

To facilitate cluster monitoring, a dashboard is used, the

dashboard used is kubenetes dashboard, actually there are

many options for dashboards including portainer, skooner,

konstelle, and other. Inside the dashboard informs the number

of deploymenets, pods, replicasets running, and other important

information. The number of pods in this cluster is 17, with 16

web-bureau pods and one database pod as illustrate in Figure

11.

The database in question is the MySQL database, which is run

as a pod in the cluster in a manner analogous to other pods.

However, there is a distinction to be made between this and

other pods, in that there is no need to create an image, as the

MySQL image has already been created by its own

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

66

development team and stored in the dockerhub. All that is

required is the creation of a YAML file to pull the image into

the cluster and expose it.

4.4 Reverse Proxy
Nginx is a web server that has a reverse proxy feature. A

reverse proxy is configured to direct requests from clients to

the cluster or web destinations in the cluster. Each web

container within the cluster is placed in a pod, and the pod is

assigned a unique external port that can be utilized by the Nginx

reverse proxy to access the container's services and forward

them to the client. In the configuration of the reverse proxy, the

domain of each web container in the cluster is also embedded.

Figure 12: Proccess Reverse Proxy

Figure 12 illustrates the data flow when a client initiates a

request. The client sends a request to the reverse proxy server,

which will receive the request and forward it to the backend

server. The latter is referred to in this research as the

Kubernetes cluster. The cluster responds to the request and

sends data according to the client's request, which is mediated

by the reverse proxy server. Subsequently, the reverse proxy

server transmits the response received from the cluster to the

client. This mechanism enables domains to be directed to the

reverse proxy server, and no directly to the cluster.

Figure 13: BAA website

Figure 13 represents the BAA (Academic and Admissions

Bureau) web page, which is accessed by the client through the

reverse proxy server.

Figure 14: Website Bimawa

Figure 14 represents the Bimawa (Student and Alumni Bureau)

web page, which is accessed by the client through the reverse

proxy server.

Figure 15: Website BPM

Figure 15 represents the BPM (Bureau of Quality Assurance)

web page, which is accessed by the client through the reverse

proxy server.

Figure 16: Website BSDM

Figure 16 represents the BSDM (Bureau of Human Resources)

web page, which is accessed from the client through the reverse

proxy server.

Figure 17: Website BSI

Figure 17 illustrates the BSI (Bureau of Information Systems)

web page, accessed from the client via the reverse proxy server.

The same method has been employed to access the websites of

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

67

the Islamic Centre (IC), Research Ethics Committee (KEP),

Real Work Lectures (KKN), Office of Business Affairs and

Investment (KUBI), Education Development Institute (LP2),

Research and The Community Service Institute (LPPM),

Islamic Studies Development Institute (LPSI), Professional

Certification Institute (LSP), Office of International Affairs

(OIA), Educational Professional Development Centre (P3K),

and Bureau of Facilities and Infrastructure (Sarpras) are also

included. The results obtained demonstrate that the web can be

accessed properly, indicating that all configurations have been

successfully implemented and that the web is now ready to be

accessed by users.

4.5 Testing
Two distinct types of tests are employed for the purposes of

evaluating the performance of the kubernetes cluster. The first

test assesses the cluster's ability to process a specified load of

requests in a timely manner. This is accomplished by

measuring the time required to process requests submitted by a

client. The second test involves disrupting the pods within the

cluster to ascertain the cluster's resilience in the face of such

disturbances.

4.5.1 Load testing

Load testing is conducted by sending a number of requests

simultaneously to the cluster. The tool used is Apache Bench,

with a request delivery mechanism of 100, 500, and 1000

requests. The time required to respond to requests is calculated.

Figure 18: Hit using 100 requests

Figure 18 presents presents a graph of the outcomes of a test

conducted on 100 requests to all websites in the cluster, with

the results expressed in seconds. The results of the tests indicate

that the Sarpras web (Bureau of Facilities and Infrastructure) is

the fastest to respond to requests, with an average time of 2.9

seconds. In contrast, the LPPM web (Institute for Research and

Community Service) is the slowest, with an average time of

34.6 seconds. The average time required by the entire web with

a 100 request mechanism is 6.6 seconds.

Figure 19: Hit using 500 requests

Figure 19 presents presents a graph of the results of testing 500

requests to all websites in the cluster in seconds. The results of

the test demonstrate that the KEP (Research Ethics Committee)

website is the fastest to respond to requests, with an average

response time of 10 seconds. In contrast, the LPPM (Institute

for Research and Community Service) website is the slowest,

with an average response time of 124.9 seconds. The average

time required by the entire web with a 500 request mechanism

is 29.6 seconds.

Figure 20: Hit using 1000 requests

Figure 20 presents a graph of the results of testing 1000

requests to all websites in the cluster in seconds. The results of

the test indicate that the KEP (Research Ethics Committee) web

is the fastest to respond to requests, with an average time of 10

seconds. In contrast, the LPPM web (Institute for Research and

Community Service) is the slowest, with an average time of

249.3 seconds. The average time required by the entire web

with a 1000 request mechanism is 58.2 seconds.

4.5.2 Pod resistance testing

The test is conducted by interrupting a running pod by

deliberately removing it from the cluster, by attempting to

delete it intentionally and observing the Kubernetes response to

this action.

Figure 21: Pod resistance

Figure 21 illustrates that the LP2 pod is in a terminating state,

which is an abnormal status. This indicates that there is a

disturbance to the pod. Kubernetes then restores the pod after a

period of waiting. Once the pod is restored, it is running

properly. The status of the pod has returned to running.

Kubernetes responds that there is an irregularity in the cluster.

It then attempts to replace the pod by restarting it according to

the previous deployment in the YAML file. This demonstrates

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

68

that Kubernetes is capable of managing containers

automatically.

5. CONCLUSION
The implementation of a Docker containerisation architecture

and Kubernetes orchestrator can be considered to increase the

level of availability of web servers used by web-web bureaus

in the Ahmad Dahlan University environment. Each web-web

bureau is packaged using Docker containers separately from

each other, which allows the web to run consistently in every

environment, whether it is in a development environment or a

production environment. Each container is managed by a

container orchestrator, called Kubernetes. Kubernetes oversees

the resources required by the container, coordinates scheduling,

and facilitates container deployment, thereby optimizing

efficiency. The test results demonstrate that the Kubernetes

cluster is capable of passing load testing with the mechanism

of sending requests of 100, 500, and 1000 requests alternately

to the entire web well without any response failures.

Additionally, pod reliability testing is conducted by disrupting

pod performance. In such instances, Kubernetes is capable of

responding to any abnormalities that may arise, including the

replacement of a failed pod with a new one, as per the

configured deployment.

6. REFERENCES
[1] Anista&Edy, “Analisis dan Pengembangan Sistem

Informasi Manajemen Sragen,” Jurnal Sainstech

Politeknik Indonusa Surakarta, 6, 1–8, 2020.

[2] Listiani, I, “Analisis Pentingnya Sistem Informasi

Manajemen dalam Teknologi Informasi dan Komunikasi

Saat Ini,” Informasi, Teknologi Dan Komunikasi, 1, 1–15,

2021.

[3] Lukman & Yudhiastari, Mayang, “Analisis Kinerja Web

Server Apache Dan Litespeed Menggunakan Httperf Pada

Virtual Private Server (VPS),” Jurnal Teknologi

Informasi, 16(2), 1-15, 2021.

[4] Ramsari, N., & Ginanjar, A, “Implementasi Infrastruktur

Server Berbasis Cloud Computing Untuk Web Service

Berbasis Teknologi Google Cloud Platform,” Conference

Senatik STT Adisutjipto Yogyakarta, 2022,

https://doi.org/10.28989/senatik.v7i0.472.

[5] Arsa, I. G. N. W., & Hendrawan, I. N. R, “Analisis

Konsolidasi Server dengan Virtualisasi Menggunakan

Proxmox VE,” Jurnal Eksplora Informatika, 13, 1-15,

2020.

[6] Chandra, A. Y, “Analisis Performansi Antara Apache &

Nginx Web Server dalam Menangani Client Request,”

Jurnal Sistem dan Informatika (JSI), 48, 1-15, 2020.

[7] Mukaj, Jon, “Containerization: Revolutionizing Software

Development and Deployment Through Microservices

Architecture Using Docker and Kubernetes,” Thesis,

Epoka University, 2023,

doi:10.13140/RG.2.2.23804.51841.

[8] Felani, R., Al Azam, M. N., Adi, D. P., Widodo, A., &

Gumelar, A. B, “Optimizing Virtual Resources

Management using Docker on Cloud Applications,”

Fakultas Ilmu Komputer, Universitas Narotama,

Surabaya, Indonesia, 2023.

[9] Senjab, K., Abbas, S., Ahmed, N., & Khan, A. u. R, “A

survey of Kubernetes scheduling algorithms,” Journal of

Cloud Computing: Advances, Systems and Applications,

2023, doi: 10.1186/s13677-023-00471-1.

[10] Kuncoro, G., Cristanto, A., & Purbo, O. W, “Kubernetes

untuk Pemula,” Penerbit Andi, 2023.

[11] Dwiyatno, S., Rachmat, E., Sari, A. P., & Gustiawan, O,

“Implementasi Virtualisasi Server Berbasis Docker

Container,” Prosisko: Jurnal Pengembangan Riset dan

Observasi Sistem Komputer 7(2), 165–175, 2020,

https://doi.org/10.30656/prosisko.v7i2.2520.

[12] Manaouil, K., & Lebre, A, “Kubernetes and the Edge?,”

Research Report RR-9370, Inria Rennes - Bretagne

Atlantique, pp. 19. hal-02972686v2, 2020.

[13] Dayo, A. O, “A Multi-Containerized Application using

Docker Containers and Kubernetes Clusters,”

International Journal of Computer Applications, 183(44),

55–60, 2021, https://doi.org/10.5120/ijca2021921843.

[14] Cayetano, L. B, “Creation of a Kubernetes Infrastructure,”

January, 2021,

https://upcommons.upc.edu/handle/2117/344394.

[15] Faudji, Dewa, W. A., & Firdaus, N, “Implementasi Cluster

Web Server Dinamis Berbasis Operating System-Level

Virtualization Menggunakan Docker dan Kubernetes pada

API Siakad Stimata,” Sistem Informasi, STMIK PPKIA

Pradnya Paramita, Malang, 2023.

[16] Kurniawan, M. I., & Dedi, R. T., "Virtualisasi Dengan

Docker," STMIK Bina Sarana Global, 2020.

[17] Umar, I. A., Nurhadi, & Syafaah, L., Khaeruddin,

“Analisis Efektifitas Implementasi Sistem Aplikasi

Docker Terintegrasi OpenStack,” Program Studi Teknik

Elektro, Fakultas Teknik, Universitas Muhammadiyah

Malan, 2021.

[18] Mursanto, P., Handayani, P. W., dkk, “Journal of

Information Systems (Jurnal Sistem Informasi), 16(2),”

Faculty of Computer Science, Universitas Indonesia,

2020.

 [19] Putra, R. A., "Analisa Implementasi Arsitektur

Microservices Berbasis Kontainer pada Komunitas

Pengembang Perangkat Lunak Sumber Terbuka

(OpenDaylight DevOps Community)," Teknik

Informatika, Fakultas Teknik, Universitas

Muhammadiyah Jakarta, 2020.

[20] Poulton, N., "The Kubernetes Book, 2023 Edition," JJNP

Consulting Limited, 2022.

[21] Mondal, S. K., Pan, R., Kabir, H. M. D., dkk, "Kubernetes

in IT administration and serverless computing: An

empirical study and research challenges," The Journal of

Supercomputing, 78(2), 2937–2987, 2022,

https://doi.org/10.1007/s11227-021-03982-3

[22] Rahmi, E., Yumami, E., Hidayasari, N., "Remik: Riset

dan E-Jurnal Manajemen Informatika Komputer,”

Politeknik Negeri Bengkalis, 2023.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

69

[23] Huda, A. N., & Kusumawardani, S. S., "Kubernetes

Cluster Management for Cloud Computing Platform: A

Systematic Literature Review," Department of Electrical

and Information Engineering, Gadjah Mada University,

Yogyakarta, Indonesia, 2022.

[24] Poulton, N, “The Kubernetes Book, 2023 Edition,”

PublishDrive, 2023.

[25] Saputra, P. S., Pratama, P. A., & Tjahyanti, L. P. A. S.,

“Perancangan dan Komparasi Web Server Nginx dengan

Web Server Apache serta Pemanfaatan Reverse Proxy

Server pada Nginx,” Jurnal Komputer dan Teknologi

Sains (Komteks), 2(1), 16-21, 2023.

[26] Tejaya, W., Rahman, S., & Munir, A. (2023). Pengujian

Website Invitees Menggunakan Metode Load Testing

dengan Apache JMeter. Jurnal Kharisma Tech, 18(01),

99-112.

IJCATM : www.ijcaonline.org

