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ABSTRACT 

SCADA stands for Supervisory Control and Data Acquisition. 

This is a system that monitors and controls a plant or equipment 

in industries. Its application is in a wide range of industries such 

as power, telecommunication, water distribution, waste control, 

energy, oil refineries etc. A SCADA system comprises of data 

transfer between a central host computer and several other units. 

Those units are either RTUs(Remote Terminal Units) or 

PLCs(Programmable Logic Controllers), and operator terminals. 

Many of the traditional SCADA systems utilized open loop 

control systems but most modern ones utilize closed loop 

systems where certain configurations are setup usually by a 

controller via a HMI(Human Machine Interface). The SCADA 

system maintains the actuators within certain parameters for 

relevant configured variables. 

Because of the large amount of data provided by the SCADA 

systems on an almost real-time basis usually via a GUI(Graphical 

User Interface) or back-end provisioned sensors and controllers, 

they are prime candidates for utilization of Al and ML 

techniques. 

Currently a lot of utilization of ML is done to identify alarms and 

even predictive analysis of the same. In addition, ML(Machine 

Learning) is utilized in the determination of cyber threats by 

analyzing incoming traffic patterns via IP and bandwidth for 

example in cases of DDOS(Distributed Denial of Service) 

attacks. 

If these large systems can use the data to progress to a higher 

level of self-autonomy, this may release the human operators to 

more meaningful and interesting tasks and not the mundane. 

This paper is interested in a study of how to use of data provided 

via a conveyor based SCADA system model to attempt self-error 

identification, self-correction, and self-healing functionalities 

using ML based control techniques. 

To this end, because of the steep costs in setting up a fully-

fledged system, this paper will utilize modeling tools that will 

simulate parts of an industrial production line managed via a 

SCADA system. In addition, this system will test a limited scope 

section of the model via an industrial logic controller namely 

Siemens S7-1200 PLC interfacing with a DC(direct current) 

motor actuator and with an STM32F4 Nucleo Board as a 

controller. 

General Terms 

Model Predictive Control, MPC, Nonlinear Auto-regressive 

Moving, Average-L2, NARMA-L2 
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1. INTRODUCTION 

Modern Industrial systems are composed of a PLC utilizing PID 

(Proportional Integral Derivative) algorithms, RTUs such as 

motors, feedback sensors, data transmission protocols i.e. 

Modbus, ICCP (Inter-Control Center Communications Protocol) 

and a SCADA system. These systems act as controllers to large 

and complicated engineering systems such as electrical power 

grids, subway transportation systems, factory management 

systems and security systems such as for the Kenya Police 

Surveillance system. 

The secure and proper operation of these systems is usually as a 

critical and important concern for various utility providers, 

private companies, and governments. Currently, in many of these 

setups, the structural features and variables are configured before 

commissioning and usually vary as required by a human 

operator. Successful system operation has always been 

dependent on constant analysis of the input and output values by 

an operator who then adjusts accordingly. 

While SCADA systems have improved productivity and reduced 

labor requirements by adding of intelligence to the depiction and 

analysis of the network, they have remained static in terms of 

predictive analysis of the industrial manufacturing process and 

alarm identification and fault correction. 

Some research has been expended towards detection of faults and 

sub optimal production. In this paper, various AI techniques will 

be utilized to take this further and develop the idea of a model of 

“super SCADA systems” that detect the prior mentioned issues 

and have capacity to control and re-calibrate without human 

operator intervention. 

The SCADA system is part of an ICS (Industrial Control 

Systems) 

and is composed of a central host computer and RTUs, operator 

views/terminals which interface with PLCs via the 

communication infrastructure. 

SCADA Systems are very important and utilized for: 

1. Monitoring of Electrical and Mechanical equipment. 

2. Alerts and Events management. 

3. Controlling and Orchestration of Industrial Processes. 

Most SCADA systems generate alerts and events based on certain 

prior configured conditions. While these are essential for on-site 

operations and maintenance teams, this information is usually 
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after the fact. In addition, there are also several times where the 

alarm systems have been turned off or ignored due to many 

generated alarms. Most of these alarms are carefully reviewed 

after a component or machine malfunctions. 

In addition, there is no predictive analysis of component wear 

and tear and this results in down-times during fault resolution. 

Where such component information exists, it is a prior 

configured global variable that is not always representative of 

operating environment. In addition, capacity production 

parameters are generally fixed by an operator usually 

periodically and at the operator discretion. This leads to 

over/under utilization of production levels and resultant costs. 

For example, training of industrial actuators such as robots is 

usually a costly tedious affair and a slight re-purposing would 

involve software rewrites even where there is no need to modify 

the relevant hardware. Also, because of a lack of interconnection 

between Industrial Systems in real time, a fault or a more 

efficient process cannot be transmitted to similar nodes located 

remotely and would require the vendors intervention for 

resolution. 

The following are the specific objectives that this paper hopes to 

achieve. 

1. To present a developed training model for sample 

industrial components using AI. 

2. To show results of an investigation performance 

modeling and thus determine normal performance 

parameters as compared to utilization of ML. 

Al is a broad area. There are many various areas in the broader 

ecosystem of Al[2], ranging from text mining to deep learning 

and recommendation engines. AI use cases have been finding 

their way into industrial processes which are managed by 

SCADA processes. 

In the paper [4], Takagi and Sugeno use a SCADA system with 

the boiler system model and Fuzzy logic to control PID 

parameters and to increase stability of control system. 

The integration of industrial systems with IoT will provide real 

time sharing of component information over the Internet and this 

will further increase production by reducing down-times. 

A major contributing factor to the operators’ problem is that there 

are just too many interacting complex processes with too many 

variables and accompanying issues to watch and control. This is 

an unintended consequence of installing powerful SCADA 

systems and the many instruments available[5]. 

This research topic will enable an analysis into utilization of ML 

models in industrial automation processes as follows: 

1. Evaluate viability of ML models to enable more 

widespread adoption in industrial automation 

processes. 

2. To encourage data sharing and lessons learnt in terms 

of machine adoption and usage and processes used 

among industrial nodes. 

3. Evaluate on training models for industrial operations 

repurposing. 

The scope of this will involve research into the AI techniques that 

will be utilized in a sample SCADA production line and their 

implementation. These techniques will be utilized in a sample 

actuator process to check on their efficacy. For the simulation of 

the industrial processes, MATLAB will be utilized while to 

develop the AI algorithms. Several AI models including MPC 

and NARMA-L2 will also be utilized to develop comparative 

models. 

In addition, to program the STM32F446RE PIC, C Language 

will be utilized. Ladder logic will be utilized to program the 

Siemens S7-1200 PLC and HMI via TIA portal software. 

Thereafter an analysis of the following will be done: 

1. Analysis of production performance of ML algorithm 

on industrial process. 

2. Analysis of ease of re-purposing of an RTU or actuator. 

3. Predictive analysis of capacity management and alarm 

event handling. 

2. SYSTEM IDENTIFICATION MODEL 

DERIVATION 

In this section of the paper, there is need to determine the plant 

of the system. Since the consideration involves looking at a 

conveyor belt as this could be considered ubiquitous and 

available in most production lines, this papers task is to 

determine what to model. Since all conveyors are driven by a 

motor in practise, it seems most practical to consider the motor 

as the plant of the system. 

The motor determines the speed and position control of the 

conveyor and all items placed on them, it can be regarded as the 

system plant. It will be controlled by a Siemens S7-1200 PLC for 

start/stop since this is a normal system available in normal 

factory plants. It is usually supported by a speed controller 

namely a VFD(Variable Frequency Drive) that is coupled 

directly to the induction motor. 

An STM32F446RE microcontroller will be utilised instead and 

it will be coupled to a 12V rated DC(Direct Current) motor due 

to the highly prohibitive costs for using an actual VFD coupled 

to an induction motor. Additionally, utilizing an induction motor 

and VFD requires three phase AC(Alternating Current) power 

which introduces safety and availability concerns as well. 

Below is a basic electrical circuit diagram of the conveyor motor 

model highlighting the most important sections of the motor 

including the resistance, inductance, the actuator as well as the 

free body diagram of motor rotor as shown in figure 1. 

 

 

Fig 1. Motor State Space Model Circuit of DC Motor 

indicating electrical parameters of armature resistance Ra, 

inductance La, current Ia and Voltage Va and mechanical 

properties such as moment of Inertia J, Torque T, w, d. 

Also included in the table 1 below is a listing of all the relevant 

elements that will be utilized in the modelling process. Table 1. 

Motor Parameters and Constants. 

Symbol Unit Definition 

v Volts (V) Input voltage 

i Ampere (A) Armature current 
em Volts (V) Back EMF 

R Ohm (Ω) Armature Winding Resistance 
L Henry (H) Inductance of Armature Winding 

Ke Nm emf constant 
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T Nm Mechanical Torque 
w Nm Disturbance torque 
d Nm Damping torque 

 Radians Shaft angular position 

 

Radians/s Angular speed 

 Radians/s2 Angular acceleration 

J kg m Moment of Inertia 
b Nms Viscous Frictional Constant 

Kt Nm Torque constant 

2.1 DC Motor angular/ rotational System 

model control problem considering 

disturbances. 

To calculate the moment of inertia for the conveyor motor, the 

following expressions are used. 

  (1) 

Jθ
¨
= T −w −d 

(2) 

Jθ
¨
= T −w −d 

From the motor law, it is determined that: 

(3) 

T = Kti (4) 

This means that the generated torque is proportional to the 

armature current. The damping torque can be expressed as 

follows: 

 d = bθ
˙ 

(5) 

  (6) 

where b is a damping coefficient. By substituting the last two 

equations in equation 1 describing the motor mechanical 

dynamics,the following equation was obtained: 

 Jθ
¨
+ bθ

˙ 
= Kti−w (7) 

  (8) 

The armature current has its own dynamics. From figure 1 , the 

following equation 9 can be written: 

Li˙ + Ri = v −em 

where em is given by the following equation: 

(9) 

em = Keθ˙ (10) 

  (11) 

By substituting the equation 11 in the equation 9, the following 

is obtained: 

 Li˙ + Ri = v −Keθ
˙ 

(12) 

  (13) 

The equations 8 and 13 govern the dynamics of the DC motor as 

indicated below: 

Jθ
¨
+ bθ

˙ 
= Kti−w 

(14) 

  (15) 

Li˙ + Ri = v −Keθ
˙
 

(16) 

  (17) 

The voltage v is an external voltage used to control the motor. 

To derive the state space model, the equations 14 and 16 are used 

in a state-space form which is generally in the form below: 

 x˙ = Ax + Bu + Wdy = Cxf (18) 

  (19) 

 y = Cx (20) 

where x is a state vector, u is the control input vector, y is the 

system output (a scalar), and A,B,C and W are the system 

matrices. 

The state-space variables, control input variables, and the output 

variable are now introduced as follows: 

x1 = θ (21) 

  (22) 

 x3 = i (23) 

 y = x2 (24) 

 u = v (25) 

Three state-space variables are necessary due to the overall 

system order being equal to the same number. The overall system 

order is the sum of the orders of two differential equations. The 

order of the first differential equation 14 where the highest 

derivative appearing the differential equation is 2, and the order 

of the second differential equation 16 is 1. 

The output of the system should be based on observed measured 

output. For this case, the output variable is the angular velocity 

θ
˙
. The control input u is the variable that controls the system 

external voltage v. From the equations 21, 22 and 23, the 

following can be derived: 

x˙1 = x2 (26) 

  (27) 

  (28) 

y = x2 (29) 

The state-space block can also be determined in a Simulink 

model[3] for a nonlinear and linear state-space models and this 

will be encountered shortly. 
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2.2 DC Motor angular/ rotational System 

model control problem WITHOUT 

considering disturbances. 

As indicated above, it is possible to model a conveyor motor so 

as to obtain the physical and system identification system models 

in form of a state-space representation. Note that it is also 

possible to obtain a transfer function of the plant. 

Therefore, it is possible to determine the state-space model of the 

DC motor model using mechanical and electrical methods[1]. 

The torque (T) generated by the DC motor is 

 T = Kti (30) 

where Kt is the constant factor, i is the armature current. 

The back-EMF is determined as shown below. 

 e = Keθ
˙ 

(31) 

The torque constant and back-EMF constant have the same unit 

as Kt = Ke. The motor can be modeled then by using Newton’s 

second law and Kirchhoff voltage law as follows: 

 Jθ
¨
+ bθ

˙ 
= Kti−w (32) 

  (33) 

  (34) 

The DC motor model can be written in the state-space form 

utilising the general form as indicated below. 

x˙ = Ax + Bu (35) 

y = Cx (36) 

This results in more or less the same equation as 26, 27, 28, 29 

albeit simpler due to the lack of consideration of disturbance. 

3. SIMULATION, RESULTS AND 

COMPARISONS 

For this paper, the following design parameters can be 

considered. 

Table 2. General design criteria 

objectives. 

Settling time ≤ 2 seconds 

Overshoot ≤ 5% 

Steady-state error ≤ 1% 

3.1 Open Loop Simulation 

To build out the sub-block from a main model (fig 3.1) and create 

the various components of the state space model, one can use 

discrete blocks such as integrator and gain modules as indicated 

below. 

 

Fig 2. Open loop implementation with step response with 

input and output scope in Simulink. 

The sub-model utilized in the main model is indicated in the 

figure 3 below. 

 

Fig 3. Detailed Simulink sub-block included in the state 

system open loop block. 

 

Fig 4. Sample control step input used for the MATLAB 

simulation. 

 

Fig 5. Simulated system response output due to discrete step 

control input. 

 

Fig 6. Simulated sample sinusoidal control signal input used 

for simulation. 
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Fig 7. Simulated system response output due to sinusoidal 

control input. 

 

Fig 8. Simulated system response output due to non-zero 

control input. 

3.2 MPC Feedback Simulation 

Running the controller as show in fig 3.1 against the simulated 

plant shows good performance with good step input of 10 while 

having output which achieves steady state after less than 2s with 

no overshoot as per requirements on the probes. 

 

Fig 9. Simulation setup in Simulink with step reference 

input, MPC controller, open loop system state model with 

feedback control. 

 

Fig 10. MPC plant configuration with definition of input 

manipulated variables(MV) and output measured 

disturbances(MD). 

 

Fig 11. Linearize attempt of MPC with simulation snapshot 

times defined of [ 0 1]. 

 

Fig 12. MPC designer output indicating preliminary results 

showing varied stepped input response(7-10v) and 7s to 

achieve steady state for output response. 

 

Fig 13. MPC tuning of input weights to 0.1 as well as output 

weights to 1 showing better stepped input response with 

improved output response of 5s. 
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Fig 14. Analysing MPC system response to adjusting input 

control voltage to 6v showing improved input response and 

steady state output response achieved in 3s without 

overshoot. 

 

Fig 15. Analysing impact on MPC system response to setting 

output constraint input to 0.5 showing overshoot in input 

response of about 0.2v with however smoother output 

response with steady state achieved in 3s. 

 

 

 

Fig 16. Analysing impact MPC system response to 

increasing sample time to 25s showing stepped input 

response to 10v and reduced output response performance 

with steady state achieved after 10s. 

 

Fig 17. Impact of analysing MPC impact of increasing 

prediction horizon to 200 showing excellent input step 

response to 10v and achieving steady state output response 

in 4s. 

 

Fig 18. Decreasing control horizon to 100 shows decreased 

MPC system response with stepped input response and 

output response with steady state achieved is 7s. 

 

Fig 19. Increasing input weights to 1 shows much reduced 

MPC system response performance with multiple stepped 

input values and output response unable to achieve steady 

state. 

 

Fig 20. Output of the final chosen parameters shows 

excellent input step response as well as prompt steady state 

response within 3s for the final MPC exported controller. 

 

Fig 21. Implementation of the exported MPC controller on 

step input in Simulink shows good system response. 

Table 3. MPC controller simulation results summary. 

Parameters rise time(sec) peak overshoot steady state error 

Desired Specs ≤ 2 seconds ≤ 5% ≤ 1% 

MPC Controller 1˜ second ≤ None None 
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3.3NARMA-L2 Feedback Simulation 

In this section, it is considered to simulate a NARMA-L2 

controller with a step input. In this case the simulated controller 

is used to effect a plant model of a simulated motor control 

system as indicated in figure 22. The subsystem utilized here is 

basically the same plant model as before in figure 3. A detailed 

view of the simulink block diagram is shown in figure 23. 

 

Fig 22. Detailed Narma-L2 Simulink feedback model with 

step input response and open loop system block. The 

NARMA-L2 controller has the reference input and plant 

output as input and computed voltage as output. 

 

Fig 23. Narma-L2 Simulink block diagram with detailed 

nodes and the state space model included as well as the 

feedback paths. 

 

Fig 24. Configured NARMA-L2 training model detailing the 

number of layers 9, Sampling interval 0.01, Training 

samples 4 and training epochs 100. 

 

Fig 25. Plant input and output data due to run of NARMA-

L2 simulation training showing that there is some fidelity 

between input and output data. The closer these two graphs 

look indicates the better training of the model. 

 

Fig 26. NARMA-L2 neural network training progress 

details implementing the Levenberg-Marquadrt Algorithm. 
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Fig 27. Several graphs indicating input, plant output, error 

and NN output. During training it is seen output trying to 

track input and minimize error while indicating the NN 

output. 

 

Fig 28. The graphs indicate the final results after subjecting 

the trained controller to the testing data and deriving the 

plant output due to test data input as well as error. 

 

Fig 29. The graphs indicate the results of running NARMA-

L2 validation data including input, output, error and NN 

output. 

 

Fig 30. Summary of validation performance graphs showing 

Training, Validation and test data vs Mean Squared 

Error(mse). 
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Fig 31. Neural network regression information after 

training is completed. 

 

Fig 32. Neural network training state graph showing that 

the validation criteria has been achieved. 

Table 4. NARMA-L2 controller simulation results obtained. 

Parameters rise time(sec) peak overshoot steady state error 

Desired Specs ≤ 2 seconds ≤ 5% ≤ 1% 

NARMA-L2 1.15˜ seconds ≤ 1% None 

 

Fig 33. Output of the NARMA-L2 final controller run 

showing how the output is tracking the input step input. It 

shows that steady state is achieved in 3.5s with very little 

overshoot and undershoot. 

Implementing the generated controller on the plant results in the 

following system graphs which shows the input responding to the 

step output though with some residual steady state error 

oscillation from figure 25 to figure 33. 

4.RUNNING PHYSICAL SYSTEM 

In the figures below from figure 34 to figure 57 , it is shown the 

major components that are implemented in this paper to 

implement and test the various feedback control protocols. 

 

Fig 34. Physical architecture diagram indicating SCADA 

systems, physical plant circuitry, measuring setup and 

microchip controller. 

 

Fig 35. Siemens TIA HMI view indicating the main 

component modules namely motor conveyor belt, start/stop 

button as well as running indicator and its integration to S7-

1200 PLC. 
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Fig 36. Summary algorithm implementation on STM32F4 

showing function calls, interrupts/interrupt-handlers and 

code flow. 

 

Fig 37. Running ladder logic in TIA HMI when the start 

button has been activated(Green). 

 

Fig 38. Running ladder logic in TIA HMI when the start 

button has been de-activated(Red) 

 

Fig 39. Electrical schematic design between plant 

components. This includes the microcontroller, Siemens -7-

1200 PLC, Buck-Down converter and DC motor. 

 

Fig 40. Logical cabling connection showing the connections 

between various components in the plant. 

 

Fig 41. end-to-end physical running setup with all the 

components including SCADA HMI, microcontroller plant 

system and measuring oscilloscope included. 
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Fig 42. Linear pulse count vs time output of the motor 

obtained in the STM32F4 microcontroller. 

 

Fig 43. Pulse counter variable configuration in the STM32 

Cube Monitor showing myVariables probe that reads the 

memory store in the S7-1200 PLC. 

 

Fig 44. Output of the pulse counter showing the pulse  

count increasing in linear regression list. 

 

Fig 45. MATLAB pulse counter scope showing that the 

pulse increases linearly but with periodic resets resulting in 

a saw-tooth graph. 

 

Fig 46. Calculation of RPM via python visualization shows 

that the value increases rapidly and achieves steady state in 

6s. There is however slight overshot and undershoot of 

about 10RPM for the next 10s. 

 

Fig 47. The same RPM calculation viewed cube monitor 

which is a discrete output indicating the same time 6s to 

achieve steady state within 10RPM. 

 

Fig 48. The same RPM calculation viewed in MATLAB 

scope which is a also discrete indicating the same time 6s to 

achieve steady state within 10RPM 
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Fig 49. The physical main MPC controller integrated with 

the physical system via USART in the open loop block. The 

input data type is cast/converted to uint8 for processing 

required by the microcontroller code. A step input is 

invoked from the Simulink GUI. 

 

Fig 50. The implementation of USART integration with the 

attributes defined to microcontroller physical plant 

configuration namely via COM8, Baud-Rate 9600. 

 

Fig 51. Input and Output response of the MPC Controller 

that will be integrated to the physical plant showing good 

input characteristics with slight but acceptable input while 

having excellent output characteristics. 

 

Fig 52. The definition of the actual input and output weights 

and constraints for MV and MO. 

 

Fig 53. MPC sanity check performed indicating that output 

increases due to tracking high reference as compared to 

control input as nominal behaviour of controller. 

 

Fig 54. MPC sanity check performed output decreases due 

to tracking low reference as compared to control input as 

nominal behaviour of controller. 

 

Fig 55. MPC run on physical system indicating that actions 

of the MPC controller to achieve steady state. Graph on the 

left shows the controller increasing/decreasing input to the 

physical system to achieve steady state while graph on the 

right shows the output system response. 

It is noted that the MPC controller and the NARMA-L2 

controllers are able to successfully achieve the desired 

parameters as indicated in table 5 and 6. 

Table 5. MPC Physical Run Results. 

Parameters rise time(sec) peak overshoot steady state error 

Desired Specs ≤ 2 seconds ≤ 5% ≤ 1% 

MPC Controller 0.8˜ seconds 0% 1% 

 

Fig 56. Integration of NARMA-L2 controller with physical 

plant system implemented on microcontroller system via 

USART. A step input/output is introduced to the controller 

via cast/conversion block to uint8. 
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Fig 57. System response output due to NARMA-L2 control 

showing good response within 1s. The response is noted to 

have better system response. 

Table 6. NARMA-L2 Physical Run Results. 

Parameters rise 
time(sec) 

peak 
overshoot 

steady state 
error 

Desired Specs ≤ 5 seconds No Overshoot ≤ 1% 

NARMA-L2 

Controller 
0.5˜ seconds 0.5% 1% 

 

5.CONCLUSIONS AND FUTURE WORK 

This paper attempted speed control of a SCADA based conveyor 

system utilizing both simulated and physical test system. This 

tests were done utilizing ML techniques namely MPC and 

NARMAL2 as the feedback controller. In the first phase, 

simulation of the entire system was implemented on various 

virtual systems and it was able to successfully control the speed 

output within the desired parameters. 

In the simulated setup, it is noted that it was it is much simpler to 

manipulate various parameters and quickly analyse the output. 

In the second phase the speed control was also attempted utilizing 

a physical industrial PLC control as well as the on a physical 

motor and PIC. It was noted that it is relatively more difficult to 

implement this end to end due to the need for knowledge of more 

technologies. 

Additionally, it is more difficult to meet the desired parameters 

such as steady state error and performance due to the issues of 

interacting with real electrical connections.Therefore this 

objective was seemingly successfully achieved. 

The next phase of these works would be to implement embedded 

controller within the PLC. The current implementation uses an 

inline controller and this takes substantially more time to execute 

in real time even though on the simulated time is quite brief. 

This is because the simulation depends on the computer resources 

such as CPUs and memory required to execute the software. To 

have the embedded system working in real life, it would be better 

to develop the code and load it in the PLC directly. This would 

be possible via a direct implementation of an optimization 

principle and a linearization algorithm or by use of open source 

software available. 
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