
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

15

Optimization of Industrial Conveyor based SCADA

System using Machine Learning Techniques

Bob Chege Mugo

Department of Electrical and Electronics Engineering,

University of Nairobi,

Nairobi, Kenya

ABSTRACT

SCADA stands for Supervisory Control and Data Acquisition.

This is a system that monitors and controls a plant or equipment

in industries. Its application is in a wide range of industries such

as power, telecommunication, water distribution, waste control,

energy, oil refineries etc. A SCADA system comprises of data

transfer between a central host computer and several other units.

Those units are either RTUs(Remote Terminal Units) or

PLCs(Programmable Logic Controllers), and operator terminals.

Many of the traditional SCADA systems utilized open loop

control systems but most modern ones utilize closed loop

systems where certain configurations are setup usually by a

controller via a HMI(Human Machine Interface). The SCADA

system maintains the actuators within certain parameters for

relevant configured variables.

Because of the large amount of data provided by the SCADA

systems on an almost real-time basis usually via a GUI(Graphical

User Interface) or back-end provisioned sensors and controllers,

they are prime candidates for utilization of Al and ML

techniques.

Currently a lot of utilization of ML is done to identify alarms and

even predictive analysis of the same. In addition, ML(Machine

Learning) is utilized in the determination of cyber threats by

analyzing incoming traffic patterns via IP and bandwidth for

example in cases of DDOS(Distributed Denial of Service)

attacks.

If these large systems can use the data to progress to a higher

level of self-autonomy, this may release the human operators to

more meaningful and interesting tasks and not the mundane.

This paper is interested in a study of how to use of data provided

via a conveyor based SCADA system model to attempt self-error

identification, self-correction, and self-healing functionalities

using ML based control techniques.

To this end, because of the steep costs in setting up a fully-

fledged system, this paper will utilize modeling tools that will

simulate parts of an industrial production line managed via a

SCADA system. In addition, this system will test a limited scope

section of the model via an industrial logic controller namely

Siemens S7-1200 PLC interfacing with a DC(direct current)

motor actuator and with an STM32F4 Nucleo Board as a

controller.

General Terms

Model Predictive Control, MPC, Nonlinear Auto-regressive

Moving, Average-L2, NARMA-L2

Keywords

SCADA, Machine Learning, Artificial Intelligence, Model

Predictive Control, MPC, NARMA-L2, Nonlinear Auto-

regressive Moving Average-L2

1. INTRODUCTION

Modern Industrial systems are composed of a PLC utilizing PID

(Proportional Integral Derivative) algorithms, RTUs such as

motors, feedback sensors, data transmission protocols i.e.

Modbus, ICCP (Inter-Control Center Communications Protocol)

and a SCADA system. These systems act as controllers to large

and complicated engineering systems such as electrical power

grids, subway transportation systems, factory management

systems and security systems such as for the Kenya Police

Surveillance system.

The secure and proper operation of these systems is usually as a

critical and important concern for various utility providers,

private companies, and governments. Currently, in many of these

setups, the structural features and variables are configured before

commissioning and usually vary as required by a human

operator. Successful system operation has always been

dependent on constant analysis of the input and output values by

an operator who then adjusts accordingly.

While SCADA systems have improved productivity and reduced

labor requirements by adding of intelligence to the depiction and

analysis of the network, they have remained static in terms of

predictive analysis of the industrial manufacturing process and

alarm identification and fault correction.

Some research has been expended towards detection of faults and

sub optimal production. In this paper, various AI techniques will

be utilized to take this further and develop the idea of a model of

“super SCADA systems” that detect the prior mentioned issues

and have capacity to control and re-calibrate without human

operator intervention.

The SCADA system is part of an ICS (Industrial Control

Systems)

and is composed of a central host computer and RTUs, operator

views/terminals which interface with PLCs via the

communication infrastructure.

SCADA Systems are very important and utilized for:

1. Monitoring of Electrical and Mechanical equipment.

2. Alerts and Events management.

3. Controlling and Orchestration of Industrial Processes.

Most SCADA systems generate alerts and events based on certain

prior configured conditions. While these are essential for on-site

operations and maintenance teams, this information is usually

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

16

after the fact. In addition, there are also several times where the

alarm systems have been turned off or ignored due to many

generated alarms. Most of these alarms are carefully reviewed

after a component or machine malfunctions.

In addition, there is no predictive analysis of component wear

and tear and this results in down-times during fault resolution.

Where such component information exists, it is a prior

configured global variable that is not always representative of

operating environment. In addition, capacity production

parameters are generally fixed by an operator usually

periodically and at the operator discretion. This leads to

over/under utilization of production levels and resultant costs.

For example, training of industrial actuators such as robots is

usually a costly tedious affair and a slight re-purposing would

involve software rewrites even where there is no need to modify

the relevant hardware. Also, because of a lack of interconnection

between Industrial Systems in real time, a fault or a more

efficient process cannot be transmitted to similar nodes located

remotely and would require the vendors intervention for

resolution.

The following are the specific objectives that this paper hopes to

achieve.

1. To present a developed training model for sample

industrial components using AI.

2. To show results of an investigation performance

modeling and thus determine normal performance

parameters as compared to utilization of ML.

Al is a broad area. There are many various areas in the broader

ecosystem of Al[2], ranging from text mining to deep learning

and recommendation engines. AI use cases have been finding

their way into industrial processes which are managed by

SCADA processes.

In the paper [4], Takagi and Sugeno use a SCADA system with

the boiler system model and Fuzzy logic to control PID

parameters and to increase stability of control system.

The integration of industrial systems with IoT will provide real

time sharing of component information over the Internet and this

will further increase production by reducing down-times.

A major contributing factor to the operators’ problem is that there

are just too many interacting complex processes with too many

variables and accompanying issues to watch and control. This is

an unintended consequence of installing powerful SCADA

systems and the many instruments available[5].

This research topic will enable an analysis into utilization of ML

models in industrial automation processes as follows:

1. Evaluate viability of ML models to enable more

widespread adoption in industrial automation

processes.

2. To encourage data sharing and lessons learnt in terms

of machine adoption and usage and processes used

among industrial nodes.

3. Evaluate on training models for industrial operations

repurposing.

The scope of this will involve research into the AI techniques that

will be utilized in a sample SCADA production line and their

implementation. These techniques will be utilized in a sample

actuator process to check on their efficacy. For the simulation of

the industrial processes, MATLAB will be utilized while to

develop the AI algorithms. Several AI models including MPC

and NARMA-L2 will also be utilized to develop comparative

models.

In addition, to program the STM32F446RE PIC, C Language

will be utilized. Ladder logic will be utilized to program the

Siemens S7-1200 PLC and HMI via TIA portal software.

Thereafter an analysis of the following will be done:

1. Analysis of production performance of ML algorithm

on industrial process.

2. Analysis of ease of re-purposing of an RTU or actuator.

3. Predictive analysis of capacity management and alarm

event handling.

2. SYSTEM IDENTIFICATION MODEL

DERIVATION

In this section of the paper, there is need to determine the plant

of the system. Since the consideration involves looking at a

conveyor belt as this could be considered ubiquitous and

available in most production lines, this papers task is to

determine what to model. Since all conveyors are driven by a

motor in practise, it seems most practical to consider the motor

as the plant of the system.

The motor determines the speed and position control of the

conveyor and all items placed on them, it can be regarded as the

system plant. It will be controlled by a Siemens S7-1200 PLC for

start/stop since this is a normal system available in normal

factory plants. It is usually supported by a speed controller

namely a VFD(Variable Frequency Drive) that is coupled

directly to the induction motor.

An STM32F446RE microcontroller will be utilised instead and

it will be coupled to a 12V rated DC(Direct Current) motor due

to the highly prohibitive costs for using an actual VFD coupled

to an induction motor. Additionally, utilizing an induction motor

and VFD requires three phase AC(Alternating Current) power

which introduces safety and availability concerns as well.

Below is a basic electrical circuit diagram of the conveyor motor

model highlighting the most important sections of the motor

including the resistance, inductance, the actuator as well as the

free body diagram of motor rotor as shown in figure 1.

Fig 1. Motor State Space Model Circuit of DC Motor

indicating electrical parameters of armature resistance Ra,

inductance La, current Ia and Voltage Va and mechanical

properties such as moment of Inertia J, Torque T, w, d.

Also included in the table 1 below is a listing of all the relevant

elements that will be utilized in the modelling process. Table 1.

Motor Parameters and Constants.

Symbol Unit Definition

v Volts (V) Input voltage

i Ampere (A) Armature current
em Volts (V) Back EMF

R Ohm (Ω) Armature Winding Resistance
L Henry (H) Inductance of Armature Winding

Ke Nm emf constant

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

17

T Nm Mechanical Torque
w Nm Disturbance torque
d Nm Damping torque

 Radians Shaft angular position

Radians/s Angular speed

 Radians/s2 Angular acceleration

J kg m Moment of Inertia
b Nms Viscous Frictional Constant

Kt Nm Torque constant

2.1 DC Motor angular/ rotational System

model control problem considering

disturbances.

To calculate the moment of inertia for the conveyor motor, the

following expressions are used.

 (1)

Jθ
¨
= T −w −d

(2)

Jθ
¨
= T −w −d

From the motor law, it is determined that:

(3)

T = Kti (4)

This means that the generated torque is proportional to the

armature current. The damping torque can be expressed as

follows:

 d = bθ
˙

(5)

 (6)

where b is a damping coefficient. By substituting the last two

equations in equation 1 describing the motor mechanical

dynamics,the following equation was obtained:

 Jθ
¨
+ bθ

˙
= Kti−w (7)

 (8)

The armature current has its own dynamics. From figure 1 , the

following equation 9 can be written:

Li˙ + Ri = v −em

where em is given by the following equation:

(9)

em = Keθ˙ (10)

 (11)

By substituting the equation 11 in the equation 9, the following

is obtained:

 Li˙ + Ri = v −Keθ
˙

(12)

 (13)

The equations 8 and 13 govern the dynamics of the DC motor as

indicated below:

Jθ
¨
+ bθ

˙
= Kti−w

(14)

 (15)

Li˙ + Ri = v −Keθ
˙

(16)

 (17)

The voltage v is an external voltage used to control the motor.

To derive the state space model, the equations 14 and 16 are used

in a state-space form which is generally in the form below:

 x˙ = Ax + Bu + Wdy = Cxf (18)

 (19)

 y = Cx (20)

where x is a state vector, u is the control input vector, y is the

system output (a scalar), and A,B,C and W are the system

matrices.

The state-space variables, control input variables, and the output

variable are now introduced as follows:

x1 = θ (21)

 (22)

 x3 = i (23)

 y = x2 (24)

 u = v (25)

Three state-space variables are necessary due to the overall

system order being equal to the same number. The overall system

order is the sum of the orders of two differential equations. The

order of the first differential equation 14 where the highest

derivative appearing the differential equation is 2, and the order

of the second differential equation 16 is 1.

The output of the system should be based on observed measured

output. For this case, the output variable is the angular velocity

θ
˙
. The control input u is the variable that controls the system

external voltage v. From the equations 21, 22 and 23, the

following can be derived:

x˙1 = x2 (26)

 (27)

 (28)

y = x2 (29)

The state-space block can also be determined in a Simulink

model[3] for a nonlinear and linear state-space models and this

will be encountered shortly.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

18

2.2 DC Motor angular/ rotational System

model control problem WITHOUT

considering disturbances.

As indicated above, it is possible to model a conveyor motor so

as to obtain the physical and system identification system models

in form of a state-space representation. Note that it is also

possible to obtain a transfer function of the plant.

Therefore, it is possible to determine the state-space model of the

DC motor model using mechanical and electrical methods[1].

The torque (T) generated by the DC motor is

 T = Kti (30)

where Kt is the constant factor, i is the armature current.

The back-EMF is determined as shown below.

 e = Keθ
˙

(31)

The torque constant and back-EMF constant have the same unit

as Kt = Ke. The motor can be modeled then by using Newton’s

second law and Kirchhoff voltage law as follows:

 Jθ
¨
+ bθ

˙
= Kti−w (32)

 (33)

 (34)

The DC motor model can be written in the state-space form

utilising the general form as indicated below.

x˙ = Ax + Bu (35)

y = Cx (36)

This results in more or less the same equation as 26, 27, 28, 29

albeit simpler due to the lack of consideration of disturbance.

3. SIMULATION, RESULTS AND

COMPARISONS

For this paper, the following design parameters can be

considered.

Table 2. General design criteria

objectives.

Settling time ≤ 2 seconds

Overshoot ≤ 5%

Steady-state error ≤ 1%

3.1 Open Loop Simulation

To build out the sub-block from a main model (fig 3.1) and create

the various components of the state space model, one can use

discrete blocks such as integrator and gain modules as indicated

below.

Fig 2. Open loop implementation with step response with

input and output scope in Simulink.

The sub-model utilized in the main model is indicated in the

figure 3 below.

Fig 3. Detailed Simulink sub-block included in the state

system open loop block.

Fig 4. Sample control step input used for the MATLAB

simulation.

Fig 5. Simulated system response output due to discrete step

control input.

Fig 6. Simulated sample sinusoidal control signal input used

for simulation.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

19

Fig 7. Simulated system response output due to sinusoidal

control input.

Fig 8. Simulated system response output due to non-zero

control input.

3.2 MPC Feedback Simulation

Running the controller as show in fig 3.1 against the simulated

plant shows good performance with good step input of 10 while

having output which achieves steady state after less than 2s with

no overshoot as per requirements on the probes.

Fig 9. Simulation setup in Simulink with step reference

input, MPC controller, open loop system state model with

feedback control.

Fig 10. MPC plant configuration with definition of input

manipulated variables(MV) and output measured

disturbances(MD).

Fig 11. Linearize attempt of MPC with simulation snapshot

times defined of [0 1].

Fig 12. MPC designer output indicating preliminary results

showing varied stepped input response(7-10v) and 7s to

achieve steady state for output response.

Fig 13. MPC tuning of input weights to 0.1 as well as output

weights to 1 showing better stepped input response with

improved output response of 5s.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

20

Fig 14. Analysing MPC system response to adjusting input

control voltage to 6v showing improved input response and

steady state output response achieved in 3s without

overshoot.

Fig 15. Analysing impact on MPC system response to setting

output constraint input to 0.5 showing overshoot in input

response of about 0.2v with however smoother output

response with steady state achieved in 3s.

Fig 16. Analysing impact MPC system response to

increasing sample time to 25s showing stepped input

response to 10v and reduced output response performance

with steady state achieved after 10s.

Fig 17. Impact of analysing MPC impact of increasing

prediction horizon to 200 showing excellent input step

response to 10v and achieving steady state output response

in 4s.

Fig 18. Decreasing control horizon to 100 shows decreased

MPC system response with stepped input response and

output response with steady state achieved is 7s.

Fig 19. Increasing input weights to 1 shows much reduced

MPC system response performance with multiple stepped

input values and output response unable to achieve steady

state.

Fig 20. Output of the final chosen parameters shows

excellent input step response as well as prompt steady state

response within 3s for the final MPC exported controller.

Fig 21. Implementation of the exported MPC controller on

step input in Simulink shows good system response.

Table 3. MPC controller simulation results summary.

Parameters rise time(sec) peak overshoot steady state error

Desired Specs ≤ 2 seconds ≤ 5% ≤ 1%

MPC Controller 1˜ second ≤ None None

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

21

3.3NARMA-L2 Feedback Simulation

In this section, it is considered to simulate a NARMA-L2

controller with a step input. In this case the simulated controller

is used to effect a plant model of a simulated motor control

system as indicated in figure 22. The subsystem utilized here is

basically the same plant model as before in figure 3. A detailed

view of the simulink block diagram is shown in figure 23.

Fig 22. Detailed Narma-L2 Simulink feedback model with

step input response and open loop system block. The

NARMA-L2 controller has the reference input and plant

output as input and computed voltage as output.

Fig 23. Narma-L2 Simulink block diagram with detailed

nodes and the state space model included as well as the

feedback paths.

Fig 24. Configured NARMA-L2 training model detailing the

number of layers 9, Sampling interval 0.01, Training

samples 4 and training epochs 100.

Fig 25. Plant input and output data due to run of NARMA-

L2 simulation training showing that there is some fidelity

between input and output data. The closer these two graphs

look indicates the better training of the model.

Fig 26. NARMA-L2 neural network training progress

details implementing the Levenberg-Marquadrt Algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

22

Fig 27. Several graphs indicating input, plant output, error

and NN output. During training it is seen output trying to

track input and minimize error while indicating the NN

output.

Fig 28. The graphs indicate the final results after subjecting

the trained controller to the testing data and deriving the

plant output due to test data input as well as error.

Fig 29. The graphs indicate the results of running NARMA-

L2 validation data including input, output, error and NN

output.

Fig 30. Summary of validation performance graphs showing

Training, Validation and test data vs Mean Squared

Error(mse).

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

23

Fig 31. Neural network regression information after

training is completed.

Fig 32. Neural network training state graph showing that

the validation criteria has been achieved.

Table 4. NARMA-L2 controller simulation results obtained.

Parameters rise time(sec) peak overshoot steady state error

Desired Specs ≤ 2 seconds ≤ 5% ≤ 1%

NARMA-L2 1.15˜ seconds ≤ 1% None

Fig 33. Output of the NARMA-L2 final controller run

showing how the output is tracking the input step input. It

shows that steady state is achieved in 3.5s with very little

overshoot and undershoot.

Implementing the generated controller on the plant results in the

following system graphs which shows the input responding to the

step output though with some residual steady state error

oscillation from figure 25 to figure 33.

4.RUNNING PHYSICAL SYSTEM

In the figures below from figure 34 to figure 57 , it is shown the

major components that are implemented in this paper to

implement and test the various feedback control protocols.

Fig 34. Physical architecture diagram indicating SCADA

systems, physical plant circuitry, measuring setup and

microchip controller.

Fig 35. Siemens TIA HMI view indicating the main

component modules namely motor conveyor belt, start/stop

button as well as running indicator and its integration to S7-

1200 PLC.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

24

Fig 36. Summary algorithm implementation on STM32F4

showing function calls, interrupts/interrupt-handlers and

code flow.

Fig 37. Running ladder logic in TIA HMI when the start

button has been activated(Green).

Fig 38. Running ladder logic in TIA HMI when the start

button has been de-activated(Red)

Fig 39. Electrical schematic design between plant

components. This includes the microcontroller, Siemens -7-

1200 PLC, Buck-Down converter and DC motor.

Fig 40. Logical cabling connection showing the connections

between various components in the plant.

Fig 41. end-to-end physical running setup with all the

components including SCADA HMI, microcontroller plant

system and measuring oscilloscope included.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

25

Fig 42. Linear pulse count vs time output of the motor

obtained in the STM32F4 microcontroller.

Fig 43. Pulse counter variable configuration in the STM32

Cube Monitor showing myVariables probe that reads the

memory store in the S7-1200 PLC.

Fig 44. Output of the pulse counter showing the pulse

count increasing in linear regression list.

Fig 45. MATLAB pulse counter scope showing that the

pulse increases linearly but with periodic resets resulting in

a saw-tooth graph.

Fig 46. Calculation of RPM via python visualization shows

that the value increases rapidly and achieves steady state in

6s. There is however slight overshot and undershoot of

about 10RPM for the next 10s.

Fig 47. The same RPM calculation viewed cube monitor

which is a discrete output indicating the same time 6s to

achieve steady state within 10RPM.

Fig 48. The same RPM calculation viewed in MATLAB

scope which is a also discrete indicating the same time 6s to

achieve steady state within 10RPM

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

26

Fig 49. The physical main MPC controller integrated with

the physical system via USART in the open loop block. The

input data type is cast/converted to uint8 for processing

required by the microcontroller code. A step input is

invoked from the Simulink GUI.

Fig 50. The implementation of USART integration with the

attributes defined to microcontroller physical plant

configuration namely via COM8, Baud-Rate 9600.

Fig 51. Input and Output response of the MPC Controller

that will be integrated to the physical plant showing good

input characteristics with slight but acceptable input while

having excellent output characteristics.

Fig 52. The definition of the actual input and output weights

and constraints for MV and MO.

Fig 53. MPC sanity check performed indicating that output

increases due to tracking high reference as compared to

control input as nominal behaviour of controller.

Fig 54. MPC sanity check performed output decreases due

to tracking low reference as compared to control input as

nominal behaviour of controller.

Fig 55. MPC run on physical system indicating that actions

of the MPC controller to achieve steady state. Graph on the

left shows the controller increasing/decreasing input to the

physical system to achieve steady state while graph on the

right shows the output system response.

It is noted that the MPC controller and the NARMA-L2

controllers are able to successfully achieve the desired

parameters as indicated in table 5 and 6.

Table 5. MPC Physical Run Results.

Parameters rise time(sec) peak overshoot steady state error

Desired Specs ≤ 2 seconds ≤ 5% ≤ 1%

MPC Controller 0.8˜ seconds 0% 1%

Fig 56. Integration of NARMA-L2 controller with physical

plant system implemented on microcontroller system via

USART. A step input/output is introduced to the controller

via cast/conversion block to uint8.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

27

Fig 57. System response output due to NARMA-L2 control

showing good response within 1s. The response is noted to

have better system response.

Table 6. NARMA-L2 Physical Run Results.

Parameters rise
time(sec)

peak
overshoot

steady state
error

Desired Specs ≤ 5 seconds No Overshoot ≤ 1%

NARMA-L2

Controller
0.5˜ seconds 0.5% 1%

5.CONCLUSIONS AND FUTURE WORK

This paper attempted speed control of a SCADA based conveyor

system utilizing both simulated and physical test system. This

tests were done utilizing ML techniques namely MPC and

NARMAL2 as the feedback controller. In the first phase,

simulation of the entire system was implemented on various

virtual systems and it was able to successfully control the speed

output within the desired parameters.

In the simulated setup, it is noted that it was it is much simpler to

manipulate various parameters and quickly analyse the output.

In the second phase the speed control was also attempted utilizing

a physical industrial PLC control as well as the on a physical

motor and PIC. It was noted that it is relatively more difficult to

implement this end to end due to the need for knowledge of more

technologies.

Additionally, it is more difficult to meet the desired parameters

such as steady state error and performance due to the issues of

interacting with real electrical connections.Therefore this

objective was seemingly successfully achieved.

The next phase of these works would be to implement embedded

controller within the PLC. The current implementation uses an

inline controller and this takes substantially more time to execute

in real time even though on the simulated time is quite brief.

This is because the simulation depends on the computer resources

such as CPUs and memory required to execute the software. To

have the embedded system working in real life, it would be better

to develop the code and load it in the PLC directly. This would

be possible via a direct implementation of an optimization

principle and a linearization algorithm or by use of open source

software available.

6. REFERENCES
[1] Control of dc motor using integral state feedback and

comparison with pid: Simulation and arduino

implementation. Available at https://www.researchgate.net/

publication/348272348_Control_of_DC_Motor_

Using_Integral_State_Feedback_and_Comparison_

with_PID_Simulation_and_Arduino_Implementation

(2023/05/22).

[2] Outlook on artificial intelligence in the enterprise 2016.pdf.

Available at http://www.

datascienceassn.org/sites/default/files/

OutlookonArtificialIntelligenceintheEnterprise2016. pdf

(2023/05/22).

[3] State space control systems-matlab simulink approach.

Available at https://www.morganclaypoolpublishers.com/

catalog_Orig/samples/9781681739793_sample.pdf

(2023/05/22).

[4] Jiri Kocian, Stepan Ozana, and Jiri Koziorek. An approach

to optimization of takagi-sugeno type fuzzy regulator

parameters by genetic algorithm from mamdani regulation

surface. Applied Mechanics and Materials, 248:545–550,

12 2012.

[5] Tony Lange and Johann Botha. An overview of intelligent

control systems in cement plants: shop floor to boardroom.

Instrumentation Measurement Magazine, IEEE, 7:20 – 25,

01 2005.

IJCATM : www.ijcaonline.org

https://www.researchgate.net/publication/348272348_Control_of_DC_Motor_Using_Integral_State_Feedback_and_Comparison_with_PID_Simulation_and_Arduino_Implementation
https://www.researchgate.net/publication/348272348_Control_of_DC_Motor_Using_Integral_State_Feedback_and_Comparison_with_PID_Simulation_and_Arduino_Implementation
https://www.researchgate.net/publication/348272348_Control_of_DC_Motor_Using_Integral_State_Feedback_and_Comparison_with_PID_Simulation_and_Arduino_Implementation
https://www.researchgate.net/publication/348272348_Control_of_DC_Motor_Using_Integral_State_Feedback_and_Comparison_with_PID_Simulation_and_Arduino_Implementation
https://www.researchgate.net/publication/348272348_Control_of_DC_Motor_Using_Integral_State_Feedback_and_Comparison_with_PID_Simulation_and_Arduino_Implementation
https://www.researchgate.net/publication/348272348_Control_of_DC_Motor_Using_Integral_State_Feedback_and_Comparison_with_PID_Simulation_and_Arduino_Implementation
https://www.researchgate.net/publication/348272348_Control_of_DC_Motor_Using_Integral_State_Feedback_and_Comparison_with_PID_Simulation_and_Arduino_Implementation
http://www.datascienceassn.org/sites/default/files/Outlook%20on%20Artificial%20Intelligence%20in%20the%20Enterprise%202016.pdf
http://www.datascienceassn.org/sites/default/files/Outlook%20on%20Artificial%20Intelligence%20in%20the%20Enterprise%202016.pdf
http://www.datascienceassn.org/sites/default/files/Outlook%20on%20Artificial%20Intelligence%20in%20the%20Enterprise%202016.pdf
http://www.datascienceassn.org/sites/default/files/Outlook%20on%20Artificial%20Intelligence%20in%20the%20Enterprise%202016.pdf
http://www.datascienceassn.org/sites/default/files/Outlook%20on%20Artificial%20Intelligence%20in%20the%20Enterprise%202016.pdf
http://www.datascienceassn.org/sites/default/files/Outlook%20on%20Artificial%20Intelligence%20in%20the%20Enterprise%202016.pdf
https://www.morganclaypoolpublishers.com/catalog_Orig/samples/9781681739793_sample.pdf
https://www.morganclaypoolpublishers.com/catalog_Orig/samples/9781681739793_sample.pdf
https://www.morganclaypoolpublishers.com/catalog_Orig/samples/9781681739793_sample.pdf

