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ABSTRACT

Optimization job scheduling of virtual machines in a cloud
computing for tasks is considered as NP-hard problem
specifically for large task sizes in the cloud. Hence many
techniques for job scheduling have been presented previously
but they did not consider the combined task scheduling and
resource allocation, which reduces the flexibility, increase
traffic, congestion, and reduces computation processing time.
Hence a novel technique, namely Multi Optimized Job
scheduling Framework for VM with enhanced migration
in a Multi Cloud Environment has been proposed, in which
the load balancers with multi-level optimizations that utilizes
the runner root algorithm and Differential evolution algorithm
with Levy distribution to schedule the job and determines the
VM to be allotted for the job based on international and
national level optimization. Moreover, the previous
techniques concentrate only on the migration that extends VM
lifespan, lacking Quality of Service (QoS) and unsatisfied the
end users. Hence a novel technique Active Inactive data
migration algorithm is used to prevent fluctuating migration
between Virtual Machines and recursive algorithm keeps on
iterating the same operation on the server with the lowest
virtual load and Optimum Cost Function is to prevent
unnecessary migration cost. During VM migration, several
applications were affected during a live VM migration that
caused a network fault, which is eliminated by a novel Data
replacing approach which is used to transfer the exact size of
data to the active PM. Overall, the proposed method is to
perform an efficient job scheduling in multi cloud
environment with optimized VM migration.
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1. INTRODUCTION

Cloud computing is a trending technology that allows users to
use computing resources remotely in a pay-per-use model. In
this era of rapid growing technology, new opportunities are
open for businesses, where recent technologies are replacing
old ones. With the advent of cloud, small and big
organizations all are progressing without need to concern
about the storage and maintenance of their business data [1].
All the responsibility is envisaged upon the cloud service
providers (CSPs) and hence cloud computing has become the
backbone of modern business world. Organizations contacts
various cloud service providers and consumes the services by

Sanjay Pachauri, PhD
Professor , Department of CSE,
Greater Noida Institute of Technology (Engg. Institute)
Greater Noida

signing Service-Layer Agreement (SLA) document. A CSP
contacts various resource providers at datacenters to satisfy
the demands of the customer. Usually, it is said that cloud
computing provides infinite resources and elastic services [2].
To raise the flexibility or capacity of cloud service providers
and fulfill the ever-growing demand of services, resources
from different resource providers need to collaborate, inter-
communicate and work in cooperation and coordination. So,
collaboration of various cloud service providers gives root to
the concept of multi-cloud which simply means that an
enterprise can take services from more than one cloud service
provider through a common interface or a single API [3].

The principle of multi-cloud paradigm in which each member
cloud performs a service level agreement (SLA) with other
member clouds that allows them to work together when data
becomes too massive for any single cloud to manage [4].In
multi cloud computing individual Consumer Service
Provider(CSPs) are employed for a particular business or
organization's purposes and they all have varying forms of
application and SLAs. Moreover, the other benefits of
multi cloud computing are that it avoids long-term
commitment to a single cloud service provider, addressing
concerns like interoperability and vendor lock-in [5]. These
platforms develop new means of operability, either via
increasing standardization of systems employed by creating
new ways for clouds to communicate data with one another on
a more global level, because they frequently rely on
communication across their diverse cloud components.
Furthermore, the users are not required to make any
investments in new infrastructure. They can get the services
they want from anywhere in the globe for a fee, and they do
not have to worry about the intricacy of the IT infrastructure

[6].

In multi cloud a Directed Acyclic Graph (DAG) represents an
application as a collection of many jobs. Independent tasks in
a DAG can be run concurrently by many virtual machines
(VMs), however linked tasks must be run in the right
sequence as determined by task priority [7]. Scheduling tasks
for execution with the shortest makes span (total execution
time of all tasks) is an NP-complete issue. Also, the multi
cloud business models and technologies create serious
problems, such as proprietary APIs and a lack of
interoperability [8]. It is crucial that business companies could
feed data into bigger, more popular outlets. It is also vital to
select an application architecture that matches and fully
exploits the peculiarities of the underlying Cloud
environments [9]. Also, resource contentions at the
infrastructure layer because unexpected performance,
requiring more labor for resource management, as well as
automated VM and service migration. In recent days, the
focus of Multi Cloud Computing has been turned towards
answering how to schedule an application's work across



numerous clouds which is a difficult problem in a federated
heterogeneous multi-cloud system [10]. For diverse
computing platforms such as cluster, grid, parallel, and
distributed processing, few noted job scheduling methods
have been created. However, they fall short of meeting the
cost-effectiveness, dependability, and scalability criteria of
multi-cloud computing [11].

Applications come in a variety of sizes and each
application is broken down into several tasks and these tasks
are assigned to Virtual machines (VMs). Hence task
scheduling is extremely important for the overall efficiency of
the multi-cloud computing system. It determines the order in
which virtual machines execute tasks [12]. As a result, load
balancing and scheduling are not two different methodologies
but are two different abstraction levels. The concept of
resource allocation is more abstract than that of load balancer
and scheduler. Resource allocation entails assigning available
tasks to VMs in the most efficient way possible, reducing the
make span time [13]. Multiple jobs are discovered to be
assigned to a single VM, resulting in improved system
performance following optimum resource allocation and
effective task scheduling. Executing the prioritized job
requests/tasks is critical for the system's behavior in many
circumstances [14]. One of the most difficult challenges in
distributed computing is scheduling the cloud-task pair as the
customers' needs are always changing. As the needs of
consumers and working environments evolve, many existing
algorithms become obsolete [15].

Virtual machine migration between real computers
in cloud data centers is an intriguing component of cloud
computing that is employed to satisfy the dynamic response to
user demands. A server administrator can migrate a running
virtual machine or application across physical machines
without having to disconnect the client or application [16].
Total migration time and downtime are two significant
performance measures that VM service clients frequently
consider since they are concerned about service deterioration
and the length of time that the service is completely
unavailable [17]. When migrating a virtual machine, the
transfer must be done in a way that balances the criteria of
minimizing both downtime and overall migration time. In
multi cloud computing, the strategy of optimum virtual
machine placement on real equipment in the cloud data center
is critical. When the placement in cloud data centers operates
optimally, the quantity of hardware resources used is
regulated. As a result, energy usage and resource waste can be
decreased [18]. The main contribution of this paper are as
follows:

-Distributed multi-cloud scheduling approach addresses
scheduling issues in multi-cloud environments to maximize
user and provider advantages. Overall time, expense, cloud
throughput, energy use, resource use, and load balancing are
all factors in the model.

-A new metaheuristic algorithm known as the runner-root
algorithm (RRA), which is a task scheduling method based on
the general algorithm (GA), is to minimize job completion
time and cost while maximizing resource utilization.

-In order to save energy, proposeda method for VM
placement in cloud data centers that combines several
different techniques, including ensemble prediction algorithm,
learning automata theory, and correlation.
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Hence the suggested solutions carry out the economical VM
migration along with optimal work scheduling. The content of
the paper is organized as follows: section 2 describes related
works, section 3 provides a novel solution, the
implementation results and their comparison are provided in
section 4; finally, section 5 concludes the paper.

2. LITERATURE SURVEY

Jena et al [19], this study presents Genetic Algorithm-based
Customer-Conscious  Resource  Allocation and  Task
Scheduling in multi-cloud computing to bridge the gap
between rapidly changing customer requirements and
available infrastructure for services. Genetic algorithm-based
resource allocation and shortest task first scheduling are the
two main phases of the algorithm. The goal is to map jobs to
VMs in the multi-cloud federation with the shortest
possiblymake span time and highest possible customer
satisfaction. Extensive simulations were run on synthetic data,
and the results were compared to the existing scheduling
technique. The simulation results show that the suggested
method outperforms the current ones in terms of the metrics
that matter. The research parameters are converged towards
the make span time schedule of the computing which lowers
the efficiency of resource utilization.

Rama Subbareddy et al [20], this study takes job allocation in
a multi-cloudlet context to increase user satisfaction.
Response time aware task scheduling in the multi-cloudlet
environment (RTTSMCE) is presented in this study to address
two issues. First, a cloudlet server is chosen based on response
time, and then tasks are scheduled across cloudlets using load
balancing methods to reduce the cloud server's response time.
In comparison to existing load balancing algorithms, the
suggested approach performs better in the stimulation. By
transferring applications from the mobile device to the remote
cloud, mobile cloud computing helps to lower the power
consumption. However, because of the large physical distance
between a mobile user and the remote cloud, latency concerns
arise.

Cai et al [21], this research developed a multi cloud
distributed scheduling model for scheduling issues in a multi-
cloud environment tooptimize the advantages of users and
providers. Total time, cost, cloud throughput, energy
consumption, resource usage, and load balancing were taken
assix goals of the model. The multi-cloud distributed
scheduling model was optimized using a many-objective
intelligence algorithm based on the sine function (MaOEA-
SIN). To increase the algorithm's performance, a sine function
penalty selection approach and an angle strategy are used. In
conclusion, the MaOEA-SIN algorithm outperforms other
algorithms in terms of performance. The user's preference
influences the choosing of superior schemes based on steep
characteristics leading to higher time consumption.

Chen et al. [22] suggested an Online Workflow Scheduling
technique based on Resource Allocation and Consolidation
with Adaptive Resource Allocation (OWS-A2C). When
executing a SW in OWS-A2C, the deadline reassignment was
initially performed for SW tasks depending on the execution
performance of instance resources, which improves resource
usage from a local perspective. The execution instances then
were assigned and aggregated based on the performance needs
of numerous SWs, improving resource usage, and lowering
the overall costs of running many SWs. Finally, using the
earliest-deadline-first (EDF) discipline, the SW tasks were
dynamically scheduled to execution instances and finished



before their sub-deadlines. Extensive simulation test was
conducted to illustrate the efficacy of the proposed OWS-A2C
on SW scheduling in MCEs, which outperforms three baseline
scheduling approaches in terms of resource usage and
execution costs under deadline restrictions, yet the flexibility
of the system was constrained.

Farid et al [23], hosted the scientific procedures in multi-cloud
systems has led in the development of the multi-objective
scheduling (MOS) approach combining fuzzy resource
utilization (FR-MOS). The suggested algorithm's major goal
is to reduce cost and make span while also taking into
consideration reliability restrictions. The scientific workflow
schedule considers the following factors: (1) the laaS cloud
platform to be chosen; (2) the kind of VM to be allocated to
the tasks; and (3) the sequence in which data should be
transmitted. The FR-MOS technique uses particle swarm
optimization (PSO) and analyses task ordering and task
execution location in its coding approach to overcome these
challenges. The coding system considers both the location of
task execution and the sequence in which data is sent. But
using single optimization to entire process expands the
execution time thereby leveraging the exact task allocation.

Thirumalaiselvan et al [24], presented for scheduling virtual
jobs in a multi-cloud environment, the rate-based scheduling
(RBS), high priority scheduling (HPS), and equal load
balancing (ELB). In a multi cloud environment design,
multiple scheduling methods are utilized depending on the
number of jobs and virtual machines. The ELB scheduling
technique is employed when the number of tasks equals the
number of virtual machines. The high priority scheduling
strategy is employed when the number of tasks exceeds the
number of virtual machines. The RBS method is employed if
the number of tasks is smaller than the number of virtual
machines. The research increased the make span and average
efficiency of multi cloud computing by employing the above
three alternative scheduling techniques which extended the
make span while lowering the delay and energy usage. But the
flexible nature of resource handling was constrained to a
greater extend.

XAVIER et al [25] handle the issue of job scheduling in
numerous heterogeneous virtual machines, a meta-heuristic
algorithm called chaotic social spider algorithm. By
simulating the social spider's swarm intelligence using chaotic
inertia weight based random selection, this work focuses on
lowering overall make span with effective load balancing.
Here the two phase avoids local convergence and investigates
global intelligent searching to identify the most optimized
virtual machine for the user job from a set of virtual machines
with  minimal make span and balanced resource
utilization.Later, additional performance metrics like security
and dependability could be included, allowing for the
identification of trust nodes and security risks. Additionally,
we expanded this work to be compatible with independent
jobs.

Hamad et al [26] The proposed method aims to reduce task
completion times and costs while maximizing resource usage.
Using the CloudSim toolbox, the suggested algorithm's
performance has been assessed. The key issue is resource
management, as cloud computing uses virtualization and the
pay-as-you-go model to give IT resources (such as CPU,
Memory, Network, and Storage) to users. To solve the job
scheduling problem in the context of cloud computing, this
research suggests an enhanced genetic algorithm. The
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suggested method aims to maximize resource use while
minimizing completion time and cost.It can be expanded to
consider the potential for VMs to have a dynamic
quality.Also, the QoS needs of the users would be considered.

Zhang et al [27] The proposed method investigates global
intelligent searching to find the best optimized virtual
machine for the user task among a set of virtual machines
with minimal makespan and balanced resource utilization,
thereby preventing local convergence. The flexible, and
effective in many real-world circumstances through
meticulous simulations involving many affecting aspects,
algorithm for resource scheduling that reduces system costs.
To address the resource needs of users on MCP, the system
models of traditional CWAs are utilized. The study concludes
that multi-cloud is the most alluring for many CWA
implementations and can be used to understand the properties
of various resources. Several CSP interconnections and
associated load paths data travelling through potential
interconnections are introduced.In the future, it will address
these issues and take our framework's appropriate computing
cost into account.

Tsakalozos et al [28] the suggested GA algorithm is to reduce
job completion times and costs while maximizing resource
utilization. The developer suggests a scalable, distributed
network of brokers that monitors the status of all ongoing
migration activities within the context of a provider. Brokers
employ an underlying, specialized file system called
MigrateFS, which can replicate and maintain synchronization
of virtual discs as the hypervisor live-migrates VMs (i.e.,
RAM and CPU state). Brokers apply policies to reduce SLA
breaches while attempting to accomplish all migration
operations on time by restricting the resources used during
migration.

From the analysis, it is noted that [19] lowers the efficiency of
resource utilization, [20] large physical distance, [21] higher
time consumption, [22] deadline restrictions yet the flexibility
of the system [23] leveraging the exact task allocation [24]
extended the make span [25] does not include the
performance parameters [26] need to consider the dynamic
quality of VM and also the QoS [27] Several CSP
interconnections and associated with load paths [28]
restricting the resources used during VM migration.

3. MULTI OPTIMIZED JOB
SCHEDULING FRAMEWORK FOR VM
WITH ENHANCED MIGRATION IN A
MULTI CLOUD ENVIRONMENT

The intrinsic benefits associated with cloud computing, both
the number of users and their corresponding workloads grow
every day, which is essential to improve task scheduling and
migration to increase Quality of Service (QoS), end user
satisfaction, and with the least amount of energy consumption
even under circumstances of high workload. Many earlier
studies did not consider the combined job scheduling and
migration for optimized work schedule, which decreases the
resource management's flexibility and speeds up the execution
of computations, traffic, and congestion. Hence, a novel
multi-level optimization named, Multi Optimized Job
scheduling Framework for VM with enhanced migration
in a Multi Cloud Environment has been proposed, to
consider the combined job scheduling and resource allocation,
which utilized the two load balancers for multi-level
optimization in multi cloud. When scheduling a task across



multiple clouds, one load balancer uses the Runner Root
Algorithm (RRA) to considering internationally and using
the Steepest Descent Technique, another load balancer in a
chosen cloud locates the VM to be assigned for the job based
on a nation. The Differential Evolution Algorithm with
Levy Distribution, which takes state level optimization into
account, is part of the suggested system. Such that the multi-
level optimization should consider both the VM's resource
allocation and combined task scheduling. Moreover, irregular
VM migration in the existing methods increased the duration
of the user's VM, decreased Quality of Service (QoS), and
decreased end-user satisfaction. Hence a novel, Active
Inactive data migration algorithm is used to prevent
fluctuating migration between Virtual Machines, in which
utilizes the Recursive Algorithm to migrate the virtual
machine (VM) from the server with the lowest virtual load
and repeating the same procedure on the server with the
second-lowest virtual load. Conjugate function is used to
calculate each VM's processing time in relation to the physical
machine. An Optimum Cost Function is used to consider the
future resource utilization in the each host and avoid
unnecessary migration costs using the Automata cellular
learning function that calculate the ratio of the cost of running
the server in active mode to the cost of running the virtual
machines on the replacement host, and if it exceeds the
threshold, the VM is moved to the destination, reducing the
unnecessary energy consumption while maintaining the
quality of service (Qos).

Furthermore, in live VM migrations, the service levels of
running applications are severely impacted through a high
migration rate causes a network fault and misleading
information to be transmitted improperly. Hence a novel,
Data replacing approachhave been proposed, in which
Permutated sorting function has been used. If any error occurs
while transferring the file, the algorithm copies the data and
resends it until the active PM receives the precise amount of
data, thereby the unwanted network error is avoided.
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Figl: Block diagram for Multi Optimize Job Scheduling

Figure 1 shows the proposed system's process flow.In order to
allocate resources efficiently and create an optimized work
plan, the suggested system would consider combined task
scheduling and VMs migration where in two load balancers
with multi-level optimization are used to schedule the job and
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assign VMs for it while taking into account global, national,
and state level of optimization. Other unique approach
eliminates the limitation during live migration and prevents
variable migration across virtual machines, each host avoiding
excessive migration costs.Hence, the proposed methods
combine efficient VM migration with improved job
scheduling.

3.1 Multi Hop Travel based
Optimized Scheduling algorithm

In multi-cloud computing, resource allocation is a challenging
task because of the numerous restrictions and configurations
required by both cloud clients and providers. Because the
nature of the traffic is highly arbitrary, the challenge of
mapping an incoming task request to available virtual
machines (VMs) is not polynomial-complete. The challenge
of work scheduling is NP-hard since VMs are diverse and
there are several alternative translations. To consider the
combined task scheduling and migration for an optimized
work schedule, which is crucial for improving the flexibility
of resource management and accelerating computation
execution, traffic, and congestion. Hence, a novel Multi Hop
Travel based Optimal Scheduling technique is employed,
which divides the entire allocation into two phases and uses
two load balancers with multi-level optimization. The purpose
of load balancer is to more effectively match the network's
available transmission resources to the volume of data that is
currently being handled. One balancer in a multi-cloud to
schedule the task to the proper cloud computing consideration
globally, which is optimizing by Runner root algorithm
(RRA).The job scheduling issue is regarded as an NP-
Complete issue. Therefore, it could be resolved using
optimization techniques while considering performance
parameters like completion time, expense, resource
utilization, etc. To create a task allocation and execution
algorithm based on Runner root algorithms (RRA) for the
cloud computing environment that will improve task
completion times, lower execution costs, and optimize
resource utilization. More specifically, in RRA, the local
search (exploitation process) is only used when the global
search does not significantly enhance the value of the cost
function. In RRA, the global search for the optimal solution
(exploration method) is undertaken at all iterations. The
runner root algorithm is provided as a job scheduling
optimization strategy, which is starts with an initial random
population that is evenly distributed over the issue domain.
Task scheduling to meet the objectives of better makespan,
load balancing and throughput.

Task allocation details are indicated by a task ¢;. K represents
the number of tasks in a population and ranges from 1 to z.
The components of a task tare a[i] and S[i], which stand for
the details of task processing and virtual machine distribution.
A task's length is equal to the total amount of tasks entered.A
task schedule is expressed through the following encoding
process. Prior to task creation, a collection of inputted jobs is
sorted. Cloud users pay for computing services in person, in
contrast to other distributed computing platforms. Considering
this, it is necessary to assign tasks from cloud users with high
costs to virtual machines more quickly than other tasks. Due
to the fact that cloud computing services are provided through
an SLA between cloud users and providers, task scheduling
issues in cloud computing vary from problems with general
task scheduling.



Given that there are m tasks, such as t1, t2, t3, etc., and that
there are m number of resources, and that task i (ti) has n
subtasks, with the jth subtask of task i being designated as
ti(j), there are a total of m tasks:

num = YL ¥i_1 () 1)

Assuming there are three tasks and three labor resources, the
first task is divided into five smaller tasks (t1(1), t1(2), t1(3),
t1(4), and t1(5)); the second task is divided into five smaller
tasks (t2(1), t2(2)); and the third task is divided into three
smaller tasks (t3(1), t3(2), and t3(5)).(3). There are 10
subtasks in total. The length of the work is 10 subtasks, each
with a gene value between 1 and 3. The jobs are generated as
follows:

{321,1,1,2,2,2,3,1}

The job is then decoded to reveal the distribution and order of
processing of each resource's subtasks.

W1 : {t1(3), t1(4) , t1(5), t3(3)}
W2 : {t1(2), 2(1), ©2(2), t3(1)}
W3 : {t1(1), t3Q)}

Through decoding, it can determine the subtasks that each
worker must complete, and using the RRA algorithm, it can
determine how long it will take each worker to complete the
task that has been given to them:

Workertime(k) = Z}Ll time (k,j), k € [1,w]
2

time(k, j) represents a k-th worker on the time required to
complete the j-th task.

Time is required by the i-th task completion:

. , w , .
tasktime(i) = max, _ 4 Yi-q time (k, j)

©)

s is the location of subtask of task i assign to the worker.One
of the main problems with cloud computing is task
scheduling.Quality of Service (QoS) factors are important in
scheduling and load balancing.which is based on international
optimization, Resource Allocation and Task Scheduling in
Multi-Cloud Computing to close the gap between the
continuously changing requirement and the available
infrastructure for the services.

Due to the huge solution space, scheduling in cloud
computing falls under the issues known as NP-hard problems,
making it difficult to find an ideal solution.lt has been
demonstrated by these techniques based on metaheuristics can
solve these issues with near optimal results in a reasonable
amount of time. The two categories for steepest decent
method -based resource allocation tasks are (I) Advance
Reservation (AR) and (ii) Best Effort (BE). The work is
distributed among resources utilizing GA operators based on
the multi-cloud environment's available resources and the
anticipated makespantime. The historical user feedback
database keeps track of the performance of the cloud service
providers, physical machines, and virtual machines.
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Figure 2: Task scheduling Algorithm

Figure 2 shows a cloud in an abstract form where the
scheduler finds a good allocation for incoming tasks. The
scheduler establishes a map when tasks are delivered to data
centers. A cloud broker receives a mapping scheme, and then
assigns jobs to virtual machines. Because the network
bandwidth among edge clouds is more limited than the cloud
data center networks, VM migration among edge clouds is
more difficult than that in cloud computing.

For end users, the virtual machines offer a variety of services,
including message transfer, mobile gaming, and video
streaming. Any application running on the VM can be referred
to as a service, which is an abstract notion. Consider a live
VM migration from a cloud-based source computer to a
cloud-based destination machine. It presumes that the
destination machine will need to receive the state stored in the
virtual machine's memory during the migration. The memory
of the VM on the source machine would be updated when the
state was transmitted to the destination because the
application on the VM could still operate throughout the
migration. Pre-copy, a live migration method iteratively
transmits this memory content from the source computer to
the destination machine. Two objective metrics of a live VM
migration that we are concerned with are migration duration
and Quality of Service (Qos). Imagine a group of C cloud
service providers that are linked together to create a
multicloud computing, where C = {C1, C2, Ci}. Q is
a collection of cloud apps exist, where {P = P1, P2,Pj}. A
cloud user may submit an unlimited number of job requests.
Each job application is divided into a number of independent
tasks, with Pi j = {P11,P12,..., Pql,Pq2,..., Pgi}and Ci j =
{C11,C12,..., Cpl,Cp2,..., Cpi} being the set of tasks and
VMs, respectively.

Mapping function Mdescribes: Pij — Cij

The service charge for AR work is typically higher than the
service charge for BE tasks. Below is a matrix that was
created to display the anticipated execution time in equation

(4),



T ( Cl Cz Cn

Y |ETC1 ETCy, ..ETCypp

ETC = *{ETCy ETCyy -ETCyyp
Tn ETC, ETC,y, +ETCyp
4)

ETC;;indicates the anticipated time required to complete the
ith task in the jth cloud. Any cloud that has a working job
request id can run any task, and any cloud can do several tasks

simultaneously according to priority. Chronological order is
used by several cloud providers.

F(x) = min(MS) + (ﬁ,cw)

)

MS = f(MIPSmprasi »EST)

(6)

MS = w; + (=) + wp * EST

(7

CSR = f(ESTtemptask IETCtemptask )
8

Whereas EQ.(8) shows the relationship between user
satisfaction levels, resource waiting times, and anticipated
completion times, make span time (MS), a computability
indicator, reveals the rate of utilization of resources expressed
in Eq (6)&(7). Where MS is the task's makespan time, CSR is
the customer satisfaction rate, NIC is the number of million
instructions in the work, MIPS is the number of million
instructions the machine can execute, and w; and w, are
specified weights. Choosing the weights' value might be
difficult because it differs from organisation to organisation.
The following algorithm shows the runner root-based task
scheduling.
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Step 5: Call Task Scheduling (ETC, EST, p, g, MS)

Step 6: end while

Temporary queues QT are initialized as part of algorithm 1.
The Poisson distribution is used to generate a variety of
applications with varying capacities (measured in MIPS, or
million instructions per second). The programs divided into
numerous separate tasks. In step 3, the relevant physical
machines divided into several VMs. Step 4 involve calling the
GA-based resource allocation function. Scheduling the
numerous tasks assigned to a single VM is step 5 in the
process. The algorithm produces the optimal task-VM pair
with the shortest makespan time and the highest level of user
satisfaction. The following algorithm shows the resource
allocation for the scheduled task.

Algorithm 2: For resource allocation

Algorithm1: for runner root algorithm-based task
scheduling in cloud computing

Input

Step 1: set of customer job requests following Poisson’s
distribution.

Step 2: set of independent tasks. (each job request is sub
divided into single independent task)

Step 3: setoff cloud providers involved in the federation.

Step 4: set of virtual machines. (Multiple cloud providers are
further divided into numerous VMs).

Output

(1) Makespan time
(2) Customer Satisfaction rate

Step 1: While Q, # NULL
Step 2: Set makespan =0
Step 3: Breakup job application into multiple tasks.

Step 4: Call GA_MAPPING (ETC, EST, p, q)

START
1:While Q, # null do

2:1f Qup #null (if task ready available is advance
reservation then)

3: IfQgr # O(if task ready available is Best Effort task then)
4: For tempcloud = {1,2,3, ......, q)

5:For temptask = {1,2.3, ......, p)

6:temptaske Task (Qar )

7: Find EST (temptask, tempcloud)

8: MS (temptask, tempcloud) =ETC (temptask, tempcloud)
+EST (temptask, tempcloud)

9: Call RRA task_cloud_pair( p;,q;) that gives min( MS
(temptask, tempcloud))

10: Call BE_PREMPT_TASK (EST (temptask), MS
(temptask, tempcloud))

11:endfor

12: endfor

13: else

14: temptask« Task (Qpg )
15: CALL UPDATE Q7

16: CALL SCHEDULE_AR _TASKS MMS (ETC_AR,
temptask)

17: CALL SCHEDULE_BE_TASKS MMS (ETC_BE,
temptask)

18: MS (temptask, k) = ETC (temptask, k) + EST (temptask,
k)

19: endif

20: endif



21:endwhile

The step-by-step explanation of our suggested algorithm 2,
steepest decent method-based resource allocation is contained
in Algorithm 2. The programs tasks are kept in QT. Tasks are
stored in QAR or QBE depending on the type of application.
All the tasks that need to be completed are saved in the set
temptask, and the relevant VMs are kept in the set tempcloud.
Step 7 determines the estimated execution time. The
makespan time is the total of the predicted completion time
and the waiting time, as shown in step 8.The steepest decent
method -based resource allocation process is called in step 9.
In the initialization stage of steepest decent method, the
number of jobs that must be completed in a batch is equal to
the size of the cloud. In the first generation, tasks are given at
random to VMs that can complete them. Maximizing
customer satisfaction rates while minimizing makespan time
is the fitness function. Procedure 1 specifies the steps for
steepest decent method -based resource allocation as follows.
Step 17 indicates that the convergence requirements are
satisfied, and the best-fit chromosome is acquired. When
numerous jobs are assigned to a single VM, shortest job first
scheduling is employed to handle the situation.

As increased user tasks are allocated within the schedule, the
VMs risk being quickly overcrowded.Inorder to make better
load balancing decisions to determine the load factor (LF)a,
which is the average load's standard deviation.

o= \/gzy;l(ETi — ET)?
©)

where ET; , is the execution time of ith VM.

A steepest descent algorithm would be one that applies the
update rule, with each iteration taking the steepest possible
course in the direction x(k).Which two significant
computational benefits are how simple it is to implement an
algorithm on a computer and how little storage is required.
The line search necessary to calculate the step length «;, and
gradient constitutes the bulk of the task. In other words, given
a specific point x, the algorithm's goal is to determine the
direction in which f (x + d) is minimized.determining the
steepest angle. One can estimate the function by a first-order
Taylor expansion and identify the steepest direction in the
following equation (7),

f+d) =~ f(x) + V)T,
(10)

The function’s minimum direction d suggests the following
optimization issue.

ming. | V() Ty, (12)

Algorithm 3: Steepest Descent Method

Given an initial xy, dg = —g, and a convergence tolerance tol
for k = 0 to maxiterdo
Set a, = argmin @, = f(x,) — agy

Xk+1 = Xk — Qp Gk
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Compute gi41 = Vf(Xk41)
Ifl|gk+1ll2 < tol then
Converged

End if

End for

Thus, the other load balancer in that particular cloud chooses
the VM to be assigned for the task based on a certain nation,
then uses national level optimization with the steepest descent
algorithm. Due to its effectiveness in handling a wide range of
issues, such as portfolio optimization, picture pixel clustering,
data clustering, and multi-level thresholding in image
segmentation, Differential Evolution (DE) algorithms, a
subset of evolutionary algorithms, are of particular
interest. These mutational tactics are used in many
evolutionary algorithms, such as DE algorithms, to address a
variety of issues, including multi level objective optimization.
Thus, the VM are viewed as different states, and the work that
must be done is viewed as districts.

DE is an iterative population-based method for locating the
state-level optimal. The investigation and application of the
algorithm are represented, respectively, by the DE algorithm
with levy flight. The levy flights first create a population of
answers at random before assessing each one's quality using
the fitness function. Using Levy flights, the jobs that are
closest to the best one will fly around it as shown in the
following equation,

= x4 2 (S)
(12)

where x! represents the position of the i-th task at iteration t.
whileS,,.,, represents the maximum walk step and L(s)
represents the step drawn from Levy flights, using parameter
s. Hence the Runner Root Algorithm (RRA) and the Steepest
Descent Algorithm are combined in the DE algorithm, which
is used as a global and local search technique to enhance job
scheduling for resource exploitation. By minimizing the
makespan, the DE algorithm, which was modelled in the
cloudsim environment, aims to increase the output of the
cloud system.

3.2 Active Inactive data migration

algorithm

The VM migration that comes next, which does not consider
prior task knowledge, extends the entire time the user is using
a virtual machine (VM), possibly infringing on the deadline
requirement with subpar Quality of Service (QoS) standards
and unsatisfied end users. To avoid fluctuating migration
between Virtual Machines, the suggested algorithm is used.
To increase performance and reliability, one mitigating
method is VM migration, in which virtual machines are
transferred from one physical host to another.There are
various methods for migrating VMs, including cold migration,
hot migration, and live migration.When migrating a virtual
machine to a specific host, cold migration requires shutting
down the guest OS first and then restarting the system.Hot
migration does not terminate the operating guest OS before it



is sent to the designated target host and resumed there it just
suspends it.

Although permitting a VM and its operating OS to be
relocated from one physical host to another, live migration
ensures that the hosted apps will continue to function.A
virtual machine (VM) is effortlessly transported between two
physical hosts while still running, together with its
environment, which includes its OS, memory, vCPU, and
occasionally its disc.Improved load balancing, transparent
mobility, proactive fault tolerance, and green computing are
all advantages of VM migration.

Move VM 2 to

Server 2
A50 ™ AR50 o
1 2 3 4

IS —" }

Physical Server 1

I I

Virtualization Manager

Physical Server 2

Figure 3: VM live migration between two physical VM

The figure3 demonstrates how live migration lets you relocate
an active virtual machine from one physical server to another
without interrupting operations. A seamless migration process
is ensured since the virtual machine keeps its network identity
and connections. High-speed networking is used to transfer
the virtual machine's precise execution state and active
memory, enabling it to move from executing on the source
host to the destination host. Recursive algorithm with the
intention of minimizing power interruption for the active
machines, the algorithm used to move idle and actively
functioning virtual machines from one overloaded or under
loaded server to another non-overloaded server to reduce
server load and offers more substantial energy and resource
savings for data centres.To guarantee the greatest number of
active virtual machines on a single server the majority of the
time, our approach is to swap out all idle virtual machines
from one server with the actively working, fully loaded ones
of a no overloaded server. Since idle VMs typically use 50%
to 70% of the host server's total power, this means that the
power consumption of the actively operating VMs will not be
affected. The following situations can coexist in a cloud
environment, according to the CPU and RAM usage of a VM,
for an instantaneous time t.

Upyj > Uy, [RAM > CPU]
13)

Unyj > Uy; [RAM < CPU]
(14)

Unyj > Uy [RAM ~ CPU]
(15)
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Here, U,,,; represents the memory utilization of a VM, Uy,
represents the processor or CPU utilization of a VM and 0 <
Upnpj< 1,0 < Ucj Upi< 1 ie Uy and Uy represents the
percentage of RAM & CPU utilization.

The resource utilization percentage of each virtual machine
will be used to determine the overall number of active and
idle VMs on a single server at a given instant (t). It will be
simpler to choose between migrating idle or active VMs as a
result. The following formulae can be used to get the total
number of idle virtual machines in a server for an instant t:

Vo =Unyj = Uy (16)
() 0<V,<03
K {1' 04<V,<(09~1) A7)
Ny o,
v, = {ZO 0 [ € Ny] )
0 otherwise

Here, N1 is a set of virtual machines.Once more, the
following formulae can be used to determine the total number
of active virtual machines in a server for a given time.

Va = Upj - Umvj (19)
=1 if0<V,<(09=1)
(20)
Vo= ZN2t1¥3Va+c'Va€[N2+N3]
active a= c ' otherwise
(21)
c=3V, (22)

The following equations can be used to determine the overall
CPU and memory usage of the VMs when the quantity of
running virtual machines and idle virtual machines at any
given moment t, in any server | equals the other.

14

UCw = Z,i‘fm Umvj * C} (23)
Vactive

UM, = Zj:l Umvj *1\/!]

(24)

Here UC,,UCva and UM,, stand for the CPU and Memory
usage of virtual machines that are currently in use,
respectively.

Algorithm 4:
Migration)

Recursive algorithm (Virtual Machine

Input

Step 1: Initialization. Compute the number of active and idle
VMs in a single host server. Take the number of active VMs
as Vactive and the number of idle VMs as Vidle. Compare
VactiveandVidle.

(1) Vidle>Vactive
(2) Vidle<Vactive
(3) Vidle = Vactive

Step 2: The parameter for ACS is set to t0. The feasible
globally best solution is set as Sgb for placing N VMs on N



servers. Thus, the number of minimum servers is set to Mmin
= N. Set iteration t=1 and maximum iteration as T.

Step 3: Set Mt = Mmin — 1. In each iteration, m ants construct
m solutions and perform local pheromone on each solution.

Step 4: The fitness function f(S) is applied in order to
evaluate the fitness value of the constructed solution.

Step 5: The best solution Sb of the current iteration is set after
evaluating the fitness value of the constructed solution. If Sb
is feasible, Sgb is updated as Sb and Mmin = f1(Sb) is set.
Otherwise, OEM local search is performed on Sb. Sgb and
Mmin are updated respectively if local search succeeds.

Step 6: After Sgb and Mmin are locally updated, global
pheromone update is eventually done on Sh and Sgb.

Step 7: Check if t is less than or equal to T. If not equal, then
sett =t + 1 and go to Step 3. Otherwise terminate the
algorithm.

Step 8: After t terminates, calculate Vactive and Vidle of the
host server. If Vactive = Vactive and V'idle = Vidle, then
move forward to step 9. Otherwise update V" active and V'idle
and then move to step 9.

Step 9 (a) If Vidle>Vactive, then migrate all the actively
working VMs from host server to a nearby (ACS)
nonoverloaded (OEM) server with the opposite scenario i.e.
the server in which Vidle<Vactive. The idle VMs of the
destination server will be exchanged with the actively
working ones from the host.

(b) If Vidle<Vactive, then migrate all the idle VMs from host
server to a nearby (ACS) non-overloaded (OEM) server with
the opposite scenario i.e. the server in which Vidle>Vactive.
The actively working VMs of the destination server will be
exchanged with the idle ones from the host. (c) If Vidle =
Vactive, calculate the CPU utilization (UCva&UMva) and
memory utilization (UCvi&UMvi) of the VMs (both actively
working and idle) and compare the total utilization of both
type VMs.

It migrates the virtual machine from the server by identifying
the virtual machine with the lowest virtual load and then
repeats the process on the server with the second-lowest
virtual load,and so on, using a recursive algorithm. A
recursive algorithm is one that calls a copy of itself, or an
instance of itself, more precisely. When a set or function is
defined recursively, the computation of its members or values
follows the definition in a recursive manner. The initial steps
of the recursive algorithm identify the basis items and
correspond to the basis clause of the recursive definition. The
inductive clause's stages are then followed, which reduce the
computation for an element of one generation to that of
elements of the generation just before it. The algorithm uses a
conjugate function to determine the execution time of each
VM in relation to the Physical Machine while also taking into
account the timeout parameter of each server from the history
of data centres.

The majority of earlier studies calculate the start time of the
current task as the most recent end time of the previous task.
As a result, when it is their time to receive tasks, some virtual
machines must wait. The execution time of each task ti
depends on the output data size of every task. The execution
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time of different tasks on different VM(m, k) can be
calculated by the following equation

W (t;)
P(m,k)
(25)

Toxe (E:VM(m, k) =

The execution time of each task can be calculated using the
processing capacity of VM(m,k). This is so that other VMs
can receive numerous copies of the output that VMs produce.
The sequence of the tasks determines how the recipient output
is laid out. The efficiency of the process for scheduling
applications must be maximized. Reducing execution time
and total execution cost are necessary steps to take to meet
users' QoS requirements. The time between the start time and
end time of the task execution is used by the existing
workflow algorithms to compute the VM rent time.

When a task is finished, the virtual machine closes down and
the results are passed on to the tasks that come after it. Data
transfer priority is influenced by the order of the activities.
Using the automata cellular learning function, an Optimum
Cost Function considers the future resource utilization in each
host to reduce the cost of unnecessary migration. The
suggested optimization model restricts that the VMs whose
remaining runtimes are smaller than a time slot will not be
migrated to prevent pointless VM migrations. VM rent cost of
task ti for each considered laaS platform is calculated below.

For Amazon EC2 that charges per hour, the execution cost of
task ti on VM(1, k) is expressed in Eq.

Trent (ti-VM (Lk))

cost(t, VM(1,k) = | .C(1, k)

(26)

Tminute

where Tyinute = 60.

Microsoft Azure charges per minute, the execution cost of
task ti on VM(2, k) is expressed in Eq

COSt(ti' VM(Z; k) = lyent (ti' VM(Z; k) 692! k))/Tminute
@)

A distributed computational mode called cellular learning
automata (CLA) model combines the learning capabilities of
learning automata with the computational capability of
cellular automata. A cellular learning automaton is made up of
a lattice of cells that cooperate to complete a computing job,
and each cell contains a few learning automata. The CLA is
used by each host are together with cellular networks, wireless
networks, and evolutionary computation. Cellular learning
automata that consider the migration and base future decisions
on the experiences of the past. It is determining the ratio of
the cost of running the server in active mode to the cost of
running the server for the virtual machines on the replacement
host, and if it exceeds the threshold, moving the VM to the
destination reduces the unnecessary energy usage while
maintaining service quality. This capability enhances the
flexibility and computing power of automatic learning
through associative CLA. Initial state of the cost is set based
on the action probability vector of the LA in running server.
The LA resident in each VMs then decides on an action in
accordance with its decision function after receiving an input
vector from the cloud.
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Algorithm 5: Operation of Cellular Learning Automata

Start

Step 1: Initialize state of each cell in the CLA.
Step 2: for each cell i in the CLA do
Step 3: Give the input vector from the environment to cell i.

Step 4: Cell i selects an action according to its decision
function.

Step 5: Apply the selected action to the environment.

Step 6: Apply the local rule and give the reinforcement signal
to the cell i.

Step 7: Update the state of the cell i according to the
reinforcement signal.

Step 8: end for

The VMs is a migrated to the cloud that gives feedback in
conjunction  with  actual migration, and Learning
Automata is taken as the cost of running server in the VM is
migrated to the destination thereby lowering the unwanted
energy consumption same while maintaining the quality of
service. However, faulty data transfer during live migration
caused a network issue.

3.3 Data replacing approach.

In data replacing approach, VMs must be moved to another
host with enough resources once a host enters an over or
underutilized state. The following circumstances lead to
unnecessary requests: One of the request's fields was not
accurately recorded (data contains NULL).The user is
identified as a spammer, scanning robot, or intrusive user until
the data is sent to the active PM, the transaction PM is
switched to Mid active mode. Whenever a transfer error
occurs, the method duplicates the data and resends it until the
active PM receives the exact amount of data using a
permutated sorting function, preventing the unintended
network fault.Permutated Sorting Function continuously
produces input permutations until it discovers one that is
sorted.So, it should count the amount of original data and
moves in order to examine a sorting algorithm.So, it should
count the amount of original dataand moves in order to
examine a sorting algorithm. We can ignore other procedures
and yet get the same result. We can ignore other procedures
and yet get the same result. A flexible scheduling method that
uses VM migration to effectively service physical servers of
different functionality while workflows are being executed

Receives the N- number of files

s CorytwDuatiomtefie |

S ,-" Check .
\ Return afile | < S,

) 1

Original Size

Yes

Sent the data

|

Figure 4: Flowchart of the Data replacing approach

Figure 4 shows the Data replacing method that chooses the
best PM from the list of techniques while switching the PM
for the data transaction to Mid-active mode until the data is
transferred to the Active PM. If a transfer error occurs, the
algorithm copies the data and resends it until the precise
amount of data is sent to the active PM. Unwanted network
errors must be eliminated. Overall, the proposed Multi Hop
Travel based optimization algorithm is conduct the
economical VM migration while optimizing job scheduling
where two load balancers that are optimized at multiple levels,
including the international, national, and state levels, are taken
into  consideration.Active  Inactive  data  migration
algorithm for active-inactive data transfer removes virtual
machines from servers by selecting the ones with the lowest
virtual loadsusing a recursive algorithm.

4. RESULT AND DISCUSSION

This section provides a comparison section to ensure the
suggested system is appropriate, performance data for the
suggested system, and adaptive scheduling approaches of the
implementation of the VM migration. Using an optimization
method, the suggested VM migration strategy was put into
practice in MATLAB, and the experimental outcomes were
analyzed. The performance of the proposed model has been
assessed by calculating the increased flexibility, lowest
economic cost, and low computational time.

4.1 Experimental Setup
This work has been implemented in the working platform of
Python, Matlab with the following system specification and
the simulation results are discussed below.

OS: Windows 10

Software:VMware,Python, Matlab

RAM:8 GB RAM

10



Processor : Intel i3

4.2 Performance metrics of the proposed

system

The Performance metrics of the proposed Multi Optimized
Job scheduling Framework for VM with enhanced migration
and to develop an adaptive scheduling approach and the
achieved outcome were explained in detail in this section.
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Figure 5: Throughput of the proposed system

Figure 5 depicts the throughput of the suggested system when
the number of VMs is changed. As the number of VMs is
increased, the proposed system's throughput reaches a
minimum of 9.5 Mbps and a maximum of 11.4 Mbps when
the number of VMs is decreased. The planned system's
throughput has decreased by using the runner root algorithm
with consider internationally.
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Figure 6: Cost function of the proposed system

Figure 6 depicts the Cost function of the suggested approach
for adjusting the number of VM. When the number of VMs is
increased to 100, the Cost function of the proposed system
reaches a maximum value of 168 and the lowest value of 132
when the number of VMs is decreased to 20. Using the
optimal cost function has increased the cost function of the
suggested system.
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Figure 7: Waiting time of the proposed system

Figure 7 depicts the suggested system's waiting time for
varying the number of virtual machines. The Waiting time of
the suggested system reaches a maximum value of 0.144 sec.
when the number of VMs is increased to 100 and the lowest
value of 0.120 when the number of VMs is decreased to 20.
The suggested system's waiting period has grown longer by
using the steepest descent algorithm with national level.
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Figure 8: Execution time of the proposed system

The execution time of the proposed system for varying the
number of VM has been shown in figure 8. The execution
time of the proposed system achieves a maximum value of
0.62, when the number of VMs is increased to 100 and attains
a minimum value of 0.56, when the number of VMs is
reduced to 20. The execution of the proposed system has
increased by differential evaluation algorithm.
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Figure 9: VM side load level of the proposed system
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The VM side Load Level of the proposed system for varying
the number of VM has been shown in figure 9. The VM side
Load Level of the proposed system achieves a maximum
value of 2.4, when the number of VMs is increased to 100 and
attains a minimum value of 1.3 when the number of VMs is
reduced to 20. The VM side Load Level of the proposed
system has increased using recursive algorithm.
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Figure 10: Cloud side load level of the proposed system

The cloud side level of the proposed system for varying the
number of VM has been shown in figure 10. The cloud side
load level of the proposed system achieves a maximum value
of 10, when the number of VMs is increased to 100 and
attains a minimum value of 2.4, when the number of VMs is
reduced to 20. The Cloud side load level of the proposed
system has increased by usingactive inactive data migration
algorithm.
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Figure 11: Delay of the proposed system

The delayof the proposed system for varying the number of
VM has been shown in figure 10.The delayof the proposed
system achieves a maximum value of 0.265 Kbps, when the
number of VMs is increased to 100 and attains a minimum
value of 0.235, when the number of VMs is reduced to 20.
The delay of the proposed system has increased by using
automata cellular learning function.
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4.3 Comparison of Proposed model with

Previous Models

This section highlights the proposed adaptive scheduling
approach for effective VMs migration and to provide efficient
service of physical servers with varying functionality during
workflow execution by comparing it to the outcomes of
existing approaches such as FFD [29], VMR [7], CLA-EC
[15] and showing their results based on various comparisons
is given below.
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Figure 12: Comparison of migrations

Figure 12 shows a comparison of the number of migrations of
the proposed model with existing techniques such as CLA-
EC, Buyya, FFD. Whereas the comparison of number of
migrations attains a maximum time. The number of
migrations of the proposed system achieves a minimum value
of 50, when the time s increased to 25 hrs and attains a
maximum value of 60, when the time is reduced.Hence the
proposed system achieves a smaller number of migration than
the existing technique CLA-EC.
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Figure 13: Comparison of Switch off PM.

The comparison of the switch off PM of various models is
shown in figure 13. The proposed model has a switch off PM
of 80% compared to existing models. The graph also indicates
the switch off PM of an increase in the time. Hence the
proposed model has achieved high switch off PM, which is
compared with the existing techniques VMR.
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Figure 14: Comparison of Active PMs

The comparison of the number of active PM of various
models is shown in figure 14. The proposed model has several
active PM of 25% lessthan existing models. The graph also
indicates the number of active PM of adecrease in the time.
Hence the proposed model has a smaller number of active PM
than the existing technique VMR.
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Figure 15: Comparison of Solution size

The comparison of the solution size of various models is
shown in figure 15. The proposed model has a solution size of
280less than existing models. The graph also indicates the
solution size PM of adecrease in the time. Hence the proposed
model has less solution size, which is compared with the
existing technique CLA-Ec.Overall, the proposed model
shows that it is more efficient and more accurate when
compared to previous models such as CLA-EC, Buyya, FFD,
VMR, and Random, which involves VM migration for
efficient service of physical servers with varying functionality
during workflow execution. The proposed system achieves
less through put 9.5 Mbps in a 100 number of VM, when
compared to other existing techniques, its Cost function value
is 168 which ishigher than the existing techniques, and its
waiting time is 0.144 sec higher than the existing techniques.
This proves that the proposed system performed well when
compared to other existing techniques like CLA-EC, Buyya,
FFD, VMR, and Random.

5. Conclusion

The Runner root algorithm is deployed by the suggested
multi-level-optimized  scheduling algorithm with VM
migration for scheduling workflows tasks in a multi-cloud to
minimize traffic and congestion with efficient work schedule
and resource allocation algorithm based on steepest descent
method, which is address the issues of flexibility of the
resource management and reduces the computation processing
time. Where the throughput is reduced 9.5 Mbps, when the
migration is increased by using the proposed algorithm and
utilizing the steepest descent algorithm at the national level,
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the waiting time of the suggested system has increased by
0.140 sec. The existing systems such as CLA-EC, FFD &
VMR have the number of migrations as10, 58, and 12. The
proposed system achieves 50 no. of migrations. Moreover, the
proposed system achieves 25% less than the no. of active Pm,
which is compared with existing techniques by using the Data
replacing approach. Hence, resource allocation for combined
task scheduling & migration is considered when using multi-
level optimization. Recursive algorithm to determine the
execution duration to prevent erratic migration across virtual
machines. Hence the proposed model performs well. Thus, the
proposed system has been used to perform a better task
scheduling in a complex multi cloud environment withhigher
flexibility, lowest economic cost, and low computational time
according to the results.
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