
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

1

Multi Optimized Job Scheduling Framework for VM with

Enhanced Migration in a Multi Cloud Environment

Md Tauqir Azam Kausar
Research Scholar

Computer Science Engineering
Bir Tikendrajit University, Manipur, India

Sanjay Pachauri, PhD

Dean, Research & Development,
IIMT College of Engineering,

Greater Noida, UP

ABSTRACT

Optimization job scheduling of virtual machines in a cloud

computing for tasks is considered as NP-hard problem

specifically for large task sizes in the cloud. Hence many

techniques for job scheduling have been presented previously

but they did not consider the combined task scheduling and

resource allocation, which reduces the flexibility, increase

traffic, congestion, and reduces computation processing time.

Hence a novel technique, namely Multi Optimized Job

scheduling Framework for VM with enhanced migration in

a Multi Cloud Environment has been proposed, in which the

load balancers with multi-level optimizations that utilizes the

runner root algorithm and Differential evolution algorithm with

Levy distribution to schedule the job and determines the VM to

be allotted for the job based on international and national level

optimization. Moreover, the previous techniques concentrate

only on the migration that extends VM lifespan, lacking

Quality of Service (QoS) and unsatisfied the end users. Hence

a novel technique Active Inactive data migration algorithm is

used to prevent fluctuating migration between Virtual

Machines and recursive algorithm keeps on iterating the same

operation on the server with the lowest virtual load and

Optimum Cost Function is to prevent unnecessary migration

cost. During VM migration, several applications were affected

during a live VM migration that caused a network fault, which

is eliminated by a novel Data replacing approach which is

used to transfer the exact size of data to the active PM. Overall,

the proposed method is to perform an efficient job scheduling

in multi cloud environment with optimized VM migration.

Keywords

VMs migration, Load balancing, Live Migration, Federation,

Runner root algorithm, Conjugate function, Steepest Descent

Method, Recursive algorithm, Permutated sorting function,

Optimum Cost Function, Levy distribution.

General Terms
VM: Virtual Machine

1. INTRODUCTION
Cloud computing is a trending technology that allows users to

use computing resources remotely in a pay-per-use model. In

this era of rapid growing technology, new opportunities are

open for businesses, where recent technologies are replacing

old ones. With the advent of cloud, small and big organizations

all are progressing without need to concern about the storage

and maintenance of their business data [1]. All the

responsibility is envisaged upon the cloud service providers

(CSPs) and hence cloud computing has become the backbone

of modern business world. Organizations contacts various

cloud service providers and consumes the services by signing

Service-Layer Agreement (SLA) document. A CSP contacts

various resource providers at datacenters to satisfy the demands

of the customer. Usually, it is said that cloud computing

provides infinite resources and elastic services [2]. To raise the

flexibility or capacity of cloud service providers and fulfill the

ever-growing demand of services, resources from different

resource providers need to collaborate, inter-communicate and

work in cooperation and coordination. So, collaboration of

various cloud service providers gives root to the concept of

multi-cloud which simply means that an enterprise can take

services from more than one cloud service provider through a

common interface or a single API [3].

The principle of multi-cloud paradigm in which each member

cloud performs a service level agreement (SLA) with other

member clouds that allows them to work together when data

becomes too massive for any single cloud to manage [4].In

multi cloud computing individual Consumer Service

Provider(CSPs) are employed for a particular business or

organization's purposes and they all have varying forms of

application and SLAs. Moreover, the other benefits of

multi cloud computing are that it avoids long-term commitment

to a single cloud service provider, addressing concerns like

interoperability and vendor lock-in [5]. These platforms

develop new means of operability, either via increasing

standardization of systems employed by creating new ways for

clouds to communicate data with one another on a more global

level, because they frequently rely on communication across

their diverse cloud components. Furthermore, the users are not

required to make any investments in new infrastructure. They

can get the services they want from anywhere in the globe for

a fee, and they do not have to worry about the intricacy of the

IT infrastructure [6].

In multi cloud a Directed Acyclic Graph (DAG) represents an

application as a collection of many jobs. Independent tasks in a

DAG can be run concurrently by many virtual machines

(VMs), however linked tasks must be run in the right sequence

as determined by task priority [7]. Scheduling tasks for

execution with the shortest makes span (total execution time of

all tasks) is an NP-complete issue. Also, the multi cloud

business models and technologies create serious problems,

such as proprietary APIs and a lack of interoperability [8]. It is

crucial that business companies could feed data into bigger,

more popular outlets. It is also vital to select an application

architecture that matches and fully exploits the peculiarities of

the underlying Cloud environments [9]. Also, resource

contentions at the infrastructure layer because unexpected

performance, requiring more labor for resource management,

as well as automated VM and service migration. In recent days,

the focus of Multi Cloud Computing has been turned towards

answering how to schedule an application's work across

numerous clouds which is a difficult problem in a federated

heterogeneous multi-cloud system [10]. For diverse computing

platforms such as cluster, grid, parallel, and distributed

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

2

processing, few noted job scheduling methods have been

created. However, they fall short of meeting the cost-

effectiveness, dependability, and scalability criteria of multi-

cloud computing [11].

Applications come in a variety of sizes and each

application is broken down into several tasks and these tasks

are assigned to Virtual machines (VMs). Hence task scheduling

is extremely important for the overall efficiency of the multi-

cloud computing system. It determines the order in which

virtual machines execute tasks [12]. As a result, load balancing

and scheduling are not two different methodologies but are two

different abstraction levels. The concept of resource allocation

is more abstract than that of load balancer and scheduler.

Resource allocation entails assigning available tasks to VMs in

the most efficient way possible, reducing the make span time

[13]. Multiple jobs are discovered to be assigned to a single

VM, resulting in improved system performance following

optimum resource allocation and effective task scheduling.

Executing the prioritized job requests/tasks is critical for the

system's behavior in many circumstances [14]. One of the most

difficult challenges in distributed computing is scheduling the

cloud-task pair as the customers' needs are always changing. As

the needs of consumers and working environments evolve,

many existing algorithms become obsolete [15].

Virtual machine migration between real computers in

cloud data centers is an intriguing component of cloud

computing that is employed to satisfy the dynamic response to

user demands. A server administrator can migrate a running

virtual machine or application across physical machines

without having to disconnect the client or application [16].

Total migration time and downtime are two significant

performance measures that VM service clients frequently

consider since they are concerned about service deterioration

and the length of time that the service is completely unavailable

[17]. When migrating a virtual machine, the transfer must be

done in a way that balances the criteria of minimizing both

downtime and overall migration time. In multi cloud

computing, the strategy of optimum virtual machine placement

on real equipment in the cloud data center is critical. When the

placement in cloud data centers operates optimally, the quantity

of hardware resources used is regulated. As a result, energy

usage and resource waste can be decreased [18]. The main

contribution of this paper are as follows:

-Distributed multi-cloud scheduling approach addresses

scheduling issues in multi-cloud environments to maximize

user and provider advantages. Overall time, expense, cloud

throughput, energy use, resource use, and load balancing are all

factors in the model.

-A new metaheuristic algorithm known as the runner-root

algorithm (RRA), which is a task scheduling method based on

the general algorithm (GA), is to minimize job completion time

and cost while maximizing resource utilization.

-In order to save energy, proposed a method for VM placement

in cloud data centers that combines several different

techniques, including ensemble prediction algorithm, learning

automata theory, and correlation.

Hence the suggested solutions carry out the economical VM

migration along with optimal work scheduling. The content of

the paper is organized as follows: section 2 describes related

works, section 3 provides a novel solution, the implementation

results and their comparison are provided in section 4; finally,

section 5 concludes the paper.

2. LITERATURE SURVEY
Jena et al [19], this study presents Genetic Algorithm-based

Customer-Conscious Resource Allocation and Task

Scheduling in multi-cloud computing to bridge the gap between

rapidly changing customer requirements and available

infrastructure for services. Genetic algorithm-based resource

allocation and shortest task first scheduling are the two main

phases of the algorithm. The goal is to map jobs to VMs in the

multi-cloud federation with the shortest possibly make span

time and highest possible customer satisfaction. Extensive

simulations were run on synthetic data, and the results were

compared to the existing scheduling technique. The simulation

results show that the suggested method outperforms the current

ones in terms of the metrics that matter. The research

parameters are converged towards the make span time schedule

of the computing which lowers the efficiency of resource

utilization.

Rama Subbareddy et al [20], this study takes job allocation in

a multi-cloudlet context to increase user satisfaction. Response

time aware task scheduling in the multi-cloudlet environment

(RTTSMCE) is presented in this study to address two issues.

First, a cloudlet server is chosen based on response time, and

then tasks are scheduled across cloudlets using load balancing

methods to reduce the cloud server's response time. In

comparison to existing load balancing algorithms, the

suggested approach performs better in the stimulation. By

transferring applications from the mobile device to the remote

cloud, mobile cloud computing helps to lower the power

consumption. However, because of the large physical distance

between a mobile user and the remote cloud, latency concerns

arise.

Cai et al [21], this research developed a multi cloud distributed

scheduling model for scheduling issues in a multi-cloud

environment to optimize the advantages of users and providers.

Total time, cost, cloud throughput, energy consumption,

resource usage, and load balancing were taken as six goals of

the model. The multi-cloud distributed scheduling model was

optimized using a many-objective intelligence algorithm based

on the sine function (MaOEA-SIN). To increase the algorithm's

performance, a sine function penalty selection approach and an

angle strategy are used. In conclusion, the MaOEA-SIN

algorithm outperforms other algorithms in terms of

performance. The user's preference influences the choosing of

superior schemes based on steep characteristics leading to

higher time consumption.

Chen et al. [22] suggested an Online Workflow Scheduling

technique based on Resource Allocation and Consolidation

with Adaptive Resource Allocation (OWS-A2C). When

executing a SW in OWS-A2C, the deadline reassignment was

initially performed for SW tasks depending on the execution

performance of instance resources, which improves resource

usage from a local perspective. The execution instances then

were assigned and aggregated based on the performance needs

of numerous SWs, improving resource usage, and lowering the

overall costs of running many SWs. Finally, using the earliest-

deadline-first (EDF) discipline, the SW tasks were dynamically

scheduled to execution instances and finished before their sub-

deadlines. Extensive simulation test was conducted to illustrate

the efficacy of the proposed OWS-A2C on SW scheduling in

MCEs, which outperforms three baseline scheduling

approaches in terms of resource usage and execution costs

under deadline restrictions, yet the flexibility of the system was

constrained.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

3

Farid et al [23], hosted the scientific procedures in multi-cloud

systems has led in the development of the multi-objective

scheduling (MOS) approach combining fuzzy resource

utilization (FR-MOS). The suggested algorithm's major goal is

to reduce cost and make span while also taking into

consideration reliability restrictions. The scientific workflow

schedule considers the following factors: (1) the IaaS cloud

platform to be chosen; (2) the kind of VM to be allocated to the

tasks; and (3) the sequence in which data should be transmitted.

The FR-MOS technique uses particle swarm optimization

(PSO) and analyses task ordering and task execution location

in its coding approach to overcome these challenges. The

coding system considers both the location of task execution and

the sequence in which data is sent. But using single

optimization to entire process expands the execution time

thereby leveraging the exact task allocation.

Thirumalaiselvan et al [24], presented for scheduling virtual

jobs in a multi-cloud environment, the rate-based scheduling

(RBS), high priority scheduling (HPS), and equal load

balancing (ELB). In a multi cloud environment design, multiple

scheduling methods are utilized depending on the number of

jobs and virtual machines. The ELB scheduling technique is

employed when the number of tasks equals the number of

virtual machines. The high priority scheduling strategy is

employed when the number of tasks exceeds the number of

virtual machines. The RBS method is employed if the number

of tasks is smaller than the number of virtual machines.

The research increased the make span and average efficiency

of multi cloud computing by employing the above three

alternative scheduling techniques which extended the make

span while lowering the delay and energy usage. But the

flexible nature of resource handling was constrained to a

greater extend.

XAVIER et al [25] handle the issue of job scheduling in

numerous heterogeneous virtual machines, a meta-heuristic

algorithm called chaotic social spider algorithm. By simulating

the social spider's swarm intelligence using chaotic inertia

weight based random selection, this work focuses on lowering

overall make span with effective load balancing. Here the two

phase avoids local convergence and investigates global

intelligent searching to identify the most optimized virtual

machine for the user job from a set of virtual machines with

minimal make span and balanced resource utilization. Later,

additional performance metrics like security and dependability

could be included, allowing for the identification of trust nodes

and security risks. Additionally, we expanded this work to be

compatible with independent jobs.

Hamad et al [26] The proposed method aims to reduce task

completion times and costs while maximizing resource usage.

Using the CloudSim toolbox, the suggested algorithm's

performance has been assessed. The key issue is resource

management, as cloud computing uses virtualization and the

pay-as-you-go model to give IT resources (such as CPU,

Memory, Network, and Storage) to users. To solve the job

scheduling problem in the context of cloud computing, this

research suggests an enhanced genetic algorithm. The

suggested method aims to maximize resource use while

minimizing completion time and cost. It can be expanded to

consider the potential for VMs to have a dynamic quality. Also,

the QoS needs of the users would be considered.

Zhang et al [27] The proposed method investigates global

intelligent searching to find the best optimized virtual machine

for the user task among a set of virtual machines with minimal

make span and balanced resource utilization, thereby

preventing local convergence. The flexible, and effective in

many real-world circumstances through meticulous

simulations involving many affecting aspects, algorithm for

resource scheduling that reduces system costs. To address the

resource needs of users on MCP, the system models of

traditional CWAs are utilized. The study concludes that multi-

cloud is the most alluring for many CWA implementations and

can be used to understand the properties of various resources.

Several CSP interconnections and associated load paths data

travelling through potential interconnections are introduced. In

the future, it will address these issues and take our framework's

appropriate computing cost into account.

Tsakalozos et al [28] the suggested GA algorithm is to reduce

job completion times and costs while maximizing resource

utilization. The developer suggests a scalable, distributed

network of brokers that monitors the status of all ongoing

migration activities within the context of a provider. Brokers

employ an underlying, specialized file system called

MigrateFS, which can replicate and maintain synchronization

of virtual discs as the hypervisor live-migrates VMs (i.e., RAM

and CPU state). Brokers apply policies to reduce SLA breaches

while attempting to accomplish all migration operations on

time by restricting the resources used during migration.

From the analysis, it is noted that [19] lowers the efficiency of

resource utilization, [20] large physical distance, [21] higher

time consumption, [22] deadline restrictions yet the flexibility

of the system [23] leveraging the exact task allocation [24]

extended the make span [25] does not include the performance

parameters [26] need to consider the dynamic quality of VM

and also the QoS [27] Several CSP interconnections and

associated with load paths [28] restricting the resources used

during VM migration.

3. MULTI OPTIMIZED JOB

SCHEDULING FRAMEWORK FOR VM

WITH ENHANCED MIGRATION IN A

MULTI CLOUD ENVIRONMENT
The intrinsic benefits associated with cloud computing, both

the number of users and their corresponding workloads grow

every day, which is essential to improve task scheduling and

migration to increase Quality of Service (QoS), end user

satisfaction, and with the least amount of energy consumption

even under circumstances of high workload. Many earlier

studies did not consider the combined job scheduling and

migration for optimized work schedule, which decreases the

resource management's flexibility and speeds up the execution

of computations, traffic, and congestion. Hence, a novel multi-

level optimization named, Multi Optimized Job scheduling

Framework for VM with enhanced migration in a Multi

Cloud Environment has been proposed, to consider the

combined job scheduling and resource allocation, which

utilized the two load balancers for multi-level optimization in

multi cloud. When scheduling a task across multiple clouds,

one load balancer uses the Runner Root Algorithm (RRA) to

considering internationally and using the Steepest Descent

Technique, another load balancer in a chosen cloud locates the

VM to be assigned for the job based on a nation. The

Differential Evolution Algorithm with Levy Distribution,

which takes state level optimization into account, is part of the

suggested system. Such that the multi-level optimization

should consider both the VM's resource allocation and

combined task scheduling. Moreover, irregular VM migration

in the existing methods increased the duration of the user's VM,

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

4

decreased Quality of Service (QoS), and decreased end-user

satisfaction. Hence a novel, Active Inactive data migration

algorithm is used to prevent fluctuating migration between

Virtual Machines, in which utilizes the Recursive Algorithm

to migrate the virtual machine (VM) from the server with the

lowest virtual load and repeating the same procedure on the

server with the second-lowest virtual load. Conjugate function

is used to calculate each VM's processing time in relation to the

physical machine. An Optimum Cost Function is used to

consider the future resource utilization in the each host and

avoid unnecessary migration costs using the Automata cellular

learning function that calculate the ratio of the cost of running

the server in active mode to the cost of running the virtual

machines on the replacement host, and if it exceeds the

threshold, the VM is moved to the destination, reducing the

unnecessary energy consumption while maintaining the quality

of service (Qos).

Furthermore, in live VM migrations, the service levels of

running applications are severely impacted through a high

migration rate causes a network fault and misleading

information to be transmitted improperly. Hence a novel, Data

replacing approach have been proposed, in which Permutated

sorting function has been used. If any error occurs while

transferring the file, the algorithm copies the data and resends

it until the active PM receives the precise amount of data,

thereby the unwanted network error is avoided.

Fig1: Block diagram for Multi Optimize Job Scheduling

Figure 1 shows the proposed system's process flow. In order to

allocate resources efficiently and create an optimized work

plan, the suggested system would consider combined task

scheduling and VMs migration where in two load balancers

with multi-level optimization are used to schedule the job and

assign VMs for it while taking into account global, national,

and state level of optimization. Other unique approach

eliminates the limitation during live migration and prevents

variable migration across virtual machines, each host avoiding

excessive migration costs. Hence, the proposed methods

combine efficient VM migration with improved job scheduling.

3.1 Multi Hop Travel based

Optimized Scheduling algorithm
In multi-cloud computing, resource allocation is a challenging

task because of the numerous restrictions and configurations

required by both cloud clients and providers. Because the

nature of the traffic is highly arbitrary, the challenge of

mapping an incoming task request to available virtual machines

(VMs) is not polynomial-complete. The challenge of work

scheduling is NP-hard since VMs are diverse and there are

several alternative translations. To consider the combined task

scheduling and migration for an optimized work schedule,

which is crucial for improving the flexibility of resource

management and accelerating computation execution, traffic,

and congestion. Hence, a novel Multi Hop Travel based

Optimal Scheduling technique is employed, which divides

the entire allocation into two phases and uses two load

balancers with multi-level optimization. The purpose of load

balancer is to more effectively match the network's available

transmission resources to the volume of data that is currently

being handled. One balancer in a multi-cloud to schedule the

task to the proper cloud computing consideration globally,

which is optimizing by Runner root algorithm (RRA). The job

scheduling issue is regarded as an NP-Complete issue.

Therefore, it could be resolved using optimization techniques

while considering performance parameters like completion

time, expense, resource utilization, etc. To create a task

allocation and execution algorithm based on Runner root

algorithms (RRA) for the cloud computing environment that

will improve task completion times, lower execution costs, and

optimize resource utilization. More specifically, in RRA, the

local search (exploitation process) is only used when the global

search does not significantly enhance the value of the cost

function. In RRA, the global search for the optimal solution

(exploration method) is undertaken at all iterations. The runner

root algorithm is provided as a job scheduling optimization

strategy, which is starts with an initial random population that

is evenly distributed over the issue domain. Task scheduling to

meet the objectives of better makespan, load balancing and

throughput.

Task allocation details are indicated by a task 𝑡𝑘. K represents

the number of tasks in a population and ranges from 1 to z. The

components of a task 𝑡𝑘 are 𝛼[𝑖] and 𝛽[𝑖], which stand for the

details of task processing and virtual machine distribution. A

task's length is equal to the total amount of tasks entered. A task

schedule is expressed through the following encoding process.

Prior to task creation, a collection of inputted jobs is sorted.

Cloud users pay for computing services in person, in contrast

to other distributed computing platforms. Considering this, it is

necessary to assign tasks from cloud users with high costs to

virtual machines more quickly than other tasks. Due to the fact

that cloud computing services are provided through an SLA

between cloud users and providers, task scheduling issues in

cloud computing vary from problems with general task

scheduling.

Given that there are m tasks, such as t1, t2, t3, etc., and that

there are m number of resources, and that task i (ti) has n

subtasks, with the jth subtask of task i being designated as

ti(j), there are a total of m tasks:

𝑛𝑢𝑚 = ∑ ∑ 𝑡𝑖(𝑗)
𝑛
𝑘=1

𝑚
𝑖=1 (1)

Assuming there are three tasks and three labor resources, the

first task is divided into five smaller tasks (t1(1), t1(2), t1(3),

t1(4), and t1(5)); the second task is divided into five smaller

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

5

tasks (t2(1), t2(2)); and the third task is divided into three

smaller tasks (t3(1), t3(2), and t3(5)).(3). There are 10 subtasks

in total. The length of the work is 10 subtasks, each with a gene

value between 1 and 3. The jobs are generated as follows:

{3,2,1,1,1,2,2,2,3,1}

The job is then decoded to reveal the distribution and order of

processing of each resource's subtasks.

W1： { t1(3) , t1(4) , t1(5), t3(3)}

W2： { t1(2), t2(1), t2(2), t3(1)}

W3： { t1(1) , t3(2)}

Through decoding, it can determine the subtasks that each

worker must complete, and using the RRA algorithm, it can

determine how long it will take each worker to complete the

task that has been given to them:

𝑊𝑜𝑟𝑘𝑒𝑟𝑡𝑖𝑚𝑒(𝑘) = ∑ 𝑡𝑖𝑚𝑒 (𝑘, 𝑗), 𝑘 ∈ [1,𝑤]𝑛
𝑗=1

(2)

time(k, j) represents a k-th worker on the time required to

complete the j-th task.

Time is required by the i-th task completion:

𝑡𝑎𝑠𝑘𝑡𝑖𝑚𝑒(𝑖) = 𝑚𝑎𝑥
𝑤

𝑘 = 1
∑ 𝑡𝑖𝑚𝑒 (𝑘, 𝑗)𝑠
𝑗=1

(3)

s is the location of subtask of task i assign to the worker. One

of the main problems with cloud computing is task scheduling.

Quality of Service (QoS) factors are important in scheduling

and load balancing. which is based on international

optimization, Resource Allocation and Task Scheduling in

Multi-Cloud Computing to close the gap between the

continuously changing requirement and the available

infrastructure for the services.

Due to the huge solution space, scheduling in cloud computing

falls under the issues known as NP-hard problems, making it

difficult to find an ideal solution. It has been demonstrated by

these techniques based on metaheuristics can solve these issues

with near optimal results in a reasonable amount of time. The

two categories for steepest decent method -based resource

allocation tasks are (I) Advance Reservation (AR) and (ii) Best

Effort (BE). The work is distributed among resources utilizing

GA operators based on the multi-cloud environment's available

resources and the anticipated makespan time. The historical

user feedback database keeps track of the performance of the

cloud service providers, physical machines, and virtual

machines.

Figure 2: Task scheduling Algorithm

Figure 2 shows a cloud in an abstract form where the scheduler

finds a good allocation for incoming tasks. The scheduler

establishes a map when tasks are delivered to data centers. A

cloud broker receives a mapping scheme, and then assigns jobs

to virtual machines. Because the network bandwidth among

edge clouds is more limited than the cloud data center

networks, VM migration among edge clouds is more difficult

than that in cloud computing.

For end users, the virtual machines offer a variety of services,

including message transfer, mobile gaming, and video

streaming. Any application running on the VM can be referred

to as a service, which is an abstract notion. Consider a live VM

migration from a cloud-based source computer to a cloud-based

destination machine. It presumes that the destination machine

will need to receive the state stored in the virtual machine's

memory during the migration. The memory of the VM on the

source machine would be updated when the state was

transmitted to the destination because the application on the

VM could still operate throughout the migration. Pre-copy, a

live migration method iteratively transmits this memory

content from the source computer to the destination machine.

Two objective metrics of a live VM migration that we are

concerned with are migration duration and Quality of Service

(Qos). Imagine a group of C cloud service providers that are

linked together to create a multicloud computing, where C =

{C1, C2, Ci}. Q is a collection of cloud apps exist, where {P =

P1, P2,Pj}. A cloud user may submit an unlimited number of

job requests. Each job application is divided into a number of

independent tasks, with Pi j = {P11,P12,..., Pq1,Pq2,...,

Pqi} and Ci j = {C11,C12,..., Cp1,Cp2,..., Cpi} being the set of

tasks and VMs, respectively.

Mapping function M describes: Pi j → Ci j

The service charge for AR work is typically higher than the

service charge for BE tasks. Below is a matrix that was created

to display the anticipated execution time in equation (4),

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

6

𝐸𝑇𝐶 =

𝑇1
𝑇2
⋮
𝑇𝑛 {

𝐶1
𝐸𝑇𝐶11
𝐸𝑇𝐶21
⋮

𝐸𝑇𝐶𝑛1

𝐶2 …
𝐸𝑇𝐶12 …
𝐸𝑇𝐶22
⋮

𝐸𝑇𝐶𝑛2

…
…
…

𝐶𝑛
𝐸𝑇𝐶1𝑚
𝐸𝑇𝐶2𝑚
⋮

𝐸𝑇𝐶𝑛𝑚

(4)

𝐸𝑇𝐶𝑖𝑗indicates the anticipated time required to complete the ith

task in the jth cloud. Any cloud that has a working job request

id can run any task, and any cloud can do several tasks

simultaneously according to priority. Chronological order is

used by several cloud providers.

𝐹(𝑥) = min(𝑀𝑆) + (
1

𝑚𝑎𝑥
, 𝐶𝑆𝑅)

(5)

𝑀𝑆 = 𝑓(𝑀𝐼𝑃𝑆𝑡𝑒𝑚𝑝𝑡𝑎𝑠𝑘 , 𝐸𝑆𝑇)

(6)

𝑀𝑆 = 𝜔1 ∗ (
𝑁𝐼𝐶

𝑀𝐼𝑃𝑆
) + 𝜔2 ∗ 𝐸𝑆𝑇

(7)

𝐶𝑆𝑅 = 𝑓(𝐸𝑆𝑇𝑡𝑒𝑚𝑝𝑡𝑎𝑠𝑘 , 𝐸𝑇𝐶𝑡𝑒𝑚𝑝𝑡𝑎𝑠𝑘)

(8)

Whereas Eq.(8) shows the relationship between user

satisfaction levels, resource waiting times, and anticipated

completion times, make span time (MS), a computability

indicator, reveals the rate of utilization of resources expressed

in Eq (6)&(7). Where MS is the task's makespan time, CSR is

the customer satisfaction rate, NIC is the number of million

instructions in the work, MIPS is the number of million

instructions the machine can execute, and 𝜔1 𝑎𝑛𝑑 𝜔2 are

specified weights. Choosing the weights' value might be

difficult because it differs from organisation to organisation.

The following algorithm shows the runner root-based task

scheduling.

Algorithm1: for runner root algorithm-based task

scheduling in cloud computing

Input

Step 1: set of customer job requests following Poisson’s

distribution.

Step 2: set of independent tasks. (each job request is sub

divided into single independent task)

Step 3: setoff cloud providers involved in the federation.

Step 4: set of virtual machines. (Multiple cloud providers are

further divided into numerous VMs).

Output

(1) Makespan time

(2) Customer Satisfaction rate

Step 1: While 𝑄𝑟 ≠ 𝑁𝑈𝐿𝐿

Step 2: Set makespan = 0

Step 3: Breakup job application into multiple tasks.

Step 4: Call GA_MAPPING (ETC, EST, p, q)

Step 5: Call Task Scheduling (ETC, EST, p, q, MS)

Step 6: end while

Temporary queues QT are initialized as part of algorithm 1. The

Poisson distribution is used to generate a variety of applications

with varying capacities (measured in MIPS, or million

instructions per second). The programs divided into numerous

separate tasks. In step 3, the relevant physical machines divided

into several VMs. Step 4 involve calling the GA-based resource

allocation function. Scheduling the numerous tasks assigned to

a single VM is step 5 in the process. The algorithm produces

the optimal task-VM pair with the shortest makespan time and

the highest level of user satisfaction. The following algorithm

shows the resource allocation for the scheduled task.

Algorithm 2: For resource allocation

START

1: While 𝑄𝑟 ≠ 𝑛𝑢𝑙𝑙 do

2: If 𝑄𝐴𝑅 ≠ 𝑛𝑢𝑙𝑙 (if task ready available is advance reservation

then)

3: If𝑄𝐵𝐸 ≠ 0(if task ready available is Best Effort task then)`

4: For tempcloud = {1,2,3, …..., q)

5: For temptask = {1,2,3, …..., p)

6: temptask← Task (𝑄𝐴𝑅)

7: Find EST (temptask, tempcloud)

8: MS (temptask, tempcloud) =ETC (temptask, tempcloud)

+EST (temptask, tempcloud)

9: Call RRA_task_cloud_pair(𝑝𝑖 , 𝑞𝑖) that gives min (MS

(temptask, tempcloud))

10: Call BE_PREMPT_TASK (EST (temptask), MS

(temptask, tempcloud))

11: endfor

12: endfor

13: else

14: temptask← Task (𝑄𝐵𝐸)

15: CALL UPDATE 𝑄𝑇

16: CALL SCHEDULE_AR_TASKS_MMS (ETC_AR,

temptask)

17: CALL SCHEDULE_BE_TASKS_MMS (ETC_BE,

temptask)

18: MS (temptask, k) = ETC (temptask, k) + EST (temptask, k)

19: endif

20: endif

21: endwhile

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

7

The step-by-step explanation of our suggested algorithm 2,

steepest decent method-based resource allocation is contained

in Algorithm 2. The programs tasks are kept in QT. Tasks are

stored in QAR or QBE depending on the type of application.

All the tasks that need to be completed are saved in the set

temptask, and the relevant VMs are kept in the set tempcloud.

Step 7 determines the estimated execution time. The makespan

time is the total of the predicted completion time and the

waiting time, as shown in step 8. The steepest decent method -

based resource allocation process is called in step 9. In the

initialization stage of steepest decent method, the number of

jobs that must be completed in a batch is equal to the size of the

cloud. In the first generation, tasks are given at random to VMs

that can complete them. Maximizing customer satisfaction

rates while minimizing makespan time is the fitness function.

Procedure 1 specifies the steps for steepest decent method -

based resource allocation as follows. Step 17 indicates that the

convergence requirements are satisfied, and the best-fit

chromosome is acquired. When numerous jobs are assigned to

a single VM, shortest job first scheduling is employed to handle

the situation.

As increased user tasks are allocated within the schedule, the

VMs risk being quickly overcrowded. In order to make better

load balancing decisions to determine the load factor (LF)𝜎,

which is the average load's standard deviation.

𝜎 = √
1

𝑚
∑ (𝐸𝑇𝑖 − 𝐸𝑇)

2𝑚
𝑖=1

(9)

where 𝐸𝑇𝑖 , is the execution time of ith VM.

A steepest descent algorithm would be one that applies the

update rule, with each iteration taking the steepest possible

course in the direction x(k). Which two significant

computational benefits are how simple it is to implement an

algorithm on a computer and how little storage is required. The

line search necessary to calculate the step length 𝛼𝑘, and

gradient constitutes the bulk of the task. In other words, given

a specific point x, the algorithm's goal is to determine the

direction in which f (x + d) is minimized.determining the

steepest angle. One can estimate the function by a first-order

Taylor expansion and identify the steepest direction in the

following equation (7),

𝑓(𝑥 + 𝑑) ≈ 𝑓(𝑥) + ∇ 𝑓(𝑥)𝑇𝑑

(10)

The function’s minimum direction d suggests the following

optimization issue.

min
𝑑∶||𝜗||

∇𝑓(𝑥) 𝑇𝑑 (11)

Algorithm 3: Steepest Descent Method

Given an initial 𝑥0, 𝑑0 = −𝑔0 and a convergence tolerance tol

for k = 0 to maxiterdo

Set 𝛼𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝜑𝛼 = 𝑓(𝑥𝑘) − 𝛼𝑔𝑘

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝑔𝑘

Compute 𝑔𝑘+1 = ∇𝑓(𝑥𝑘+1)

If||𝑔𝐾+1||2 ≤ 𝑡𝑜𝑙 𝒕𝒉𝒆𝒏

Converged

End if

End for

Thus, the other load balancer in that particular cloud chooses

the VM to be assigned for the task based on a certain nation,

then uses national level optimization with the steepest descent

algorithm. Due to its effectiveness in handling a wide range of

issues, such as portfolio optimization, picture pixel clustering,

data clustering, and multi-level thresholding in image

segmentation, Differential Evolution (DE) algorithms, a subset

of evolutionary algorithms, are of particular interest. These

mutational tactics are used in many evolutionary algorithms,

such as DE algorithms, to address a variety of issues, including

multi level objective optimization. Thus, the VM are viewed as

different states, and the work that must be done is viewed as

districts.

DE is an iterative population-based method for locating the

state-level optimal. The investigation and application of the

algorithm are represented, respectively, by the DE algorithm

with levy flight. The levy flights first create a population of

answers at random before assessing each one's quality using the

fitness function. Using Levy flights, the jobs that are closest to

the best one will fly around it as shown in the following

equation,

𝑥𝑡−1 = 𝑥𝑖
𝑡 +

𝑆𝑚𝑎𝑥

𝑡2
𝐿(𝑆)

(12)

where 𝑥𝑖
𝑡 represents the position of the i-th task at iteration t.

while 𝑆𝑚𝑎𝑥 represents the maximum walk step and L(s)

represents the step drawn from Levy flights, using parameter s.

Hence the Runner Root Algorithm (RRA) and the Steepest

Descent Algorithm are combined in the DE algorithm, which is

used as a global and local search technique to enhance job

scheduling for resource exploitation. By minimizing the

makespan, the DE algorithm, which was modelled in the

cloudsim environment, aims to increase the output of the cloud

system.

3.2 Active Inactive data migration

algorithm
The VM migration that comes next, which does not consider

prior task knowledge, extends the entire time the user is using

a virtual machine (VM), possibly infringing on the deadline

requirement with subpar Quality of Service (QoS) standards

and unsatisfied end users. To avoid fluctuating migration

between Virtual Machines, the suggested algorithm is used. To

increase performance and reliability, one mitigating method is

VM migration, in which virtual machines are transferred from

one physical host to another. There are various methods for

migrating VMs, including cold migration, hot migration, and

live migration. When migrating a virtual machine to a specific

host, cold migration requires shutting down the guest OS first

and then restarting the system. Hot migration does not

terminate the operating guest OS before it is sent to the

designated target host and resumed there it just suspends it.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

8

Although permitting a VM and its operating OS to be relocated

from one physical host to another, live migration ensures that

the hosted apps will continue to function. A virtual machine

(VM) is effortlessly transported between two physical hosts

while still running, together with its environment, which

includes its OS, memory, vCPU, and occasionally its disc.

Improved load balancing, transparent mobility, proactive fault

tolerance, and green computing are all advantages of VM

migration.

Figure 3: VM live migration between two physical VM

The figure3 demonstrates how live migration lets you relocate

an active virtual machine from one physical server to another

without interrupting operations. A seamless migration process

is ensured since the virtual machine keeps its network identity

and connections. High-speed networking is used to transfer the

virtual machine's precise execution state and active memory,

enabling it to move from executing on the source host to the

destination host. Recursive algorithm with the intention of

minimizing power interruption for the active machines, the

algorithm used to move idle and actively functioning virtual

machines from one overloaded or under loaded server to

another non-overloaded server to reduce server load and offers

more substantial energy and resource savings for data centres.

To guarantee the greatest number of active virtual machines on

a single server the majority of the time, our approach is to swap

out all idle virtual machines from one server with the actively

working, fully loaded ones of a no overloaded server. Since idle

VMs typically use 50% to 70% of the host server's total power,

this means that the power consumption of the actively operating

VMs will not be affected. The following situations can coexist

in a cloud environment, according to the CPU and RAM usage

of a VM, for an instantaneous time t.

𝑈𝑚𝑣𝑗 > 𝑈𝑝𝑗[𝑅𝐴𝑀 > 𝐶𝑃𝑈]

(13)

𝑈𝑚𝑣𝑗 > 𝑈𝑝𝑗[𝑅𝐴𝑀 < 𝐶𝑃𝑈]

(14)

𝑈𝑚𝑣𝑗 > 𝑈𝑝𝑗[𝑅𝐴𝑀 ≈ 𝐶𝑃𝑈]

(15)

Here, 𝑈𝑚𝑣𝑗 represents the memory utilization of a VM, 𝑈𝑝𝑗

represents the processor or CPU utilization of a VM and 0 ≤

𝑈𝑚𝑣𝑗≤ 1,0 ≤ Ucj 𝑈𝑝𝑗≤ 1 i.e 𝑈𝑚𝑣𝑗 and 𝑈𝑝𝑗 represents the

percentage of RAM & CPU utilization.

The resource utilization percentage of each virtual machine will

be used to determine the overall number of active and idle VMs

on a single server at a given instant (t). It will be simpler to

choose between migrating idle or active VMs as a result. The

following formulae can be used to get the total number of idle

virtual machines in a server for an instant t:

𝑉𝑜 = 𝑈𝑚𝑣𝑗 − 𝑈𝑝𝑗 (16)

𝑉𝑜 = {
0
1

,
,

 0 ≤ 𝑉𝑜 ≤ 0.3
 0.4 ≤ 𝑉𝑜 ≤ (0.9 ≈ 1)

 (17)

𝑉𝑜 = {
∑ 𝑁1
𝑜 = 1

𝑉𝑜

0

,
,
[𝑉𝑜 ∈ 𝑁1]
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (18)

Here, N1 is a set of virtual machines. Once more, the following

formulae can be used to determine the total number of active

virtual machines in a server for a given time.

𝑉𝑎 = 𝑈𝑝𝑗 − 𝑈𝑚𝑣𝑗 (19)

𝑉𝑎 = 1; 𝑖𝑓 0 ≤ 𝑉𝑎 ≤ (0.9 ≈ 1)
(20)

𝑉𝑎𝑐𝑡𝑖𝑣𝑒 = {
∑
𝑁2 +𝑁3
𝑎 = 1

𝑉𝑎 + 𝑐

𝑐

,
,
𝑉𝑎 ∈ [𝑁2 + 𝑁3]
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(21)

𝑐 = ∑𝑉𝑎 (22)

The following equations can be used to determine the overall

CPU and memory usage of the VMs when the quantity of

running virtual machines and idle virtual machines at any given

moment t, in any server I equals the other.

𝑈𝐶𝑎𝑣 = ∑ 𝑈𝑚𝑣𝑗 ∗ 𝐶𝑗
𝑉𝑎𝑐𝑡𝑖𝑣𝑒
𝑗=1 (23)

𝑈𝑀𝑎𝑣 = ∑ 𝑈𝑚𝑣𝑗 ∗ 𝑀𝑗
𝑉𝑎𝑐𝑡𝑖𝑣𝑒
𝑗=1

(24)

Here 𝑈𝐶𝑎𝑣UCva and 𝑈𝑀𝑎𝑣 stand for the CPU and Memory

usage of virtual machines that are currently in use, respectively.

Algorithm 4: Recursive algorithm (Virtual Machine

Migration)

Input

Step 1: Initialization. Compute the number of active and idle

VMs in a single host server. Take the number of active VMs as

Vactive and the number of idle VMs as Vidle. Compare

Vactiveand Vidle.

(1) Vidle>Vactive

(2) Vidle<Vactive

(3) Vidle = Vactive

Step 2: The parameter for ACS is set to τ0. The feasible

globally best solution is set as Sgb for placing N VMs on N

servers. Thus, the number of minimum servers is set to Mmin

= N. Set iteration t=1 and maximum iteration as T.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

9

Step 3: Set Mt = Mmin − 1. In each iteration, m ants construct

m solutions and perform local pheromone on each solution.

Step 4: The fitness function f(S) is applied in order to evaluate

the fitness value of the constructed solution.

Step 5: The best solution Sb of the current iteration is set after

evaluating the fitness value of the constructed solution. If Sb is

feasible, Sgb is updated as Sb and Mmin = f1(Sb) is set.

Otherwise, OEM local search is performed on Sb. Sgb and

Mmin are updated respectively if local search succeeds.

Step 6: After Sgb and Mmin are locally updated, global

pheromone update is eventually done on Sb and Sgb.

Step 7: Check if t is less than or equal to T. If not equal, then

set t = t + 1 and go to Step 3. Otherwise terminate the algorithm.

Step 8: After t terminates, calculate Vactive and Vidle of the

host server. If Vactive = Vactive and V`idle = Vidle, then move

forward to step 9. Otherwise update V`active and V`idle and

then move to step 9.

Step 9 (a) If Vidle>Vactive, then migrate all the actively

working VMs from host server to a nearby (ACS)

nonoverloaded (OEM) server with the opposite scenario i.e. the

server in which Vidle<Vactive. The idle VMs of the destination

server will be exchanged with the actively working ones from

the host.

(b) If Vidle<Vactive, then migrate all the idle VMs from host

server to a nearby (ACS) non-overloaded (OEM) server with

the opposite scenario i.e. the server in which Vidle>Vactive.

The actively working VMs of the destination server will be

exchanged with the idle ones from the host. (c) If Vidle =

Vactive, calculate the CPU utilization (UCva&UMva) and

memory utilization (UCvi&UMvi) of the VMs (both actively

working and idle) and compare the total utilization of both type

VMs.

It migrates the virtual machine from the server by identifying

the virtual machine with the lowest virtual load and then repeats

the process on the server with the second-lowest virtual load,

and so on, using a recursive algorithm. A recursive algorithm

is one that calls a copy of itself, or an instance of itself, more

precisely. When a set or function is defined recursively, the

computation of its members or values follows the definition in

a recursive manner. The initial steps of the recursive algorithm

identify the basis items and correspond to the basis clause of

the recursive definition. The inductive clause's stages are then

followed, which reduce the computation for an element of one

generation to that of elements of the generation just before it.

The algorithm uses a conjugate function to determine the

execution time of each VM in relation to the Physical Machine

while also taking into account the timeout parameter of each

server from the history of data centres.

The majority of earlier studies calculate the start time of the

current task as the most recent end time of the previous task.

As a result, when it is their time to receive tasks, some virtual

machines must wait. The execution time of each task ti depends

on the output data size of every task. The execution time of

different tasks on different VM(m, k) can be calculated by the

following equation

𝑇𝑒𝑥𝑒(𝑡𝑖𝑉𝑀(𝑚, 𝑘)) =
𝑊(𝑡𝑖)

𝑃(𝑚,𝑘)

(25)

The execution time of each task can be calculated using the

processing capacity of VM(m,k). This is so that other VMs can

receive numerous copies of the output that VMs produce. The

sequence of the tasks determines how the recipient output is

laid out. The efficiency of the process for scheduling

applications must be maximized. Reducing execution time and

total execution cost are necessary steps to take to meet users'

QoS requirements. The time between the start time and end

time of the task execution is used by the existing workflow

algorithms to compute the VM rent time.

When a task is finished, the virtual machine closes down and

the results are passed on to the tasks that come after it. Data

transfer priority is influenced by the order of the activities.

Using the automata cellular learning function, an Optimum

Cost Function considers the future resource utilization in each

host to reduce the cost of unnecessary migration. The suggested

optimization model restricts that the VMs whose remaining

runtimes are smaller than a time slot will not be migrated to

prevent pointless VM migrations. VM rent cost of task ti for

each considered IaaS platform is calculated below.

For Amazon EC2 that charges per hour, the execution cost of

task ti on VM(1, k) is expressed in Eq.

𝑐𝑜𝑠𝑡(𝑡𝑖 , 𝑉𝑀(1, 𝑘) = [
𝑇𝑟𝑒𝑛𝑡(𝑡𝑖,𝑉𝑀(1,𝑘))

𝑇𝑚𝑖𝑛𝑢𝑡𝑒
] . 𝐶(1, 𝑘)

(26)

where 𝑇𝑚𝑖𝑛𝑢𝑡𝑒 = 60.

Microsoft Azure charges per minute, the execution cost of task

ti on VM(2, k) is expressed in Eq

𝑐𝑜𝑠𝑡(𝑡𝑖 , 𝑉𝑀(2, 𝑘) = 𝑇𝑟𝑒𝑛𝑡(𝑡𝑖 , 𝑉𝑀(2, 𝑘). 𝐶92, 𝑘))/𝑇𝑚𝑖𝑛𝑢𝑡𝑒

(27)

A distributed computational mode called cellular learning

automata (CLA) model combines the learning capabilities of

learning automata with the computational capability of cellular

automata. A cellular learning automaton is made up of a lattice

of cells that cooperate to complete a computing job, and each

cell contains a few learning automata. The CLA is used by each

host are together with cellular networks, wireless networks, and

evolutionary computation. Cellular learning automata that

consider the migration and base future decisions on the

experiences of the past. It is determining the ratio of the cost of

running the server in active mode to the cost of running the

server for the virtual machines on the replacement host, and if

it exceeds the threshold, moving the VM to the destination

reduces the unnecessary energy usage while maintaining

service quality. This capability enhances the flexibility and

computing power of automatic learning through associative

CLA. Initial state of the cost is set based on the action

probability vector of the LA in running server. The LA resident

in each VMs then decides on an action in accordance with its

decision function after receiving an input vector from the cloud.

Algorithm 5: Operation of Cellular Learning Automata

Step 1: Initialize state of each cell in the CLA.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

10

Step 2: for each cell i in the CLA do

Step 3: Give the input vector from the environment to cell i.

Step 4: Cell i selects an action according to its decision

function.

Step 5: Apply the selected action to the environment.

Step 6: Apply the local rule and give the reinforcement signal

to the cell i.

Step 7: Update the state of the cell i according to the

reinforcement signal.

Step 8: end for

The VMs is a migrated to the cloud that gives feedback in

conjunction with actual migration, and Learning

Automata is taken as the cost of running server in the VM is

migrated to the destination thereby lowering the unwanted

energy consumption same while maintaining the quality of

service. However, faulty data transfer during live migration

caused a network issue.

3.3 Data replacing approach.
In data replacing approach, VMs must be moved to another host

with enough resources once a host enters an over or

underutilized state. The following circumstances lead to

unnecessary requests: One of the request's fields was not

accurately recorded (data contains NULL). The user is

identified as a spammer, scanning robot, or intrusive user until

the data is sent to the active PM, the transaction PM is switched

to Mid active mode. Whenever a transfer error occurs, the

method duplicates the data and resends it until the active PM

receives the exact amount of data using a permutated sorting

function, preventing the unintended network fault. Permutated

Sorting Function continuously produces input permutations

until it discovers one that is sorted. So, it should count the

amount of original data and moves in order to examine a

sorting algorithm. So, it should count the amount of original

data and moves in order to examine a sorting algorithm. We

can ignore other procedures and yet get the same result. We can

ignore other procedures and yet get the same result. A flexible

scheduling method that uses VM migration to effectively

service physical servers of different functionality while

workflows are being executed

Figure 4: Flowchart of the Data replacing approach

Figure 4 shows the Data replacing method that chooses the best

PM from the list of techniques while switching the PM for the

data transaction to Mid-active mode until the data is transferred

to the Active PM. If a transfer error occurs, the algorithm copies

the data and resends it until the precise amount of data is sent

to the active PM. Unwanted network errors must be eliminated.

Overall, the proposed Multi Hop Travel based optimization

algorithm is conduct the economical VM migration while

optimizing job scheduling where two load balancers that are

optimized at multiple levels, including the international,

national, and state levels, are taken into consideration. Active

Inactive data migration algorithm for active-inactive data

transfer removes virtual machines from servers by selecting the

ones with the lowest virtual loads using a recursive algorithm.

4. RESULT AND DISCUSSION
This section provides a comparison section to ensure the

suggested system is appropriate, performance data for the

suggested system, and adaptive scheduling approaches of the

implementation of the VM migration. Using an optimization

method, the suggested VM migration strategy was put into

practice in MATLAB, and the experimental outcomes were

analyzed. The performance of the proposed model has been

assessed by calculating the increased flexibility, lowest

economic cost, and low computational time.

4.1 Experimental Setup
This work has been implemented in the working platform of

Python, Matlab with the following system specification and

the simulation results are discussed below.

OS: Windows 10

Software: VMware, Python, Matlab

RAM: 8 GB RAM

Processor : Intel i3

Start

Receives the N- number of files

Copy the Data from the file

Check
Return a file

Sent the data

Active

PM

End

Original Size

Yes No

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

11

4.2 Performance metrics of the proposed

system
The Performance metrics of the proposed Multi Optimized Job

scheduling Framework for VM with enhanced migration and to

develop an adaptive scheduling approach and the achieved

outcome were explained in detail in this section.

Figure 5: Throughput of the proposed system

Figure 5 depicts the throughput of the suggested system when

the number of VMs is changed. As the number of VMs is

increased, the proposed system's throughput reaches a

minimum of 9.5 Mbps and a maximum of 11.4 Mbps when the

number of VMs is decreased. The planned system's throughput

has decreased by using the runner root algorithm with consider

internationally.

Figure 6: Cost function of the proposed system

Figure 6 depicts the Cost function of the suggested approach

for adjusting the number of VM. When the number of VMs is

increased to 100, the Cost function of the proposed system

reaches a maximum value of 168 and the lowest value of 132

when the number of VMs is decreased to 20. Using the optimal

cost function has increased the cost function of the suggested

system.

Figure 7: Waiting time of the proposed system

Figure 7 depicts the suggested system's waiting time for

varying the number of virtual machines. The Waiting time of

the suggested system reaches a maximum value of 0.144 sec.

when the number of VMs is increased to 100 and the lowest

value of 0.120 when the number of VMs is decreased to 20.

The suggested system's waiting period has grown longer by

using the steepest descent algorithm with national level.

Figure 8: Execution time of the proposed system

The execution time of the proposed system for varying the

number of VM has been shown in figure 8. The execution time

of the proposed system achieves a maximum value of 0.62,

when the number of VMs is increased to 100 and attains a

minimum value of 0.56, when the number of VMs is reduced

to 20. The execution of the proposed system has increased by

differential evaluation algorithm.

Figure 9: VM side load level of the proposed system

The VM side Load Level of the proposed system for varying

the number of VM has been shown in figure 9. The VM side

Load Level of the proposed system achieves a maximum value

of 2.4, when the number of VMs is increased to 100 and attains

a minimum value of 1.3 when the number of VMs is reduced

to 20. The VM side Load Level of the proposed system has

increased using recursive algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

12

Figure 10: Cloud side load level of the proposed system

The cloud side level of the proposed system for varying the

number of VM has been shown in figure 10. The cloud side

load level of the proposed system achieves a maximum value

of 10, when the number of VMs is increased to 100 and attains

a minimum value of 2.4, when the number of VMs is reduced

to 20. The Cloud side load level of the proposed system has

increased by using active inactive data migration algorithm.

Figure 11: Delay of the proposed system

The delay of the proposed system for varying the number of

VM has been shown in figure 10. The delay of the proposed

system achieves a maximum value of 0.265 Kbps, when the

number of VMs is increased to 100 and attains a minimum

value of 0.235, when the number of VMs is reduced to 20. The

delay of the proposed system has increased by using automata

cellular learning function.

4.3 Comparison of Proposed model with

Previous Models
This section highlights the proposed adaptive scheduling

approach for effective VMs migration and to provide efficient

service of physical servers with varying functionality during

workflow execution by comparing it to the outcomes of

existing approaches such as FFD [29], VMR [7], CLA-EC

[15] and showing their results based on various comparisons

is given below.

Figure 12: Comparison of migrations

Figure 12 shows a comparison of the number of migrations of

the proposed model with existing techniques such as CLA-EC,

Buyya, FFD. Whereas the comparison of number of migrations

attains a maximum time. The number of migrations of the

proposed system achieves a minimum value of 50, when the

time s increased to 25 hrs and attains a maximum value of 60,

when the time is reduced. Hence the proposed system achieves

a smaller number of migration than the existing technique

CLA-EC.

Figure 13: Comparison of Switch off PM.

The comparison of the switch off PM of various models is

shown in figure 13. The proposed model has a switch off PM

of 80% compared to existing models. The graph also indicates

the switch off PM of an increase in the time. Hence the

proposed model has achieved high switch off PM, which is

compared with the existing techniques VMR.

Figure 14: Comparison of Active PMs

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

13

The comparison of the number of active PM of various models

is shown in figure 14. The proposed model has several active

PM of 25% less than existing models. The graph also indicates

the number of active PM of adecrease in the time. Hence the

proposed model has a smaller number of active PM than the

existing technique VMR.

Figure 15: Comparison of Solution size

The comparison of the solution size of various models is shown

in figure 15. The proposed model has a solution size of 280 less

than existing models. The graph also indicates the solution size

PM of a decrease in the time. Hence the proposed model has

less solution size, which is compared with the existing

technique CLA-Ec. Overall, the proposed model shows that it

is more efficient and more accurate when compared to previous

models such as CLA-EC, Buyya, FFD, VMR, and Random,

which involves VM migration for efficient service of physical

servers with varying functionality during workflow execution.

The proposed system achieves less through put 9.5 Mbps in a

100 number of VM, when compared to other existing

techniques, its Cost function value is 168 which is higher than

the existing techniques, and its waiting time is 0.144 sec higher

than the existing techniques. This proves that the proposed

system performed well when compared to other existing

techniques like CLA-EC, Buyya, FFD, VMR, and Random.

5. Conclusion
The Runner root algorithm is deployed by the suggested multi-

level-optimized scheduling algorithm with VM migration for

scheduling workflows tasks in a multi-cloud to minimize traffic

and congestion with efficient work schedule and resource

allocation algorithm based on steepest descent method, which

is address the issues of flexibility of the resource management

and reduces the computation processing time. Where the

throughput is reduced 9.5 Mbps, when the migration is

increased by using the proposed algorithm and utilizing the

steepest descent algorithm at the national level, the waiting

time of the suggested system has increased by 0.140 sec. The

existing systems such as CLA-EC, FFD & VMR have the

number of migrations as 10, 58, and 12. The proposed system

achieves 50 no. of migrations. Moreover, the proposed system

achieves 25% less than the no. of active Pm, which is compared

with existing techniques by using the Data replacing approach.

Hence, resource allocation for combined task scheduling &

migration is considered when using multi-level optimization.

Recursive algorithm to determine the execution duration to

prevent erratic migration across virtual machines. Hence the

proposed model performs well. Thus, the proposed system has

been used to perform a better task scheduling in a complex

multi cloud environment with higher flexibility, lowest

economic cost, and low computational time according to the

results.

6. ACKNOWLEDGEMENT
Our thanks to the experts who have contributed towards

development of this paper.

7. REFERENCES
[1] Shukri, S. E., Al-Sayyed, R., Hudaib, A., &Mirjalili, S.

(2021). Enhanced multi-verse optimizer for task

scheduling in cloud computing environments. Expert

Systems with Applications, 168, 114230.

[2] Alouffi, B., Hasnain, M., Alharbi, A., Alosaimi, W.,

Alyami, H., &Ayaz, M. (2021). A Systematic Literature

Review on Cloud Computing Security: Threats and

Mitigation Strategies. IEEE Access, 9, 57792-57807.

[3] Orazio, T., Domenico, C., &Pietro, M. (2021). TORCH: a

TOSCA-Based Orchestrator of Multi-Cloud

Containerised Applications. Journal of Grid

Computing, 19(1).

[4] Pinto, A. R. N. (2021). Multi-Site and Multi-Cloud

Deployment of Complex Information Systems.

[5] Bello, S. A., Oyedele, L. O., Akinade, O. O., Bilal, M.,

Delgado, J. M. D., Akanbi, L. A., ... &Owolabi, H. A.

(2021). Cloud computing in construction industry: Use

cases, benefits and challenges. Automation in

Construction, 122, 103441.

[6] Pandey, Ashish, Prasad Calyam, Zhen Lyu, and Trupti

Joshi. "Fuzzy-Engineered Multi-Cloud Resource

Brokering for Data-intensive Applications." In 2021

IEEE/ACM 21st International Symposium on Cluster,

Cloud and Internet Computing (CCGrid), pp. 257-266.

IEEE, 2021.

[7] Ali, R., Shen, Y., Huang, X., Zhang, J. and Ali, A., 2017,

July. VMR: virtual machine replacement algorithm for

QoS and energy-awareness in cloud data centers. In 2017

IEEE International Conference on Computational Science

and Engineering (CSE) and IEEE International

Conference on Embedded and Ubiquitous Computing

(EUC) (Vol. 2, pp. 230-233). IEEE.

[8] Sadeeq, M. M., Abdulkareem, N. M., Zeebaree, S. R.,

Ahmed, D. M., Sami, A. S., &Zebari, R. R. (2021). IoT

and Cloud computing issues, challenges and

opportunities: A review. Qubahan Academic

Journal, 1(2), 1-7.

[9] Tang, X. (2021). Reliability-Aware Cost-Efficient

Scientific Workflows Scheduling Strategy on Multi-

Cloud Systems. IEEE Transactions on Cloud Computing.

[10] Shahidinejad, A., Ghobaei-Arani, M., &Masdari, M.

(2021). Resource provisioning using workload clustering

in cloud computing environment: a hybrid

approach. Cluster Computing, 24(1), 319-342.

[11] Shafiq, D. A., Jhanjhi, N. Z., Abdullah, A., &Alzain, M.

A. (2021). A Load Balancing Algorithm for the Data

Centres to Optimize Cloud Computing

Applications. IEEE Access, 9, 41731-41744.

[12] Cai, X., Geng, S., Wu, D., Cai, J., & Chen, J. (2020). A

Multicloud-Model-Based Many-Objective Intelligent

Algorithm for Efficient Task Scheduling in Internet of

Things. IEEE Internet of Things Journal, 8(12), 9645-

9653.

[13] Zhang, B., Zeng, Z., Shi, X., Yang, J., Veeravalli, B., &

Li, K. (2021). A novel cooperative resource provisioning

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

14

strategy for Multi-Cloud load balancing. Journal of

Parallel and Distributed Computing, 152, 98-107.

[14] Masdari, M., &Zangakani, M. (2020). Efficient task and

workflow scheduling in inter-cloud environments:

challenges and opportunities. The Journal of

Supercomputing, 76(1), 499-535.

[15] Gupta, A. and Namasudra, S., 2022. A novel technique for

accelerating live migration in cloud

computing. Automated Software Engineering, 29(1), p.34.

[16] Khurana, S., & Singh, R. (2020). Workflow scheduling

and reliability improvement by hybrid intelligence

optimization approach with task ranking. EAI Endorsed

Transactions on Scalable Information Systems, 7(24).

[17] Nabi, S., Ibrahim, M., & Jimenez, J. M. (2021).

DRALBA: Dynamic and Resource Aware Load Balanced

Scheduling Approach for Cloud Computing. IEEE

Access, 9, 61283-61297.

[18] Sujana, J., Raj, R. V., &Revathi, T. (2022). Fuzzy-Based

Workflow Scheduling in Multi-Cloud Environment.

In Operationalizing Multi-Cloud Environments (pp. 201-

215). Springer, Cham.

[19] Xie, F., Yan, J., &Shen, J. (2020, February). A Bandwidth

and Latency Based Replica Selection Mechanism for

Data-Intensive Workflow Applications in the Multi-Cloud

Environment. In Proceedings of the Australasian

Computer Science Week Multiconference (pp. 1-8).

[20] Ulabedin, Z., &Nazir, B. (2021). Replication and data

management-based workflow scheduling algorithm for

multi-cloud data centre platform. The Journal of

Supercomputing, 1-30.

[21] Jena, Tamanna, and J. R. Mohanty. "GA-based customer-

conscious resource allocation and task scheduling in

multi-cloud computing." Arabian Journal for Science and

Engineering 43, no. 8 (2018): 4115-4130.

[22] Ramasubbareddy, Somula, and R. Sasikala. "RTTSMCE:

a response time aware task scheduling in multi-cloudlet

environment." International Journal of Computers and

Applications 43, no. 7 (2021): 691-696.

[23] Cai, X., Geng, S., Wu, D., Cai, J., & Chen, J. (2020). A

Multicloud-Model-Based Many-Objective Intelligent

Algorithm for Efficient Task Scheduling in Internet of

Things. IEEE Internet of Things Journal, 8(12), 9645-

9653.

[24] Chen, Z., Lin, K., Lin, B., Chen, X., Zheng, X., &Rong,

C. (2020). Adaptive Resource Allocation and

Consolidation for Scientific Workflow Scheduling in

Multi-Cloud Environments. IEEE Access, 8, 190173-

190183.

[25] Farid, M., Latip, R., Hussin, M., & Hamid, N. A. W. A.

(2020). Scheduling scientific workflow using multi-

objective algorithm with fuzzy resource utilization in

multi-cloud environment. IEEE Access, 8, 24309-24322

[26] Thirumalaiselvan, C., and V. Venkatachalam. "A strategic

performance of virtual task scheduling in multi cloud

environment." Cluster Computing 22, no. 4 (2019): 9589-

9597.

[27] XAVIER, VM ARUL, AND ANNADURAI, S. (2018)

Chaotic social spider algorithm for load balance aware

task scheduling in cloud computing. Cluster Computing,

pp. 1- 11

[28] Hamad, S.A., Omara, F.A.: Genetic-based task scheduling

algorithm in cloud computing environment. Int. J. Adv.

Comput. Sci. Appl. 7(4), 550–556 (2016)

[29] Zhang, B., Zeng, Z., Shi, X., Yang, J., Veeravalli, B. and

Li, K., 2021. A novel cooperative resource provisioning

strategy for Multi-Cloud load balancing. Journal of

Parallel and Distributed Computing, 152, pp.98-107.

[30] Tsakalozos, K., Verroios, V., Roussopoulos, M. and Delis,

A., 2017. Live VM migration under time-constraints in

share-nothing IaaS-clouds. IEEE Transactions on

Parallel and Distributed Systems, 28(8), pp.2285-2298.

[31] M. H. Ferdaus, M. Murshed, R. N. Calheiros, and R.

Buyya, ``An algorithmfor network and data-aware

placement of multi-tier applications in cloud data centers,''

J. Netw. Comput. Appl., vol. 98, pp. 65_83, Nov. 2017.

IJCATM : www.ijcaonline.org

