
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

1

Multi Optimized Job Scheduling Framework for VM with

Enhanced Migration in a Multi Cloud Environment

Md Tauqir Azam Kausar
Research Scholar

Computer Science Engineering
Bir Tikendrajit University, Manipur, India

Sanjay Pachauri, PhD

Professor , Department of CSE,
Greater Noida Institute of Technology (Engg. Institute)

Greater Noida

ABSTRACT

Optimization job scheduling of virtual machines in a cloud

computing for tasks is considered as NP-hard problem

specifically for large task sizes in the cloud. Hence many

techniques for job scheduling have been presented previously

but they did not consider the combined task scheduling and

resource allocation, which reduces the flexibility, increase

traffic, congestion, and reduces computation processing time.

Hence a novel technique, namely Multi Optimized Job

scheduling Framework for VM with enhanced migration

in a Multi Cloud Environment has been proposed, in which

the load balancers with multi-level optimizations that utilizes

the runner root algorithm and Differential evolution algorithm

with Levy distribution to schedule the job and determines the

VM to be allotted for the job based on international and

national level optimization. Moreover, the previous

techniques concentrate only on the migration that extends VM

lifespan, lacking Quality of Service (QoS) and unsatisfied the

end users. Hence a novel technique Active Inactive data

migration algorithm is used to prevent fluctuating migration

between Virtual Machines and recursive algorithm keeps on

iterating the same operation on the server with the lowest

virtual load and Optimum Cost Function is to prevent

unnecessary migration cost. During VM migration, several

applications were affected during a live VM migration that

caused a network fault, which is eliminated by a novel Data

replacing approach which is used to transfer the exact size of

data to the active PM. Overall, the proposed method is to

perform an efficient job scheduling in multi cloud

environment with optimized VM migration.

Keywords

VMs migration, Load balancing, Live Migration, Federation,

Runner root algorithm, Conjugate function, Steepest Descent

Method, Recursive algorithm, Permutated sorting function,

Optimum Cost Function, Levy distribution.

General Terms
VM: Virtual Machine

1. INTRODUCTION
Cloud computing is a trending technology that allows users to

use computing resources remotely in a pay-per-use model. In

this era of rapid growing technology, new opportunities are

open for businesses, where recent technologies are replacing

old ones. With the advent of cloud, small and big

organizations all are progressing without need to concern

about the storage and maintenance of their business data [1].

All the responsibility is envisaged upon the cloud service

providers (CSPs) and hence cloud computing has become the

backbone of modern business world. Organizations contacts

various cloud service providers and consumes the services by

signing Service-Layer Agreement (SLA) document. A CSP

contacts various resource providers at datacenters to satisfy

the demands of the customer. Usually, it is said that cloud

computing provides infinite resources and elastic services [2].

To raise the flexibility or capacity of cloud service providers

and fulfill the ever-growing demand of services, resources

from different resource providers need to collaborate, inter-

communicate and work in cooperation and coordination. So,

collaboration of various cloud service providers gives root to

the concept of multi-cloud which simply means that an

enterprise can take services from more than one cloud service

provider through a common interface or a single API [3].

The principle of multi-cloud paradigm in which each member

cloud performs a service level agreement (SLA) with other

member clouds that allows them to work together when data

becomes too massive for any single cloud to manage [4].In

multi cloud computing individual Consumer Service

Provider(CSPs) are employed for a particular business or

organization's purposes and they all have varying forms of

application and SLAs. Moreover, the other benefits of

multi cloud computing are that it avoids long-term

commitment to a single cloud service provider, addressing

concerns like interoperability and vendor lock-in [5]. These

platforms develop new means of operability, either via

increasing standardization of systems employed by creating

new ways for clouds to communicate data with one another on

a more global level, because they frequently rely on

communication across their diverse cloud components.

Furthermore, the users are not required to make any

investments in new infrastructure. They can get the services

they want from anywhere in the globe for a fee, and they do

not have to worry about the intricacy of the IT infrastructure

[6].

In multi cloud a Directed Acyclic Graph (DAG) represents an

application as a collection of many jobs. Independent tasks in

a DAG can be run concurrently by many virtual machines

(VMs), however linked tasks must be run in the right

sequence as determined by task priority [7]. Scheduling tasks

for execution with the shortest makes span (total execution

time of all tasks) is an NP-complete issue. Also, the multi

cloud business models and technologies create serious

problems, such as proprietary APIs and a lack of

interoperability [8]. It is crucial that business companies could

feed data into bigger, more popular outlets. It is also vital to

select an application architecture that matches and fully

exploits the peculiarities of the underlying Cloud

environments [9]. Also, resource contentions at the

infrastructure layer because unexpected performance,

requiring more labor for resource management, as well as

automated VM and service migration. In recent days, the

focus of Multi Cloud Computing has been turned towards

answering how to schedule an application's work across

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

2

numerous clouds which is a difficult problem in a federated

heterogeneous multi-cloud system [10]. For diverse

computing platforms such as cluster, grid, parallel, and

distributed processing, few noted job scheduling methods

have been created. However, they fall short of meeting the

cost-effectiveness, dependability, and scalability criteria of

multi-cloud computing [11].

Applications come in a variety of sizes and each

application is broken down into several tasks and these tasks

are assigned to Virtual machines (VMs). Hence task

scheduling is extremely important for the overall efficiency of

the multi-cloud computing system. It determines the order in

which virtual machines execute tasks [12]. As a result, load

balancing and scheduling are not two different methodologies

but are two different abstraction levels. The concept of

resource allocation is more abstract than that of load balancer

and scheduler. Resource allocation entails assigning available

tasks to VMs in the most efficient way possible, reducing the

make span time [13]. Multiple jobs are discovered to be

assigned to a single VM, resulting in improved system

performance following optimum resource allocation and

effective task scheduling. Executing the prioritized job

requests/tasks is critical for the system's behavior in many

circumstances [14]. One of the most difficult challenges in

distributed computing is scheduling the cloud-task pair as the

customers' needs are always changing. As the needs of

consumers and working environments evolve, many existing

algorithms become obsolete [15].

Virtual machine migration between real computers

in cloud data centers is an intriguing component of cloud

computing that is employed to satisfy the dynamic response to

user demands. A server administrator can migrate a running

virtual machine or application across physical machines

without having to disconnect the client or application [16].

Total migration time and downtime are two significant

performance measures that VM service clients frequently

consider since they are concerned about service deterioration

and the length of time that the service is completely

unavailable [17]. When migrating a virtual machine, the

transfer must be done in a way that balances the criteria of

minimizing both downtime and overall migration time. In

multi cloud computing, the strategy of optimum virtual

machine placement on real equipment in the cloud data center

is critical. When the placement in cloud data centers operates

optimally, the quantity of hardware resources used is

regulated. As a result, energy usage and resource waste can be

decreased [18]. The main contribution of this paper are as

follows:

-Distributed multi-cloud scheduling approach addresses

scheduling issues in multi-cloud environments to maximize

user and provider advantages. Overall time, expense, cloud

throughput, energy use, resource use, and load balancing are

all factors in the model.

-A new metaheuristic algorithm known as the runner-root

algorithm (RRA), which is a task scheduling method based on

the general algorithm (GA), is to minimize job completion

time and cost while maximizing resource utilization.

-In order to save energy, proposed a method for VM

placement in cloud data centers that combines several

different techniques, including ensemble prediction algorithm,

learning automata theory, and correlation.

Hence the suggested solutions carry out the economical VM

migration along with optimal work scheduling. The content of

the paper is organized as follows: section 2 describes related

works, section 3 provides a novel solution, the

implementation results and their comparison are provided in

section 4; finally, section 5 concludes the paper.

2. LITERATURE SURVEY
Jena et al [19], this study presents Genetic Algorithm-based

Customer-Conscious Resource Allocation and Task

Scheduling in multi-cloud computing to bridge the gap

between rapidly changing customer requirements and

available infrastructure for services. Genetic algorithm-based

resource allocation and shortest task first scheduling are the

two main phases of the algorithm. The goal is to map jobs to

VMs in the multi-cloud federation with the shortest

possiblymake span time and highest possible customer

satisfaction. Extensive simulations were run on synthetic data,

and the results were compared to the existing scheduling

technique. The simulation results show that the suggested

method outperforms the current ones in terms of the metrics

that matter. The research parameters are converged towards

the make span time schedule of the computing which lowers

the efficiency of resource utilization.

Rama Subbareddy et al [20], this study takes job allocation in

a multi-cloudlet context to increase user satisfaction.

Response time aware task scheduling in the multi-cloudlet

environment (RTTSMCE) is presented in this study to address

two issues. First, a cloudlet server is chosen based on response

time, and then tasks are scheduled across cloudlets using load

balancing methods to reduce the cloud server's response time.

In comparison to existing load balancing algorithms, the

suggested approach performs better in the stimulation. By

transferring applications from the mobile device to the remote

cloud, mobile cloud computing helps to lower the power

consumption. However, because of the large physical distance

between a mobile user and the remote cloud, latency concerns

arise.

Cai et al [21], this research developed a multi cloud

distributed scheduling model for scheduling issues in a multi-

cloud environment tooptimize the advantages of users and

providers. Total time, cost, cloud throughput, energy

consumption, resource usage, and load balancing were taken

as six goals of the model. The multi-cloud distributed

scheduling model was optimized using a many-objective

intelligence algorithm based on the sine function (MaOEA-

SIN). To increase the algorithm's performance, a sine function

penalty selection approach and an angle strategy are used. In

conclusion, the MaOEA-SIN algorithm outperforms other

algorithms in terms of performance. The user's preference

influences the choosing of superior schemes based on steep

characteristics leading to higher time consumption.

Chen et al. [22] suggested an Online Workflow Scheduling

technique based on Resource Allocation and Consolidation

with Adaptive Resource Allocation (OWS-A2C). When

executing a SW in OWS-A2C, the deadline reassignment was

initially performed for SW tasks depending on the execution

performance of instance resources, which improves resource

usage from a local perspective. The execution instances then

were assigned and aggregated based on the performance needs

of numerous SWs, improving resource usage, and lowering

the overall costs of running many SWs. Finally, using the

earliest-deadline-first (EDF) discipline, the SW tasks were

dynamically scheduled to execution instances and finished

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

3

before their sub-deadlines. Extensive simulation test was

conducted to illustrate the efficacy of the proposed OWS-A2C

on SW scheduling in MCEs, which outperforms three baseline

scheduling approaches in terms of resource usage and

execution costs under deadline restrictions, yet the flexibility

of the system was constrained.

Farid et al [23], hosted the scientific procedures in multi-cloud

systems has led in the development of the multi-objective

scheduling (MOS) approach combining fuzzy resource

utilization (FR-MOS). The suggested algorithm's major goal

is to reduce cost and make span while also taking into

consideration reliability restrictions. The scientific workflow

schedule considers the following factors: (1) the IaaS cloud

platform to be chosen; (2) the kind of VM to be allocated to

the tasks; and (3) the sequence in which data should be

transmitted. The FR-MOS technique uses particle swarm

optimization (PSO) and analyses task ordering and task

execution location in its coding approach to overcome these

challenges. The coding system considers both the location of

task execution and the sequence in which data is sent. But

using single optimization to entire process expands the

execution time thereby leveraging the exact task allocation.

Thirumalaiselvan et al [24], presented for scheduling virtual

jobs in a multi-cloud environment, the rate-based scheduling

(RBS), high priority scheduling (HPS), and equal load

balancing (ELB). In a multi cloud environment design,

multiple scheduling methods are utilized depending on the

number of jobs and virtual machines. The ELB scheduling

technique is employed when the number of tasks equals the

number of virtual machines. The high priority scheduling

strategy is employed when the number of tasks exceeds the

number of virtual machines. The RBS method is employed if

the number of tasks is smaller than the number of virtual

machines. The research increased the make span and average

efficiency of multi cloud computing by employing the above

three alternative scheduling techniques which extended the

make span while lowering the delay and energy usage. But the

flexible nature of resource handling was constrained to a

greater extend.

XAVIER et al [25] handle the issue of job scheduling in

numerous heterogeneous virtual machines, a meta-heuristic

algorithm called chaotic social spider algorithm. By

simulating the social spider's swarm intelligence using chaotic

inertia weight based random selection, this work focuses on

lowering overall make span with effective load balancing.

Here the two phase avoids local convergence and investigates

global intelligent searching to identify the most optimized

virtual machine for the user job from a set of virtual machines

with minimal make span and balanced resource

utilization.Later, additional performance metrics like security

and dependability could be included, allowing for the

identification of trust nodes and security risks. Additionally,

we expanded this work to be compatible with independent

jobs.

Hamad et al [26] The proposed method aims to reduce task

completion times and costs while maximizing resource usage.

Using the CloudSim toolbox, the suggested algorithm's

performance has been assessed. The key issue is resource

management, as cloud computing uses virtualization and the

pay-as-you-go model to give IT resources (such as CPU,

Memory, Network, and Storage) to users. To solve the job

scheduling problem in the context of cloud computing, this

research suggests an enhanced genetic algorithm. The

suggested method aims to maximize resource use while

minimizing completion time and cost.It can be expanded to

consider the potential for VMs to have a dynamic

quality.Also, the QoS needs of the users would be considered.

Zhang et al [27] The proposed method investigates global

intelligent searching to find the best optimized virtual

machine for the user task among a set of virtual machines

with minimal makespan and balanced resource utilization,

thereby preventing local convergence. The flexible, and

effective in many real-world circumstances through

meticulous simulations involving many affecting aspects,

algorithm for resource scheduling that reduces system costs.

To address the resource needs of users on MCP, the system

models of traditional CWAs are utilized. The study concludes

that multi-cloud is the most alluring for many CWA

implementations and can be used to understand the properties

of various resources. Several CSP interconnections and

associated load paths data travelling through potential

interconnections are introduced.In the future, it will address

these issues and take our framework's appropriate computing

cost into account.

Tsakalozos et al [28] the suggested GA algorithm is to reduce

job completion times and costs while maximizing resource

utilization. The developer suggests a scalable, distributed

network of brokers that monitors the status of all ongoing

migration activities within the context of a provider. Brokers

employ an underlying, specialized file system called

MigrateFS, which can replicate and maintain synchronization

of virtual discs as the hypervisor live-migrates VMs (i.e.,

RAM and CPU state). Brokers apply policies to reduce SLA

breaches while attempting to accomplish all migration

operations on time by restricting the resources used during

migration.

From the analysis, it is noted that [19] lowers the efficiency of

resource utilization, [20] large physical distance, [21] higher

time consumption, [22] deadline restrictions yet the flexibility

of the system [23] leveraging the exact task allocation [24]

extended the make span [25] does not include the

performance parameters [26] need to consider the dynamic

quality of VM and also the QoS [27] Several CSP

interconnections and associated with load paths [28]

restricting the resources used during VM migration.

3. MULTI OPTIMIZED JOB

SCHEDULING FRAMEWORK FOR VM

WITH ENHANCED MIGRATION IN A

MULTI CLOUD ENVIRONMENT
The intrinsic benefits associated with cloud computing, both

the number of users and their corresponding workloads grow

every day, which is essential to improve task scheduling and

migration to increase Quality of Service (QoS), end user

satisfaction, and with the least amount of energy consumption

even under circumstances of high workload. Many earlier

studies did not consider the combined job scheduling and

migration for optimized work schedule, which decreases the

resource management's flexibility and speeds up the execution

of computations, traffic, and congestion. Hence, a novel

multi-level optimization named, Multi Optimized Job

scheduling Framework for VM with enhanced migration

in a Multi Cloud Environment has been proposed, to

consider the combined job scheduling and resource allocation,

which utilized the two load balancers for multi-level

optimization in multi cloud. When scheduling a task across

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

4

multiple clouds, one load balancer uses the Runner Root

Algorithm (RRA) to considering internationally and using

the Steepest Descent Technique, another load balancer in a

chosen cloud locates the VM to be assigned for the job based

on a nation. The Differential Evolution Algorithm with

Levy Distribution, which takes state level optimization into

account, is part of the suggested system. Such that the multi-

level optimization should consider both the VM's resource

allocation and combined task scheduling. Moreover, irregular

VM migration in the existing methods increased the duration

of the user's VM, decreased Quality of Service (QoS), and

decreased end-user satisfaction. Hence a novel, Active

Inactive data migration algorithm is used to prevent

fluctuating migration between Virtual Machines, in which

utilizes the Recursive Algorithm to migrate the virtual

machine (VM) from the server with the lowest virtual load

and repeating the same procedure on the server with the

second-lowest virtual load. Conjugate function is used to

calculate each VM's processing time in relation to the physical

machine. An Optimum Cost Function is used to consider the

future resource utilization in the each host and avoid

unnecessary migration costs using the Automata cellular

learning function that calculate the ratio of the cost of running

the server in active mode to the cost of running the virtual

machines on the replacement host, and if it exceeds the

threshold, the VM is moved to the destination, reducing the

unnecessary energy consumption while maintaining the

quality of service (Qos).

Furthermore, in live VM migrations, the service levels of

running applications are severely impacted through a high

migration rate causes a network fault and misleading

information to be transmitted improperly. Hence a novel,

Data replacing approachhave been proposed, in which

Permutated sorting function has been used. If any error occurs

while transferring the file, the algorithm copies the data and

resends it until the active PM receives the precise amount of

data, thereby the unwanted network error is avoided.

Fig1: Block diagram for Multi Optimize Job Scheduling

Figure 1 shows the proposed system's process flow.In order to

allocate resources efficiently and create an optimized work

plan, the suggested system would consider combined task

scheduling and VMs migration where in two load balancers

with multi-level optimization are used to schedule the job and

assign VMs for it while taking into account global, national,

and state level of optimization. Other unique approach

eliminates the limitation during live migration and prevents

variable migration across virtual machines, each host avoiding

excessive migration costs.Hence, the proposed methods

combine efficient VM migration with improved job

scheduling.

3.1 Multi Hop Travel based

Optimized Scheduling algorithm
In multi-cloud computing, resource allocation is a challenging

task because of the numerous restrictions and configurations

required by both cloud clients and providers. Because the

nature of the traffic is highly arbitrary, the challenge of

mapping an incoming task request to available virtual

machines (VMs) is not polynomial-complete. The challenge

of work scheduling is NP-hard since VMs are diverse and

there are several alternative translations. To consider the

combined task scheduling and migration for an optimized

work schedule, which is crucial for improving the flexibility

of resource management and accelerating computation

execution, traffic, and congestion. Hence, a novel Multi Hop

Travel based Optimal Scheduling technique is employed,

which divides the entire allocation into two phases and uses

two load balancers with multi-level optimization. The purpose

of load balancer is to more effectively match the network's

available transmission resources to the volume of data that is

currently being handled. One balancer in a multi-cloud to

schedule the task to the proper cloud computing consideration

globally, which is optimizing by Runner root algorithm

(RRA).The job scheduling issue is regarded as an NP-

Complete issue. Therefore, it could be resolved using

optimization techniques while considering performance

parameters like completion time, expense, resource

utilization, etc. To create a task allocation and execution

algorithm based on Runner root algorithms (RRA) for the

cloud computing environment that will improve task

completion times, lower execution costs, and optimize

resource utilization. More specifically, in RRA, the local

search (exploitation process) is only used when the global

search does not significantly enhance the value of the cost

function. In RRA, the global search for the optimal solution

(exploration method) is undertaken at all iterations. The

runner root algorithm is provided as a job scheduling

optimization strategy, which is starts with an initial random

population that is evenly distributed over the issue domain.

Task scheduling to meet the objectives of better makespan,

load balancing and throughput.

Task allocation details are indicated by a task 𝑡𝑘 . K represents

the number of tasks in a population and ranges from 1 to z.

The components of a task 𝑡𝑘are 𝛼[𝑖] and 𝛽[𝑖], which stand for

the details of task processing and virtual machine distribution.

A task's length is equal to the total amount of tasks entered.A

task schedule is expressed through the following encoding

process. Prior to task creation, a collection of inputted jobs is

sorted. Cloud users pay for computing services in person, in

contrast to other distributed computing platforms. Considering

this, it is necessary to assign tasks from cloud users with high

costs to virtual machines more quickly than other tasks. Due

to the fact that cloud computing services are provided through

an SLA between cloud users and providers, task scheduling

issues in cloud computing vary from problems with general

task scheduling.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

5

Given that there are m tasks, such as t1, t2, t3, etc., and that

there are m number of resources, and that task i (ti) has n

subtasks, with the jth subtask of task i being designated as

ti(j), there are a total of m tasks:

𝑛𝑢𝑚 = 𝑡𝑖(𝑗)
𝑛
𝑘=1

𝑚
𝑖=1 (1)

Assuming there are three tasks and three labor resources, the

first task is divided into five smaller tasks (t1(1), t1(2), t1(3),

t1(4), and t1(5)); the second task is divided into five smaller

tasks (t2(1), t2(2)); and the third task is divided into three

smaller tasks (t3(1), t3(2), and t3(5)).(3). There are 10

subtasks in total. The length of the work is 10 subtasks, each

with a gene value between 1 and 3. The jobs are generated as

follows:

{3,2,1,1,1,2,2,2,3,1}

The job is then decoded to reveal the distribution and order of

processing of each resource's subtasks.

W1：{ t1(3) , t1(4) , t1(5), t3(3)}

W2：{ t1(2), t2(1), t2(2), t3(1)}

W3：{ t1(1) , t3(2)}

Through decoding, it can determine the subtasks that each

worker must complete, and using the RRA algorithm, it can

determine how long it will take each worker to complete the

task that has been given to them:

𝑊𝑜𝑟𝑘𝑒𝑟𝑡𝑖𝑚𝑒 𝑘 = 𝑡𝑖𝑚𝑒 𝑘, 𝑗 , 𝑘 ∈ [1,𝑤]𝑛
𝑗=1

(2)

time(k, j) represents a k-th worker on the time required to

complete the j-th task.

Time is required by the i-th task completion:

𝑡𝑎𝑠𝑘𝑡𝑖𝑚𝑒 𝑖 = 𝑚𝑎𝑥
𝑤

𝑘 = 1
 𝑡𝑖𝑚𝑒 (𝑘, 𝑗)𝑠
𝑗=1

(3)

s is the location of subtask of task i assign to the worker.One

of the main problems with cloud computing is task

scheduling.Quality of Service (QoS) factors are important in

scheduling and load balancing.which is based on international

optimization, Resource Allocation and Task Scheduling in

Multi-Cloud Computing to close the gap between the

continuously changing requirement and the available

infrastructure for the services.

Due to the huge solution space, scheduling in cloud

computing falls under the issues known as NP-hard problems,

making it difficult to find an ideal solution.It has been

demonstrated by these techniques based on metaheuristics can

solve these issues with near optimal results in a reasonable

amount of time. The two categories for steepest decent

method -based resource allocation tasks are (I) Advance

Reservation (AR) and (ii) Best Effort (BE). The work is

distributed among resources utilizing GA operators based on

the multi-cloud environment's available resources and the

anticipated makespantime. The historical user feedback

database keeps track of the performance of the cloud service

providers, physical machines, and virtual machines.

Figure 2: Task scheduling Algorithm

Figure 2 shows a cloud in an abstract form where the

scheduler finds a good allocation for incoming tasks. The

scheduler establishes a map when tasks are delivered to data

centers. A cloud broker receives a mapping scheme, and then

assigns jobs to virtual machines. Because the network

bandwidth among edge clouds is more limited than the cloud

data center networks, VM migration among edge clouds is

more difficult than that in cloud computing.

For end users, the virtual machines offer a variety of services,

including message transfer, mobile gaming, and video

streaming. Any application running on the VM can be referred

to as a service, which is an abstract notion. Consider a live

VM migration from a cloud-based source computer to a

cloud-based destination machine. It presumes that the

destination machine will need to receive the state stored in the

virtual machine's memory during the migration. The memory

of the VM on the source machine would be updated when the

state was transmitted to the destination because the

application on the VM could still operate throughout the

migration. Pre-copy, a live migration method iteratively

transmits this memory content from the source computer to

the destination machine. Two objective metrics of a live VM

migration that we are concerned with are migration duration

and Quality of Service (Qos). Imagine a group of C cloud

service providers that are linked together to create a

multicloud computing, where C = {C1, C2, Ci}. Q is

a collection of cloud apps exist, where {P = P1, P2,Pj}. A

cloud user may submit an unlimited number of job requests.

Each job application is divided into a number of independent

tasks, with Pi j = {P11,P12,..., Pq1,Pq2,..., Pqi} and Ci j =

{C11,C12,..., Cp1,Cp2,..., Cpi} being the set of tasks and

VMs, respectively.

Mapping function Mdescribes: Pi j → Ci j

The service charge for AR work is typically higher than the

service charge for BE tasks. Below is a matrix that was

created to display the anticipated execution time in equation

(4),

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

6

𝐸𝑇𝐶 =

𝑇1

𝑇2

⋮
𝑇𝑛

𝐶1

𝐸𝑇𝐶11

𝐸𝑇𝐶21

⋮
𝐸𝑇𝐶𝑛1

𝐶2 …
𝐸𝑇𝐶12 …
𝐸𝑇𝐶22

⋮
𝐸𝑇𝐶𝑛2

…
…
…

𝐶𝑛
𝐸𝑇𝐶1𝑚

𝐸𝑇𝐶2𝑚

⋮
𝐸𝑇𝐶𝑛𝑚

(4)

𝐸𝑇𝐶𝑖𝑗 indicates the anticipated time required to complete the

ith task in the jth cloud. Any cloud that has a working job

request id can run any task, and any cloud can do several tasks

simultaneously according to priority. Chronological order is

used by several cloud providers.

𝐹 𝑥 = min 𝑀𝑆 +
1

𝑚𝑎𝑥
, 𝐶𝑆𝑅

(5)

𝑀𝑆 = 𝑓 𝑀𝐼𝑃𝑆𝑡𝑒𝑚𝑝𝑡𝑎𝑠𝑘 , 𝐸𝑆𝑇

(6)

𝑀𝑆 = 𝜔1 ∗
𝑁𝐼𝐶

𝑀𝐼𝑃𝑆
 + 𝜔2 ∗ 𝐸𝑆𝑇

(7)

𝐶𝑆𝑅 = 𝑓 𝐸𝑆𝑇𝑡𝑒𝑚𝑝𝑡𝑎𝑠𝑘 , 𝐸𝑇𝐶𝑡𝑒𝑚𝑝𝑡𝑎𝑠𝑘

(8)

Whereas Eq.(8) shows the relationship between user

satisfaction levels, resource waiting times, and anticipated

completion times, make span time (MS), a computability

indicator, reveals the rate of utilization of resources expressed

in Eq (6)&(7). Where MS is the task's makespan time, CSR is

the customer satisfaction rate, NIC is the number of million

instructions in the work, MIPS is the number of million

instructions the machine can execute, and 𝜔1 𝑎𝑛𝑑 𝜔2 are

specified weights. Choosing the weights' value might be

difficult because it differs from organisation to organisation.

The following algorithm shows the runner root-based task

scheduling.

Algorithm1: for runner root algorithm-based task

scheduling in cloud computing

Input

Step 1: set of customer job requests following Poisson’s

distribution.

Step 2: set of independent tasks. (each job request is sub

divided into single independent task)

Step 3: setoff cloud providers involved in the federation.

Step 4: set of virtual machines. (Multiple cloud providers are

further divided into numerous VMs).

Output

(1) Makespan time

(2) Customer Satisfaction rate

Step 1: While 𝑄𝑟 ≠ 𝑁𝑈𝐿𝐿

Step 2: Set makespan = 0

Step 3: Breakup job application into multiple tasks.

Step 4: Call GA_MAPPING (ETC, EST, p, q)

Step 5: Call Task Scheduling (ETC, EST, p, q, MS)

Step 6: end while

Temporary queues QT are initialized as part of algorithm 1.

The Poisson distribution is used to generate a variety of

applications with varying capacities (measured in MIPS, or

million instructions per second). The programs divided into

numerous separate tasks. In step 3, the relevant physical

machines divided into several VMs. Step 4 involve calling the

GA-based resource allocation function. Scheduling the

numerous tasks assigned to a single VM is step 5 in the

process. The algorithm produces the optimal task-VM pair

with the shortest makespan time and the highest level of user

satisfaction. The following algorithm shows the resource

allocation for the scheduled task.

Algorithm 2: For resource allocation

START

1:While 𝑄𝑟 ≠ 𝑛𝑢𝑙𝑙 do

2:If 𝑄𝐴𝑅 ≠ 𝑛𝑢𝑙𝑙 (if task ready available is advance

reservation then)

3: If𝑄𝐵𝐸 ≠ 0(if task ready available is Best Effort task then)`

4: For tempcloud = {1,2,3, …..., q)

5:For temptask = {1,2,3, …..., p)

6:temptask← Task (𝑄𝐴𝑅)

7: Find EST (temptask, tempcloud)

8: MS (temptask, tempcloud) =ETC (temptask, tempcloud)

+EST (temptask, tempcloud)

9: Call RRA_task_cloud_pair(𝑝𝑖 , 𝑞𝑖) that gives min(MS

(temptask, tempcloud))

10: Call BE_PREMPT_TASK (EST (temptask), MS

(temptask, tempcloud))

11:endfor

12: endfor

13: else

14: temptask← Task (𝑄𝐵𝐸)

15: CALL UPDATE 𝑄𝑇

16: CALL SCHEDULE_AR_TASKS_MMS (ETC_AR,

temptask)

17: CALL SCHEDULE_BE_TASKS_MMS (ETC_BE,

temptask)

18: MS (temptask, k) = ETC (temptask, k) + EST (temptask,

k)

19: endif

20: endif

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

7

21:endwhile

The step-by-step explanation of our suggested algorithm 2,

steepest decent method-based resource allocation is contained

in Algorithm 2. The programs tasks are kept in QT. Tasks are

stored in QAR or QBE depending on the type of application.

All the tasks that need to be completed are saved in the set

temptask, and the relevant VMs are kept in the set tempcloud.

Step 7 determines the estimated execution time. The

makespan time is the total of the predicted completion time

and the waiting time, as shown in step 8.The steepest decent

method -based resource allocation process is called in step 9.

In the initialization stage of steepest decent method, the

number of jobs that must be completed in a batch is equal to

the size of the cloud. In the first generation, tasks are given at

random to VMs that can complete them. Maximizing

customer satisfaction rates while minimizing makespan time

is the fitness function. Procedure 1 specifies the steps for

steepest decent method -based resource allocation as follows.

Step 17 indicates that the convergence requirements are

satisfied, and the best-fit chromosome is acquired. When

numerous jobs are assigned to a single VM, shortest job first

scheduling is employed to handle the situation.

As increased user tasks are allocated within the schedule, the

VMs risk being quickly overcrowded.Inorder to make better

load balancing decisions to determine the load factor (LF)𝜎,

which is the average load's standard deviation.

𝜎 =
1

𝑚
 𝐸𝑇𝑖 − 𝐸𝑇 2𝑚
𝑖=1

(9)

where 𝐸𝑇𝑖 , is the execution time of ith VM.

A steepest descent algorithm would be one that applies the

update rule, with each iteration taking the steepest possible

course in the direction x(k).Which two significant

computational benefits are how simple it is to implement an

algorithm on a computer and how little storage is required.

The line search necessary to calculate the step length 𝛼𝑘 , and

gradient constitutes the bulk of the task. In other words, given

a specific point x, the algorithm's goal is to determine the

direction in which f (x + d) is minimized.determining the

steepest angle. One can estimate the function by a first-order

Taylor expansion and identify the steepest direction in the

following equation (7),

𝑓 𝑥 + 𝑑 ≈ 𝑓 𝑥 + ∇ 𝑓 𝑥 𝑇𝑑
(10)

The function’s minimum direction d suggests the following

optimization issue.

min𝑑∶ 𝜗 ∇𝑓 𝑥 𝑇𝑑 (11)

Algorithm 3: Steepest Descent Method

Given an initial 𝑥0, 𝑑0 = −𝑔0 and a convergence tolerance tol

for k = 0 to maxiterdo

Set 𝛼𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝜑𝛼 = 𝑓 𝑥𝑘 − 𝛼𝑔𝑘

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝑔𝑘

Compute 𝑔𝑘+1 = ∇𝑓 𝑥𝑘+1

If||𝑔𝐾+1||2 ≤ 𝑡𝑜𝑙 𝒕𝒉𝒆𝒏

Converged

End if

End for

Thus, the other load balancer in that particular cloud chooses

the VM to be assigned for the task based on a certain nation,

then uses national level optimization with the steepest descent

algorithm. Due to its effectiveness in handling a wide range of

issues, such as portfolio optimization, picture pixel clustering,

data clustering, and multi-level thresholding in image

segmentation, Differential Evolution (DE) algorithms, a

subset of evolutionary algorithms, are of particular

interest.These mutational tactics are used in many

evolutionary algorithms, such as DE algorithms, to address a

variety of issues, including multi level objective optimization.

Thus, the VM are viewed as different states, and the work that

must be done is viewed as districts.

DE is an iterative population-based method for locating the

state-level optimal. The investigation and application of the

algorithm are represented, respectively, by the DE algorithm

with levy flight. The levy flights first create a population of

answers at random before assessing each one's quality using

the fitness function. Using Levy flights, the jobs that are

closest to the best one will fly around it as shown in the

following equation,

𝑥𝑡−1 = 𝑥𝑖
𝑡 +

𝑆𝑚𝑎𝑥

𝑡2
𝐿(𝑆)

(12)

where 𝑥𝑖
𝑡 represents the position of the i-th task at iteration t.

while𝑆𝑚𝑎𝑥 represents the maximum walk step and L(s)

represents the step drawn from Levy flights, using parameter

s. Hence the Runner Root Algorithm (RRA) and the Steepest

Descent Algorithm are combined in the DE algorithm, which

is used as a global and local search technique to enhance job

scheduling for resource exploitation. By minimizing the

makespan, the DE algorithm, which was modelled in the

cloudsim environment, aims to increase the output of the

cloud system.

3.2 Active Inactive data migration

algorithm
The VM migration that comes next, which does not consider

prior task knowledge, extends the entire time the user is using

a virtual machine (VM), possibly infringing on the deadline

requirement with subpar Quality of Service (QoS) standards

and unsatisfied end users. To avoid fluctuating migration

between Virtual Machines, the suggested algorithm is used.

To increase performance and reliability, one mitigating

method is VM migration, in which virtual machines are

transferred from one physical host to another.There are

various methods for migrating VMs, including cold migration,

hot migration, and live migration.When migrating a virtual

machine to a specific host, cold migration requires shutting

down the guest OS first and then restarting the system.Hot

migration does not terminate the operating guest OS before it

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

8

is sent to the designated target host and resumed there it just

suspends it.

Although permitting a VM and its operating OS to be

relocated from one physical host to another, live migration

ensures that the hosted apps will continue to function.A

virtual machine (VM) is effortlessly transported between two

physical hosts while still running, together with its

environment, which includes its OS, memory, vCPU, and

occasionally its disc.Improved load balancing, transparent

mobility, proactive fault tolerance, and green computing are

all advantages of VM migration.

Figure 3: VM live migration between two physical VM

The figure3 demonstrates how live migration lets you relocate

an active virtual machine from one physical server to another

without interrupting operations. A seamless migration process

is ensured since the virtual machine keeps its network identity

and connections. High-speed networking is used to transfer

the virtual machine's precise execution state and active

memory, enabling it to move from executing on the source

host to the destination host. Recursive algorithm with the

intention of minimizing power interruption for the active

machines, the algorithm used to move idle and actively

functioning virtual machines from one overloaded or under

loaded server to another non-overloaded server to reduce

server load and offers more substantial energy and resource

savings for data centres.To guarantee the greatest number of

active virtual machines on a single server the majority of the

time, our approach is to swap out all idle virtual machines

from one server with the actively working, fully loaded ones

of a no overloaded server. Since idle VMs typically use 50%

to 70% of the host server's total power, this means that the

power consumption of the actively operating VMs will not be

affected.The following situations can coexist in a cloud

environment, according to the CPU and RAM usage of a VM,

for an instantaneous time t.

𝑈𝑚𝑣𝑗 > 𝑈𝑝𝑗 𝑅𝐴𝑀 > 𝐶𝑃𝑈

(13)

𝑈𝑚𝑣𝑗 > 𝑈𝑝𝑗 𝑅𝐴𝑀 < 𝐶𝑃𝑈

(14)

𝑈𝑚𝑣𝑗 > 𝑈𝑝𝑗 𝑅𝐴𝑀 ≈ 𝐶𝑃𝑈

(15)

Here, 𝑈𝑚𝑣𝑗 represents the memory utilization of a VM, 𝑈𝑝𝑗

represents the processor or CPU utilization of a VM and 0 ≤

𝑈𝑚𝑣𝑗 ≤ 1,0 ≤ Ucj 𝑈𝑝𝑗 ≤ 1 i.e 𝑈𝑚𝑣𝑗 and 𝑈𝑝𝑗 represents the

percentage of RAM & CPU utilization.

The resource utilization percentage of each virtual machine

will be used to determine the overall number of active and

idle VMs on a single server at a given instant (t). It will be

simpler to choose between migrating idle or active VMs as a

result. The following formulae can be used to get the total

number of idle virtual machines in a server for an instant t:

𝑉𝑜 = 𝑈𝑚𝑣𝑗 − 𝑈𝑝𝑗 (16)

𝑉𝑜 =
0
1

,
,

 0 ≤ 𝑉𝑜 ≤ 0.3
 0.4 ≤ 𝑉𝑜 ≤ (0.9 ≈ 1)

 (17)

𝑉𝑜 =

𝑁1

𝑜 = 1
𝑉𝑜

0

,
,
[𝑉𝑜 ∈ 𝑁1]
𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 (18)

Here, N1 is a set of virtual machines.Once more, the

following formulae can be used to determine the total number

of active virtual machines in a server for a given time.

𝑉𝑎 = 𝑈𝑝𝑗 − 𝑈𝑚𝑣𝑗 (19)

𝑉𝑎 = 1; 𝑖𝑓 0 ≤ 𝑉𝑎 ≤ (0.9 ≈ 1)

(20)

𝑉𝑎𝑐𝑡𝑖𝑣𝑒 =
𝑁2 + 𝑁3

𝑎 = 1
𝑉𝑎 + 𝑐

𝑐

,
,
 𝑉𝑎 ∈ [𝑁2 + 𝑁3]

𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

(21)

𝑐 = 𝑉𝑎 (22)

The following equations can be used to determine the overall

CPU and memory usage of the VMs when the quantity of

running virtual machines and idle virtual machines at any

given moment t, in any server I equals the other.

𝑈𝐶𝑎𝑣 = 𝑈𝑚𝑣𝑗 ∗ 𝐶𝑗
𝑉𝑎𝑐𝑡𝑖𝑣𝑒

𝑗=1 (23)

𝑈𝑀𝑎𝑣 = 𝑈𝑚𝑣𝑗 ∗ 𝑀𝑗
𝑉𝑎𝑐𝑡𝑖𝑣𝑒

𝑗=1

(24)

Here 𝑈𝐶𝑎𝑣UCva and 𝑈𝑀𝑎𝑣 stand for the CPU and Memory

usage of virtual machines that are currently in use,

respectively.

Algorithm 4: Recursive algorithm (Virtual Machine

Migration)

Input

Step 1: Initialization. Compute the number of active and idle

VMs in a single host server. Take the number of active VMs

as Vactive and the number of idle VMs as Vidle. Compare

VactiveandVidle.

(1) Vidle>Vactive

(2) Vidle<Vactive

(3) Vidle = Vactive

Step 2: The parameter for ACS is set to τ0. The feasible

globally best solution is set as Sgb for placing N VMs on N

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

9

servers. Thus, the number of minimum servers is set to Mmin

= N. Set iteration t=1 and maximum iteration as T.

Step 3: Set Mt = Mmin − 1. In each iteration, m ants construct

m solutions and perform local pheromone on each solution.

Step 4: The fitness function f(S) is applied in order to

evaluate the fitness value of the constructed solution.

Step 5: The best solution Sb of the current iteration is set after

evaluating the fitness value of the constructed solution. If Sb

is feasible, Sgb is updated as Sb and Mmin = f1(Sb) is set.

Otherwise, OEM local search is performed on Sb. Sgb and

Mmin are updated respectively if local search succeeds.

Step 6: After Sgb and Mmin are locally updated, global

pheromone update is eventually done on Sb and Sgb.

Step 7: Check if t is less than or equal to T. If not equal, then

set t = t + 1 and go to Step 3. Otherwise terminate the

algorithm.

Step 8: After t terminates, calculate Vactive and Vidle of the

host server. If Vactive = Vactive and V`idle = Vidle, then

move forward to step 9. Otherwise update V`active and V`idle

and then move to step 9.

Step 9 (a) If Vidle>Vactive, then migrate all the actively

working VMs from host server to a nearby (ACS)

nonoverloaded (OEM) server with the opposite scenario i.e.

the server in which Vidle<Vactive. The idle VMs of the

destination server will be exchanged with the actively

working ones from the host.

(b) If Vidle<Vactive, then migrate all the idle VMs from host

server to a nearby (ACS) non-overloaded (OEM) server with

the opposite scenario i.e. the server in which Vidle>Vactive.

The actively working VMs of the destination server will be

exchanged with the idle ones from the host. (c) If Vidle =

Vactive, calculate the CPU utilization (UCva&UMva) and

memory utilization (UCvi&UMvi) of the VMs (both actively

working and idle) and compare the total utilization of both

type VMs.

It migrates the virtual machine from the server by identifying

the virtual machine with the lowest virtual load and then

repeats the process on the server with the second-lowest

virtual load,and so on, using a recursive algorithm. A

recursive algorithm is one that calls a copy of itself, or an

instance of itself, more precisely. When a set or function is

defined recursively, the computation of its members or values

follows the definition in a recursive manner. The initial steps

of the recursive algorithm identify the basis items and

correspond to the basis clause of the recursive definition. The

inductive clause's stages are then followed, which reduce the

computation for an element of one generation to that of

elements of the generation just before it. The algorithm uses a

conjugate function to determine the execution time of each

VM in relation to the Physical Machine while also taking into

account the timeout parameter of each server from the history

of data centres.

The majority of earlier studies calculate the start time of the

current task as the most recent end time of the previous task.

As a result, when it is their time to receive tasks, some virtual

machines must wait. The execution time of each task ti

depends on the output data size of every task. The execution

time of different tasks on different VM(m, k) can be

calculated by the following equation

𝑇𝑒𝑥𝑒 𝑡𝑖𝑉𝑀 𝑚, 𝑘 =
𝑊(𝑡𝑖)

𝑃(𝑚,𝑘)

(25)

The execution time of each task can be calculated using the

processing capacity of VM(m,k). This is so that other VMs

can receive numerous copies of the output that VMs produce.

The sequence of the tasks determines how the recipient output

is laid out. The efficiency of the process for scheduling

applications must be maximized. Reducing execution time

and total execution cost are necessary steps to take to meet

users' QoS requirements. The time between the start time and

end time of the task execution is used by the existing

workflow algorithms to compute the VM rent time.

When a task is finished, the virtual machine closes down and

the results are passed on to the tasks that come after it. Data

transfer priority is influenced by the order of the activities.

Using the automata cellular learning function, an Optimum

Cost Function considers the future resource utilization in each

host to reduce the cost of unnecessary migration. The

suggested optimization model restricts that the VMs whose

remaining runtimes are smaller than a time slot will not be

migrated to prevent pointless VM migrations. VM rent cost of

task ti for each considered IaaS platform is calculated below.

For Amazon EC2 that charges per hour, the execution cost of

task ti on VM(1, k) is expressed in Eq.

𝑐𝑜𝑠𝑡(𝑡𝑖 , 𝑉𝑀 1, 𝑘 =
𝑇𝑟𝑒𝑛𝑡 𝑡𝑖 ,𝑉𝑀 1,𝑘

𝑇𝑚𝑖𝑛𝑢𝑡𝑒
 . 𝐶(1, 𝑘)

(26)

where 𝑇𝑚𝑖𝑛𝑢𝑡𝑒 = 60.

Microsoft Azure charges per minute, the execution cost of

task ti on VM(2, k) is expressed in Eq

𝑐𝑜𝑠𝑡(𝑡𝑖 , 𝑉𝑀 2, 𝑘 = 𝑇𝑟𝑒𝑛𝑡 𝑡𝑖 , 𝑉𝑀 2, 𝑘 . 𝐶92, 𝑘)/𝑇𝑚𝑖𝑛𝑢𝑡𝑒

(27)

A distributed computational mode called cellular learning

automata (CLA) model combines the learning capabilities of

learning automata with the computational capability of

cellular automata. A cellular learning automaton is made up of

a lattice of cells that cooperate to complete a computing job,

and each cell contains a few learning automata. The CLA is

used by each host are together with cellular networks, wireless

networks, and evolutionary computation. Cellular learning

automata that consider the migration and base future decisions

on the experiences of the past. It is determining the ratio of

the cost of running the server in active mode to the cost of

running the server for the virtual machines on the replacement

host, and if it exceeds the threshold, moving the VM to the

destination reduces the unnecessary energy usage while

maintaining service quality. This capability enhances the

flexibility and computing power of automatic learning

through associative CLA. Initial state of the cost is set based

on the action probability vector of the LA in running server.

The LA resident in each VMs then decides on an action in

accordance with its decision function after receiving an input

vector from the cloud.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

10

Algorithm 5: Operation of Cellular Learning Automata

Step 1: Initialize state of each cell in the CLA.

Step 2: for each cell i in the CLA do

Step 3: Give the input vector from the environment to cell i.

Step 4: Cell i selects an action according to its decision

function.

Step 5: Apply the selected action to the environment.

Step 6: Apply the local rule and give the reinforcement signal

to the cell i.

Step 7: Update the state of the cell i according to the

reinforcement signal.

Step 8: end for

The VMs is a migrated to the cloud that gives feedback in

conjunction with actual migration, and Learning

Automata is taken as the cost of running server in the VM is

migrated to the destination thereby lowering the unwanted

energy consumption same while maintaining the quality of

service. However, faulty data transfer during live migration

caused a network issue.

3.3 Data replacing approach.
In data replacing approach, VMs must be moved to another

host with enough resources once a host enters an over or

underutilized state. The following circumstances lead to

unnecessary requests: One of the request's fields was not

accurately recorded (data contains NULL).The user is

identified as a spammer, scanning robot, or intrusive user until

the data is sent to the active PM, the transaction PM is

switched to Mid active mode. Whenever a transfer error

occurs, the method duplicates the data and resends it until the

active PM receives the exact amount of data using a

permutated sorting function, preventing the unintended

network fault.Permutated Sorting Function continuously

produces input permutations until it discovers one that is

sorted.So, it should count the amount of original data and

moves in order to examine a sorting algorithm.So, it should

count the amount of original data and moves in order to

examine a sorting algorithm. We can ignore other procedures

and yet get the same result. We can ignore other procedures

and yet get the same result. A flexible scheduling method that

uses VM migration to effectively service physical servers of

different functionality while workflows are being executed

Figure 4: Flowchart of the Data replacing approach

Figure 4 shows the Data replacing method that chooses the

best PM from the list of techniques while switching the PM

for the data transaction to Mid-active mode until the data is

transferred to the Active PM. If a transfer error occurs, the

algorithm copies the data and resends it until the precise

amount of data is sent to the active PM. Unwanted network

errors must be eliminated. Overall, the proposed Multi Hop

Travel based optimization algorithm is conduct the

economical VM migration while optimizing job scheduling

where two load balancers that are optimized at multiple levels,

including the international, national, and state levels, are taken

into consideration.Active Inactive data migration

algorithm for active-inactive data transfer removes virtual

machines from servers by selecting the ones with the lowest

virtual loadsusing a recursive algorithm.

4. RESULT AND DISCUSSION
This section provides a comparison section to ensure the

suggested system is appropriate, performance data for the

suggested system, and adaptive scheduling approaches of the

implementation of the VM migration. Using an optimization

method, the suggested VM migration strategy was put into

practice in MATLAB, and the experimental outcomes were

analyzed. The performance of the proposed model has been

assessed by calculating the increased flexibility, lowest

economic cost, and low computational time.

4.1 Experimental Setup
This work has been implemented in the working platform of

Python, Matlab with the following system specification and

the simulation results are discussed below.

OS: Windows 10

Software:VMware,Python, Matlab

RAM:8 GB RAM

Start

Receives the N- number of files

Copy the Data from the file

Check
Return a file

Sent the data

Active

PM

End

Original Size

Yes No

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

11

Processor : Intel i3

4.2 Performance metrics of the proposed

system
The Performance metrics of the proposed Multi Optimized

Job scheduling Framework for VM with enhanced migration

and to develop an adaptive scheduling approach and the

achieved outcome were explained in detail in this section.

Figure 5: Throughput of the proposed system

Figure 5 depicts the throughput of the suggested system when

the number of VMs is changed. As the number of VMs is

increased, the proposed system's throughput reaches a

minimum of 9.5 Mbps and a maximum of 11.4 Mbps when

the number of VMs is decreased. The planned system's

throughput has decreased by using the runner root algorithm

with consider internationally.

Figure 6: Cost function of the proposed system

Figure 6 depicts the Cost function of the suggested approach

for adjusting the number of VM. When the number of VMs is

increased to 100, the Cost function of the proposed system

reaches a maximum value of 168 and the lowest value of 132

when the number of VMs is decreased to 20. Using the

optimal cost function has increased the cost function of the

suggested system.

Figure 7: Waiting time of the proposed system

Figure 7 depicts the suggested system's waiting time for

varying the number of virtual machines. The Waiting time of

the suggested system reaches a maximum value of 0.144 sec.

when the number of VMs is increased to 100 and the lowest

value of 0.120 when the number of VMs is decreased to 20.

The suggested system's waiting period has grown longer by

using the steepest descent algorithm with national level.

Figure 8: Execution time of the proposed system

The execution time of the proposed system for varying the

number of VM has been shown in figure 8. The execution

time of the proposed system achieves a maximum value of

0.62, when the number of VMs is increased to 100 and attains

a minimum value of 0.56, when the number of VMs is

reduced to 20. The execution of the proposed system has

increased by differential evaluation algorithm.

Figure 9: VM side load level of the proposed system

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

12

The VM side Load Level of the proposed system for varying

the number of VM has been shown in figure 9. The VM side

Load Level of the proposed system achieves a maximum

value of 2.4, when the number of VMs is increased to 100 and

attains a minimum value of 1.3 when the number of VMs is

reduced to 20. The VM side Load Level of the proposed

system has increased using recursive algorithm.

Figure 10: Cloud side load level of the proposed system

The cloud side level of the proposed system for varying the

number of VM has been shown in figure 10. The cloud side

load level of the proposed system achieves a maximum value

of 10, when the number of VMs is increased to 100 and

attains a minimum value of 2.4, when the number of VMs is

reduced to 20. The Cloud side load level of the proposed

system has increased by usingactive inactive data migration

algorithm.

Figure 11: Delay of the proposed system

The delayof the proposed system for varying the number of

VM has been shown in figure 10.The delayof the proposed

system achieves a maximum value of 0.265 Kbps, when the

number of VMs is increased to 100 and attains a minimum

value of 0.235, when the number of VMs is reduced to 20.

The delay of the proposed system has increased by using

automata cellular learning function.

4.3 Comparison of Proposed model with

Previous Models
This section highlights the proposed adaptive scheduling

approach for effective VMs migration and to provide efficient

service of physical servers with varying functionality during

workflow execution by comparing it to the outcomes of

existing approaches such as FFD [29], VMR [7], CLA-EC

[15] and showing their results based on various comparisons

is given below.

Figure 12: Comparison of migrations

Figure 12 shows a comparison of the number of migrations of

the proposed model with existing techniques such as CLA-

EC, Buyya, FFD. Whereas the comparison of number of

migrations attains a maximum time. The number of

migrations of the proposed system achieves a minimum value

of 50, when the time s increased to 25 hrs and attains a

maximum value of 60, when the time is reduced.Hence the

proposed system achieves a smaller number of migration than

the existing technique CLA-EC.

Figure 13: Comparison of Switch off PM.

The comparison of the switch off PM of various models is

shown in figure 13. The proposed model has a switch off PM

of 80% compared to existing models. The graph also indicates

the switch off PM of an increase in the time. Hence the

proposed model has achieved high switch off PM, which is

compared with the existing techniques VMR.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

13

Figure 14: Comparison of Active PMs

The comparison of the number of active PM of various

models is shown in figure 14. The proposed model has several

active PM of 25% lessthan existing models. The graph also

indicates the number of active PM of adecrease in the time.

Hence the proposed model has a smaller number of active PM

than the existing technique VMR.

Figure 15: Comparison of Solution size

The comparison of the solution size of various models is

shown in figure 15. The proposed model has a solution size of

280less than existing models. The graph also indicates the

solution size PM of adecrease in the time. Hence the proposed

model has less solution size, which is compared with the

existing technique CLA-Ec.Overall, the proposed model

shows that it is more efficient and more accurate when

compared to previous models such as CLA-EC, Buyya, FFD,

VMR, and Random, which involves VM migration for

efficient service of physical servers with varying functionality

during workflow execution. The proposed system achieves

less through put 9.5 Mbps in a 100 number of VM, when

compared to other existing techniques, its Cost function value

is 168 which ishigher than the existing techniques, and its

waiting time is 0.144 sec higher than the existing techniques.

This proves that the proposed system performed well when

compared to other existing techniques like CLA-EC, Buyya,

FFD, VMR, and Random.

5. Conclusion
The Runner root algorithm is deployed by the suggested

multi-level-optimized scheduling algorithm with VM

migration for scheduling workflows tasks in a multi-cloud to

minimize traffic and congestion with efficient work schedule

and resource allocation algorithm based on steepest descent

method, which is address the issues of flexibility of the

resource management and reduces the computation processing

time. Where the throughput is reduced 9.5 Mbps, when the

migration is increased by using the proposed algorithm and

utilizing the steepest descent algorithm at the national level,

the waiting time of the suggested system has increased by

0.140 sec. The existing systems such as CLA-EC, FFD &

VMR have the number of migrations as10, 58, and 12. The

proposed system achieves 50 no. of migrations. Moreover, the

proposed system achieves 25% less than the no. of active Pm,

which is compared with existing techniques by using the Data

replacing approach. Hence, resource allocation for combined

task scheduling & migration is considered when using multi-

level optimization. Recursive algorithm to determine the

execution duration to prevent erratic migration across virtual

machines. Hence the proposed model performs well. Thus, the

proposed system has been used to perform a better task

scheduling in a complex multi cloud environment withhigher

flexibility, lowest economic cost, and low computational time

according to the results.

6. ACKNOWLEDGEMENT
Our thanks to the experts who have contributed towards

development of this paper.

7. REFERENCES
[1] Shukri, S. E., Al-Sayyed, R., Hudaib, A., &Mirjalili, S.

(2021). Enhanced multi-verse optimizer for task

scheduling in cloud computing environments. Expert

Systems with Applications, 168, 114230.

[2] Alouffi, B., Hasnain, M., Alharbi, A., Alosaimi, W.,

Alyami, H., &Ayaz, M. (2021). A Systematic Literature

Review on Cloud Computing Security: Threats and

Mitigation Strategies. IEEE Access, 9, 57792-57807.

[3] Orazio, T., Domenico, C., &Pietro, M. (2021). TORCH:

a TOSCA-Based Orchestrator of Multi-Cloud

Containerised Applications. Journal of Grid

Computing, 19(1).

[4] Pinto, A. R. N. (2021). Multi-Site and Multi-Cloud

Deployment of Complex Information Systems.

[5] Bello, S. A., Oyedele, L. O., Akinade, O. O., Bilal, M.,

Delgado, J. M. D., Akanbi, L. A., ... &Owolabi, H. A.

(2021). Cloud computing in construction industry: Use

cases, benefits and challenges. Automation in

Construction, 122, 103441.

[6] Pandey, Ashish, Prasad Calyam, Zhen Lyu, and Trupti

Joshi. "Fuzzy-Engineered Multi-Cloud Resource

Brokering for Data-intensive Applications." In 2021

IEEE/ACM 21st International Symposium on Cluster,

Cloud and Internet Computing (CCGrid), pp. 257-266.

IEEE, 2021.

[7] Ali, R., Shen, Y., Huang, X., Zhang, J. and Ali, A., 2017,

July. VMR: virtual machine replacement algorithm for

QoS and energy-awareness in cloud data centers. In 2017

IEEE International Conference on Computational

Science and Engineering (CSE) and IEEE International

Conference on Embedded and Ubiquitous Computing

(EUC) (Vol. 2, pp. 230-233). IEEE.

[8] Sadeeq, M. M., Abdulkareem, N. M., Zeebaree, S. R.,

Ahmed, D. M., Sami, A. S., &Zebari, R. R. (2021). IoT

and Cloud computing issues, challenges and

opportunities: A review. Qubahan Academic

Journal, 1(2), 1-7.

[9] Tang, X. (2021). Reliability-Aware Cost-Efficient

Scientific Workflows Scheduling Strategy on Multi-

Cloud Systems. IEEE Transactions on Cloud Computing.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.29, July 2024

14

[10] Shahidinejad, A., Ghobaei-Arani, M., &Masdari, M.

(2021). Resource provisioning using workload clustering

in cloud computing environment: a hybrid

approach. Cluster Computing, 24(1), 319-342.

[11] Shafiq, D. A., Jhanjhi, N. Z., Abdullah, A., &Alzain, M.

A. (2021). A Load Balancing Algorithm for the

DataCentres to Optimize Cloud Computing

Applications. IEEE Access, 9, 41731-41744.

[12] Cai, X., Geng, S., Wu, D., Cai, J., & Chen, J. (2020). A

Multicloud-Model-Based Many-Objective Intelligent

Algorithm for Efficient Task Scheduling in Internet of

Things. IEEE Internet of Things Journal, 8(12), 9645-

9653.

[13] Zhang, B., Zeng, Z., Shi, X., Yang, J., Veeravalli, B., &

Li, K. (2021). A novel cooperative resource provisioning

strategy for Multi-Cloud load balancing. Journal of

Parallel and Distributed Computing, 152, 98-107.

[14] Masdari, M., &Zangakani, M. (2020). Efficient task and

workflow scheduling in inter-cloud environments:

challenges and opportunities. The Journal of

Supercomputing, 76(1), 499-535.

[15] Gupta, A. and Namasudra, S., 2022. A novel technique

for accelerating live migration in cloud

computing. Automated Software Engineering, 29(1),

p.34.

[16] Khurana, S., & Singh, R. (2020). Workflow scheduling

and reliability improvement by hybrid intelligence

optimization approach with task ranking. EAI Endorsed

Transactions on Scalable Information Systems, 7(24).

[17] Nabi, S., Ibrahim, M., & Jimenez, J. M. (2021).

DRALBA: Dynamic and Resource Aware Load

Balanced Scheduling Approach for Cloud

Computing. IEEE Access, 9, 61283-61297.

[18] Sujana, J., Raj, R. V., &Revathi, T. (2022). Fuzzy-Based

Workflow Scheduling in Multi-Cloud Environment.

In Operationalizing Multi-Cloud Environments (pp. 201-

215). Springer, Cham.

[19] Xie, F., Yan, J., &Shen, J. (2020, February). A

Bandwidth and Latency Based Replica Selection

Mechanism for Data-Intensive Workflow Applications in

the Multi-Cloud Environment. In Proceedings of the

Australasian Computer Science Week

Multiconference (pp. 1-8).

[20] Ulabedin, Z., &Nazir, B. (2021). Replication and data

management-based workflow scheduling algorithm for

multi-cloud data centre platform. The Journal of

Supercomputing, 1-30.

[21] Jena, Tamanna, and J. R. Mohanty. "GA-based customer-

conscious resource allocation and task scheduling in

multi-cloud computing." Arabian Journal for Science

and Engineering 43, no. 8 (2018): 4115-4130.

[22] Ramasubbareddy, Somula, and R. Sasikala. "RTTSMCE:

a response time aware task scheduling in multi-cloudlet

environment." International Journal of Computers and

Applications 43, no. 7 (2021): 691-696.

[23] Cai, X., Geng, S., Wu, D., Cai, J., & Chen, J. (2020). A

Multicloud-Model-Based Many-Objective Intelligent

Algorithm for Efficient Task Scheduling in Internet of

Things. IEEE Internet of Things Journal, 8(12), 9645-

9653.

[24] Chen, Z., Lin, K., Lin, B., Chen, X., Zheng, X., &Rong,

C. (2020). Adaptive Resource Allocation and

Consolidation for Scientific Workflow Scheduling in

Multi-Cloud Environments. IEEE Access, 8, 190173-

190183.

[25] Farid, M., Latip, R., Hussin, M., & Hamid, N. A. W. A.

(2020). Scheduling scientific workflow using multi-

objective algorithm with fuzzy resource utilization in

multi-cloud environment. IEEE Access, 8, 24309-24322

[26] Thirumalaiselvan, C., and V. Venkatachalam. "A

strategic performance of virtual task scheduling in multi

cloud environment." Cluster Computing 22, no. 4 (2019):

9589-9597.

[27] XAVIER, VM ARUL, AND ANNADURAI, S. (2018)

Chaotic social spider algorithm for load balance aware

task scheduling in cloud computing. Cluster Computing,

pp. 1- 11

[28] Hamad, S.A., Omara, F.A.: Genetic-based task

scheduling algorithm in cloud computing environment.

Int. J. Adv. Comput. Sci. Appl. 7(4), 550–556 (2016)

[29] Zhang, B., Zeng, Z., Shi, X., Yang, J., Veeravalli, B. and

Li, K., 2021. A novel cooperative resource provisioning

strategy for Multi-Cloud load balancing. Journal of

Parallel and Distributed Computing, 152, pp.98-107.

[30] Tsakalozos, K., Verroios, V., Roussopoulos, M. and

Delis, A., 2017. Live VM migration under time-

constraints in share-nothing IaaS-clouds. IEEE

Transactions on Parallel and Distributed Systems, 28(8),

pp.2285-2298.

[31] M. H. Ferdaus, M. Murshed, R. N. Calheiros, and R.

Buyya, ``An algorithmfor network and data-aware

placement of multi-tier applications in cloud data

centers,'' J. Netw. Comput. Appl., vol. 98, pp. 65_83,

Nov. 2017.

IJCATM : www.ijcaonline.org

