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ABSTRACT 

Optimization job scheduling of virtual machines in a cloud 

computing for tasks is considered as NP-hard problem 

specifically for large task sizes in the cloud. Hence many 

techniques for job scheduling have been presented previously 

but they did not consider the combined task scheduling and 

resource allocation, which reduces the flexibility, increase 

traffic, congestion, and reduces computation processing time. 

Hence a novel technique, namely Multi Optimized Job 

scheduling Framework for VM with enhanced migration 

in a Multi Cloud Environment has been proposed, in which 

the load balancers with multi-level optimizations that utilizes 

the runner root algorithm and Differential evolution algorithm 

with Levy distribution to schedule the job and determines the 

VM to be allotted for the job based on international and 

national level optimization. Moreover, the previous 

techniques concentrate only on the migration that extends VM 

lifespan, lacking Quality of Service (QoS) and unsatisfied the 

end users. Hence a novel technique Active Inactive data 

migration algorithm is used to prevent fluctuating migration 

between Virtual Machines and recursive algorithm keeps on 

iterating the same operation on the server with the lowest 

virtual load and Optimum Cost Function is to prevent 

unnecessary migration cost. During VM migration, several 

applications were affected during a live VM migration that 

caused a network fault, which is eliminated by a novel Data 

replacing approach which is used to transfer the exact size of 

data to the active PM. Overall, the proposed method is to 

perform an efficient job scheduling in multi cloud 

environment with optimized VM migration. 
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VMs migration, Load balancing, Live Migration, Federation, 

Runner root algorithm, Conjugate function, Steepest Descent 

Method, Recursive algorithm, Permutated sorting function, 

Optimum Cost Function, Levy distribution. 

General Terms 
VM: Virtual Machine 

1. INTRODUCTION 
Cloud computing is a trending technology that allows users to 

use computing resources remotely in a pay-per-use model. In 

this era of rapid growing technology, new opportunities are 

open for businesses, where recent technologies are replacing 

old ones. With the advent of cloud, small and big 

organizations all are progressing without need to concern 

about the storage and maintenance of their business data [1]. 

All the responsibility is envisaged upon the cloud service 

providers (CSPs) and hence cloud computing has become the 

backbone of modern business world. Organizations contacts 

various cloud service providers and consumes the services by 

signing Service-Layer Agreement (SLA) document. A CSP 

contacts various resource providers at datacenters to satisfy 

the demands of the customer. Usually, it is said that cloud 

computing provides infinite resources and elastic services [2]. 

To raise the flexibility or capacity of cloud service providers 

and fulfill the ever-growing demand of services, resources 

from different resource providers need to collaborate, inter-

communicate and work in cooperation and coordination. So, 

collaboration of various cloud service providers gives root to 

the concept of multi-cloud which simply means that an 

enterprise can take services from more than one cloud service 

provider through a common interface or a single API [3]. 

The principle of multi-cloud paradigm in which each member 

cloud performs a service level agreement (SLA) with other 

member clouds that allows them to work together when data 

becomes too massive for any single cloud to manage [4].In 

multi cloud computing individual Consumer Service 

Provider(CSPs) are employed for a particular business or 

organization's purposes and they all have varying forms of 

application and SLAs. Moreover, the other benefits of 

multi cloud computing are that it avoids long-term 

commitment to a single cloud service provider, addressing 

concerns like interoperability and vendor lock-in [5]. These 

platforms develop new means of operability, either via 

increasing standardization of systems employed by creating 

new ways for clouds to communicate data with one another on 

a more global level, because they frequently rely on 

communication across their diverse cloud components. 

Furthermore, the users are not required to make any 

investments in new infrastructure. They can get the services 

they want from anywhere in the globe for a fee, and they do 

not have to worry about the intricacy of the IT infrastructure 

[6].  

In multi cloud a Directed Acyclic Graph (DAG) represents an 

application as a collection of many jobs. Independent tasks in 

a DAG can be run concurrently by many virtual machines 

(VMs), however linked tasks must be run in the right 

sequence as determined by task priority [7]. Scheduling tasks 

for execution with the shortest makes span (total execution 

time of all tasks) is an NP-complete issue. Also, the multi 

cloud business models and technologies create serious 

problems, such as proprietary APIs and a lack of 

interoperability [8]. It is crucial that business companies could 

feed data into bigger, more popular outlets. It is also vital to 

select an application architecture that matches and fully 

exploits the peculiarities of the underlying Cloud 

environments [9]. Also, resource contentions at the 

infrastructure layer because unexpected performance, 

requiring more labor for resource management, as well as 

automated VM and service migration. In recent days, the 

focus of Multi Cloud Computing has been turned towards 

answering how to schedule an application's work across 
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numerous clouds which is a difficult problem in a federated 

heterogeneous multi-cloud system [10]. For diverse 

computing platforms such as cluster, grid, parallel, and 

distributed processing, few noted job scheduling methods 

have been created. However, they fall short of meeting the 

cost-effectiveness, dependability, and scalability criteria of 

multi-cloud computing [11]. 

Applications come in a variety of sizes and each 

application is broken down into several tasks and these tasks 

are assigned to Virtual machines (VMs). Hence task 

scheduling is extremely important for the overall efficiency of 

the multi-cloud computing system. It determines the order in 

which virtual machines execute tasks [12]. As a result, load 

balancing and scheduling are not two different methodologies 

but are two different abstraction levels. The concept of 

resource allocation is more abstract than that of load balancer 

and scheduler. Resource allocation entails assigning available 

tasks to VMs in the most efficient way possible, reducing the 

make span time [13]. Multiple jobs are discovered to be 

assigned to a single VM, resulting in improved system 

performance following optimum resource allocation and 

effective task scheduling. Executing the prioritized job 

requests/tasks is critical for the system's behavior in many 

circumstances [14]. One of the most difficult challenges in 

distributed computing is scheduling the cloud-task pair as the 

customers' needs are always changing. As the needs of 

consumers and working environments evolve, many existing 

algorithms become obsolete [15].  

Virtual machine migration between real computers 

in cloud data centers is an intriguing component of cloud 

computing that is employed to satisfy the dynamic response to 

user demands. A server administrator can migrate a running 

virtual machine or application across physical machines 

without having to disconnect the client or application [16]. 

Total migration time and downtime are two significant 

performance measures that VM service clients frequently 

consider since they are concerned about service deterioration 

and the length of time that the service is completely 

unavailable [17]. When migrating a virtual machine, the 

transfer must be done in a way that balances the criteria of 

minimizing both downtime and overall migration time. In 

multi cloud computing, the strategy of optimum virtual 

machine placement on real equipment in the cloud data center 

is critical. When the placement in cloud data centers operates 

optimally, the quantity of hardware resources used is 

regulated. As a result, energy usage and resource waste can be 

decreased [18]. The main contribution of this paper are as 

follows: 

-Distributed multi-cloud scheduling approach addresses 

scheduling issues in multi-cloud environments to maximize 

user and provider advantages. Overall time, expense, cloud 

throughput, energy use, resource use, and load balancing are 

all factors in the model. 

-A new metaheuristic algorithm known as the runner-root 

algorithm (RRA), which is a task scheduling method based on 

the general algorithm (GA), is to minimize job completion 

time and cost while maximizing resource utilization. 

-In order to save energy, proposed a method for VM 

placement in cloud data centers that combines several 

different techniques, including ensemble prediction algorithm, 

learning automata theory, and correlation. 

Hence the suggested solutions carry out the economical VM 

migration along with optimal work scheduling. The content of 

the paper is organized as follows: section 2 describes related 

works, section 3 provides a novel solution, the 

implementation results and their comparison are provided in 

section 4; finally, section 5 concludes the paper. 

2. LITERATURE SURVEY 
Jena et al [19], this study presents Genetic Algorithm-based 

Customer-Conscious Resource Allocation and Task 

Scheduling in multi-cloud computing to bridge the gap 

between rapidly changing customer requirements and 

available infrastructure for services. Genetic algorithm-based 

resource allocation and shortest task first scheduling are the 

two main phases of the algorithm. The goal is to map jobs to 

VMs in the multi-cloud federation with the shortest 

possiblymake span time and highest possible customer 

satisfaction. Extensive simulations were run on synthetic data, 

and the results were compared to the existing scheduling 

technique. The simulation results show that the suggested 

method outperforms the current ones in terms of the metrics 

that matter. The research parameters are converged towards 

the make span time schedule of the computing which lowers 

the efficiency of resource utilization. 

Rama Subbareddy et al [20], this study takes job allocation in 

a multi-cloudlet context to increase user satisfaction. 

Response time aware task scheduling in the multi-cloudlet 

environment (RTTSMCE) is presented in this study to address 

two issues. First, a cloudlet server is chosen based on response 

time, and then tasks are scheduled across cloudlets using load 

balancing methods to reduce the cloud server's response time. 

In comparison to existing load balancing algorithms, the 

suggested approach performs better in the stimulation. By 

transferring applications from the mobile device to the remote 

cloud, mobile cloud computing helps to lower the power 

consumption. However, because of the large physical distance 

between a mobile user and the remote cloud, latency concerns 

arise.  

Cai et al [21], this research developed a multi cloud 

distributed scheduling model for scheduling issues in a multi-

cloud environment tooptimize the advantages of users and 

providers. Total time, cost, cloud throughput, energy 

consumption, resource usage, and load balancing were taken 

as six goals of the model. The multi-cloud distributed 

scheduling model was optimized using a many-objective 

intelligence algorithm based on the sine function (MaOEA-

SIN). To increase the algorithm's performance, a sine function 

penalty selection approach and an angle strategy are used. In 

conclusion, the MaOEA-SIN algorithm outperforms other 

algorithms in terms of performance. The user's preference 

influences the choosing of superior schemes based on steep 

characteristics leading to higher time consumption. 

Chen et al. [22] suggested an Online Workflow Scheduling 

technique based on Resource Allocation and Consolidation 

with Adaptive Resource Allocation (OWS-A2C). When 

executing a SW in OWS-A2C, the deadline reassignment was 

initially performed for SW tasks depending on the execution 

performance of instance resources, which improves resource 

usage from a local perspective. The execution instances then 

were assigned and aggregated based on the performance needs 

of numerous SWs, improving resource usage, and lowering 

the overall costs of running many SWs. Finally, using the 

earliest-deadline-first (EDF) discipline, the SW tasks were 

dynamically scheduled to execution instances and finished 
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before their sub-deadlines. Extensive simulation test was 

conducted to illustrate the efficacy of the proposed OWS-A2C 

on SW scheduling in MCEs, which outperforms three baseline 

scheduling approaches in terms of resource usage and 

execution costs under deadline restrictions, yet the flexibility 

of the system was constrained. 

Farid et al [23], hosted the scientific procedures in multi-cloud 

systems has led in the development of the multi-objective 

scheduling (MOS) approach combining fuzzy resource 

utilization (FR-MOS). The suggested algorithm's major goal 

is to reduce cost and make span while also taking into 

consideration reliability restrictions. The scientific workflow 

schedule considers the following factors: (1) the IaaS cloud 

platform to be chosen; (2) the kind of VM to be allocated to 

the tasks; and (3) the sequence in which data should be 

transmitted. The FR-MOS technique uses particle swarm 

optimization (PSO) and analyses task ordering and task 

execution location in its coding approach to overcome these 

challenges. The coding system considers both the location of 

task execution and the sequence in which data is sent. But 

using single optimization to entire process expands the 

execution time thereby leveraging the exact task allocation. 

Thirumalaiselvan et al [24], presented for scheduling virtual 

jobs in a multi-cloud environment, the rate-based scheduling 

(RBS), high priority scheduling (HPS), and equal load 

balancing (ELB). In a multi cloud environment design, 

multiple scheduling methods are utilized depending on the 

number of jobs and virtual machines. The ELB scheduling 

technique is employed when the number of tasks equals the 

number of virtual machines. The high priority scheduling 

strategy is employed when the number of tasks exceeds the 

number of virtual machines. The RBS method is employed if 

the number of tasks is smaller than the number of virtual 

machines. The research increased the make span and average 

efficiency of multi cloud computing by employing the above 

three alternative scheduling techniques which extended the 

make span while lowering the delay and energy usage. But the 

flexible nature of resource handling was constrained to a 

greater extend. 

XAVIER et al [25] handle the issue of job scheduling in 

numerous heterogeneous virtual machines, a meta-heuristic 

algorithm called chaotic social spider algorithm. By 

simulating the social spider's swarm intelligence using chaotic 

inertia weight based random selection, this work focuses on 

lowering overall make span with effective load balancing. 

Here the two phase avoids local convergence and investigates 

global intelligent searching to identify the most optimized 

virtual machine for the user job from a set of virtual machines 

with minimal make span and balanced resource 

utilization.Later, additional performance metrics like security 

and dependability could be included, allowing for the 

identification of trust nodes and security risks. Additionally, 

we expanded this work to be compatible with independent 

jobs. 

Hamad et al [26] The proposed method aims to reduce task 

completion times and costs while maximizing resource usage. 

Using the CloudSim toolbox, the suggested algorithm's 

performance has been assessed. The key issue is resource 

management, as cloud computing uses virtualization and the 

pay-as-you-go model to give IT resources (such as CPU, 

Memory, Network, and Storage) to users. To solve the job 

scheduling problem in the context of cloud computing, this 

research suggests an enhanced genetic algorithm. The 

suggested method aims to maximize resource use while 

minimizing completion time and cost.It can be expanded to 

consider the potential for VMs to have a dynamic 

quality.Also, the QoS needs of the users would be considered. 

Zhang et al [27] The proposed method investigates global 

intelligent searching to find the best optimized virtual 

machine for the user task among a set of virtual machines 

with minimal makespan and balanced resource utilization, 

thereby preventing local convergence. The flexible, and 

effective in many real-world circumstances through 

meticulous simulations involving many affecting aspects, 

algorithm for resource scheduling that reduces system costs. 

To address the resource needs of users on MCP, the system 

models of traditional CWAs are utilized. The study concludes 

that multi-cloud is the most alluring for many CWA 

implementations and can be used to understand the properties 

of various resources. Several CSP interconnections and 

associated load paths data travelling through potential 

interconnections are introduced.In the future, it will address 

these issues and take our framework's appropriate computing 

cost into account. 

Tsakalozos et al [28] the suggested GA algorithm is to reduce 

job completion times and costs while maximizing resource 

utilization. The developer suggests a scalable, distributed 

network of brokers that monitors the status of all ongoing 

migration activities within the context of a provider. Brokers 

employ an underlying, specialized file system called 

MigrateFS, which can replicate and maintain synchronization 

of virtual discs as the hypervisor live-migrates VMs (i.e., 

RAM and CPU state). Brokers apply policies to reduce SLA 

breaches while attempting to accomplish all migration 

operations on time by restricting the resources used during 

migration. 

From the analysis, it is noted that [19] lowers the efficiency of 

resource utilization, [20] large physical distance, [21] higher 

time consumption, [22] deadline restrictions yet the flexibility 

of the system [23] leveraging the exact task allocation [24] 

extended the make span [25] does not include the 

performance parameters [26] need to consider the dynamic 

quality of VM and also the QoS [27] Several CSP 

interconnections and associated with load paths [28] 

restricting the resources used during VM migration. 

3. MULTI OPTIMIZED JOB 

SCHEDULING FRAMEWORK FOR VM 

WITH ENHANCED MIGRATION IN A 

MULTI CLOUD ENVIRONMENT 
The intrinsic benefits associated with cloud computing, both 

the number of users and their corresponding workloads grow 

every day, which is essential to improve task scheduling and 

migration to increase Quality of Service (QoS), end user 

satisfaction, and with the least amount of energy consumption 

even under circumstances of high workload. Many earlier 

studies did not consider the combined job scheduling and 

migration for optimized work schedule, which decreases the 

resource management's flexibility and speeds up the execution 

of computations, traffic, and congestion. Hence, a novel 

multi-level optimization named, Multi Optimized Job 

scheduling Framework for VM with enhanced migration 

in a Multi Cloud Environment has been proposed, to 

consider the combined job scheduling and resource allocation, 

which utilized the two load balancers for multi-level 

optimization in multi cloud. When scheduling a task across 



International Journal of Computer Applications (0975 – 8887) 

Volume 186 – No.29, July 2024 

4 

multiple clouds, one load balancer uses the Runner Root 

Algorithm (RRA) to considering internationally and using 

the Steepest Descent Technique, another load balancer in a 

chosen cloud locates the VM to be assigned for the job based 

on a nation. The Differential Evolution Algorithm with 

Levy Distribution, which takes state level optimization into 

account, is part of the suggested system. Such that the multi-

level optimization should consider both the VM's resource 

allocation and combined task scheduling. Moreover, irregular 

VM migration in the existing methods increased the duration 

of the user's VM, decreased Quality of Service (QoS), and 

decreased end-user satisfaction. Hence a novel, Active 

Inactive data migration algorithm is used to prevent 

fluctuating migration between Virtual Machines, in which 

utilizes the Recursive Algorithm to migrate the virtual 

machine (VM) from the server with the lowest virtual load 

and repeating the same procedure on the server with the 

second-lowest virtual load. Conjugate function is used to 

calculate each VM's processing time in relation to the physical 

machine. An Optimum Cost Function is used to consider the 

future resource utilization in the each host and avoid 

unnecessary migration costs using the Automata cellular 

learning function that calculate the ratio of the cost of running 

the server in active mode to the cost of running the virtual 

machines on the replacement host, and if it exceeds the 

threshold, the VM is moved to the destination, reducing the 

unnecessary energy consumption while maintaining the 

quality of service (Qos).  

Furthermore, in live VM migrations, the service levels of 

running applications are severely impacted through a high 

migration rate causes a network fault and misleading 

information to be transmitted improperly. Hence a novel, 

Data replacing approachhave been proposed, in which 

Permutated sorting function has been used. If any error occurs 

while transferring the file, the algorithm copies the data and 

resends it until the active PM receives the precise amount of 

data, thereby the unwanted network error is avoided.  

 

Fig1: Block diagram for Multi Optimize Job Scheduling 

Figure 1 shows the proposed system's process flow.In order to 

allocate resources efficiently and create an optimized work 

plan, the suggested system would consider combined task 

scheduling and VMs migration where in two load balancers 

with multi-level optimization are used to schedule the job and 

assign VMs for it while taking into account global, national, 

and state level of optimization. Other unique approach 

eliminates the limitation during live migration and prevents 

variable migration across virtual machines, each host avoiding 

excessive migration costs.Hence, the proposed methods 

combine efficient VM migration with improved job 

scheduling. 

3.1 Multi Hop Travel based 

Optimized Scheduling algorithm 
In multi-cloud computing, resource allocation is a challenging 

task because of the numerous restrictions and configurations 

required by both cloud clients and providers. Because the 

nature of the traffic is highly arbitrary, the challenge of 

mapping an incoming task request to available virtual 

machines (VMs) is not polynomial-complete. The challenge 

of work scheduling is NP-hard since VMs are diverse and 

there are several alternative translations. To consider the 

combined task scheduling and migration for an optimized 

work schedule, which is crucial for improving the flexibility 

of resource management and accelerating computation 

execution, traffic, and congestion. Hence, a novel Multi Hop 

Travel based Optimal Scheduling technique is employed, 

which divides the entire allocation into two phases and uses 

two load balancers with multi-level optimization. The purpose 

of load balancer is to more effectively match the network's 

available transmission resources to the volume of data that is 

currently being handled. One balancer in a multi-cloud to 

schedule the task to the proper cloud computing consideration 

globally, which is optimizing by Runner root algorithm 

(RRA).The job scheduling issue is regarded as an NP-

Complete issue. Therefore, it could be resolved using 

optimization techniques while considering performance 

parameters like completion time, expense, resource 

utilization, etc. To create a task allocation and execution 

algorithm based on Runner root algorithms (RRA) for the 

cloud computing environment that will improve task 

completion times, lower execution costs, and optimize 

resource utilization. More specifically, in RRA, the local 

search (exploitation process) is only used when the global 

search does not significantly enhance the value of the cost 

function. In RRA, the global search for the optimal solution 

(exploration method) is undertaken at all iterations. The 

runner root algorithm is provided as a job scheduling 

optimization strategy, which is starts with an initial random 

population that is evenly distributed over the issue domain. 

Task scheduling to meet the objectives of better makespan, 

load balancing and throughput. 

Task allocation details are indicated by a task 𝑡𝑘 . K represents 

the number of tasks in a population and ranges from 1 to z. 

The components of a task 𝑡𝑘are 𝛼[𝑖] and 𝛽[𝑖], which stand for 

the details of task processing and virtual machine distribution. 

A task's length is equal to the total amount of tasks entered.A 

task schedule is expressed through the following encoding 

process. Prior to task creation, a collection of inputted jobs is 

sorted. Cloud users pay for computing services in person, in 

contrast to other distributed computing platforms. Considering 

this, it is necessary to assign tasks from cloud users with high 

costs to virtual machines more quickly than other tasks. Due 

to the fact that cloud computing services are provided through 

an SLA between cloud users and providers, task scheduling 

issues in cloud computing vary from problems with general 

task scheduling.  
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Given that there are m tasks, such as t1, t2, t3, etc., and that 

there are m number of resources, and that task i (ti) has n 

subtasks, with the jth subtask of task i being designated as 

ti(j), there are a total of m tasks: 

𝑛𝑢𝑚 =    𝑡𝑖(𝑗)
𝑛
𝑘=1

𝑚
𝑖=1                                                       (1) 

Assuming there are three tasks and three labor resources, the 

first task is divided into five smaller tasks (t1(1), t1(2), t1(3), 

t1(4), and t1(5)); the second task is divided into five smaller 

tasks (t2(1), t2(2)); and the third task is divided into three 

smaller tasks (t3(1), t3(2), and t3(5)).(3). There are 10 

subtasks in total. The length of the work is 10 subtasks, each 

with a gene value between 1 and 3. The jobs are generated as 

follows: 

{3,2,1,1,1,2,2,2,3,1} 

The job is then decoded to reveal the distribution and order of 

processing of each resource's subtasks. 

W1：{ t1(3) , t1(4) , t1(5), t3(3)}  

W2：{ t1(2), t2(1), t2(2), t3(1)}  

W3：{ t1(1) , t3(2)} 

Through decoding, it can determine the subtasks that each 

worker must complete, and using the RRA algorithm, it can 

determine how long it will take each worker to complete the 

task that has been given to them: 

𝑊𝑜𝑟𝑘𝑒𝑟𝑡𝑖𝑚𝑒 𝑘 =   𝑡𝑖𝑚𝑒  𝑘, 𝑗 , 𝑘 ∈ [1,𝑤]𝑛
𝑗=1                              

(2) 

time(k, j) represents a k-th worker on the time required to 

complete the j-th task. 

Time is required by the i-th task completion: 

𝑡𝑎𝑠𝑘𝑡𝑖𝑚𝑒 𝑖 = 𝑚𝑎𝑥
𝑤

𝑘 = 1
 𝑡𝑖𝑚𝑒 (𝑘, 𝑗)𝑠
𝑗=1                                   

(3) 

s is the location of subtask of task i assign to the worker.One 

of the main problems with cloud computing is task 

scheduling.Quality of Service (QoS) factors are important in 

scheduling and load balancing.which is based on international 

optimization, Resource Allocation and Task Scheduling in 

Multi-Cloud Computing to close the gap between the 

continuously changing requirement and the available 

infrastructure for the services.  

Due to the huge solution space, scheduling in cloud 

computing falls under the issues known as NP-hard problems, 

making it difficult to find an ideal solution.It has been 

demonstrated by these techniques based on metaheuristics can 

solve these issues with near optimal results in a reasonable 

amount of time. The two categories for steepest decent 

method -based resource allocation tasks are (I) Advance 

Reservation (AR) and (ii) Best Effort (BE). The work is 

distributed among resources utilizing GA operators based on 

the multi-cloud environment's available resources and the 

anticipated makespantime. The historical user feedback 

database keeps track of the performance of the cloud service 

providers, physical machines, and virtual machines.  

 

Figure 2: Task scheduling Algorithm 

Figure 2 shows a cloud in an abstract form where the 

scheduler finds a good allocation for incoming tasks. The 

scheduler establishes a map when tasks are delivered to data 

centers. A cloud broker receives a mapping scheme, and then 

assigns jobs to virtual machines. Because the network 

bandwidth among edge clouds is more limited than the cloud 

data center networks, VM migration among edge clouds is 

more difficult than that in cloud computing. 

For end users, the virtual machines offer a variety of services, 

including message transfer, mobile gaming, and video 

streaming. Any application running on the VM can be referred 

to as a service, which is an abstract notion. Consider a live 

VM migration from a cloud-based source computer to a 

cloud-based destination machine. It presumes that the 

destination machine will need to receive the state stored in the 

virtual machine's memory during the migration. The memory 

of the VM on the source machine would be updated when the 

state was transmitted to the destination because the 

application on the VM could still operate throughout the 

migration. Pre-copy, a live migration method iteratively 

transmits this memory content from the source computer to 

the destination machine. Two objective metrics of a live VM 

migration that we are concerned with are migration duration 

and Quality of Service (Qos). Imagine a group of C cloud 

service providers that are linked together to create a 

multicloud computing, where C = {C1, C2, Ci}. Q is 

a collection of cloud apps exist, where {P = P1, P2,Pj}. A 

cloud user may submit an unlimited number of job requests. 

Each job application is divided into a number of independent 

tasks, with Pi j = {P11,P12,..., Pq1,Pq2,..., Pqi} and Ci j = 

{C11,C12,..., Cp1,Cp2,..., Cpi} being the set of tasks and 

VMs, respectively. 

Mapping function Mdescribes: Pi j → Ci j 

The service charge for AR work is typically higher than the 

service charge for BE tasks. Below is a matrix that was 

created to display the anticipated execution time in equation 

(4), 
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𝐸𝑇𝐶 =

𝑇1

𝑇2

⋮
𝑇𝑛  

 
 

 
 

𝐶1

𝐸𝑇𝐶11

𝐸𝑇𝐶21

⋮
𝐸𝑇𝐶𝑛1

 

𝐶2 …
𝐸𝑇𝐶12 …
𝐸𝑇𝐶22

⋮
𝐸𝑇𝐶𝑛2

…
…
…

𝐶𝑛
𝐸𝑇𝐶1𝑚

𝐸𝑇𝐶2𝑚

⋮
𝐸𝑇𝐶𝑛𝑚

                                                  

(4) 

𝐸𝑇𝐶𝑖𝑗 indicates the anticipated time required to complete the 

ith task in the jth cloud. Any cloud that has a working job 

request id can run any task, and any cloud can do several tasks 

simultaneously according to priority. Chronological order is 

used by several cloud providers. 

𝐹 𝑥 = min 𝑀𝑆 +   
1

𝑚𝑎𝑥
, 𝐶𝑆𝑅                                              

(5) 

𝑀𝑆 =  𝑓 𝑀𝐼𝑃𝑆𝑡𝑒𝑚𝑝𝑡𝑎𝑠𝑘 , 𝐸𝑆𝑇                                                  

(6) 

𝑀𝑆 =  𝜔1 ∗  
𝑁𝐼𝐶

𝑀𝐼𝑃𝑆
 + 𝜔2 ∗ 𝐸𝑆𝑇                                                

(7) 

𝐶𝑆𝑅 = 𝑓 𝐸𝑆𝑇𝑡𝑒𝑚𝑝𝑡𝑎𝑠𝑘 , 𝐸𝑇𝐶𝑡𝑒𝑚𝑝𝑡𝑎𝑠𝑘                                              

(8) 

Whereas Eq.(8) shows the relationship between user 

satisfaction levels, resource waiting times, and anticipated 

completion times, make span time (MS), a computability 

indicator, reveals the rate of utilization of resources expressed 

in Eq (6)&(7). Where MS is the task's makespan time, CSR is 

the customer satisfaction rate, NIC is the number of million 

instructions in the work, MIPS is the number of million 

instructions the machine can execute, and 𝜔1 𝑎𝑛𝑑 𝜔2 are 

specified weights. Choosing the weights' value might be 

difficult because it differs from organisation to organisation. 

The following algorithm shows the runner root-based task 

scheduling. 

Algorithm1: for runner root algorithm-based   task 

scheduling in cloud computing 

Input 

Step 1: set of customer job requests following Poisson’s 

distribution. 

Step 2: set of independent tasks. (each job request is sub 

divided into single independent task) 

Step 3: setoff cloud providers involved in the federation. 

Step 4: set of virtual machines. (Multiple cloud providers are 

further divided into numerous VMs). 

Output 

(1) Makespan time 

(2) Customer Satisfaction rate 

Step 1: While 𝑄𝑟 ≠ 𝑁𝑈𝐿𝐿 

Step 2: Set makespan = 0 

Step 3: Breakup job application into multiple tasks. 

Step 4: Call GA_MAPPING (ETC, EST, p, q) 

Step 5: Call Task Scheduling  (ETC, EST, p, q, MS) 

Step 6: end while 

Temporary queues QT are initialized as part of algorithm 1. 

The Poisson distribution is used to generate a variety of 

applications with varying capacities (measured in MIPS, or 

million instructions per second). The programs divided into 

numerous separate tasks. In step 3, the relevant physical 

machines divided into several VMs. Step 4 involve calling the 

GA-based resource allocation function. Scheduling the 

numerous tasks assigned to a single VM is step 5 in the 

process. The algorithm produces the optimal task-VM pair 

with the shortest makespan time and the highest level of user 

satisfaction. The following algorithm shows the resource 

allocation for the scheduled task. 

Algorithm 2: For resource allocation 

START 

1:While 𝑄𝑟 ≠ 𝑛𝑢𝑙𝑙  do 

2:If 𝑄𝐴𝑅 ≠ 𝑛𝑢𝑙𝑙 (if task ready available is advance 

reservation then) 

3: If𝑄𝐵𝐸 ≠ 0(if task ready available is Best Effort task then)` 

4: For tempcloud = {1,2,3, …..., q) 

5:For temptask = {1,2,3, …..., p) 

6:temptask← Task (𝑄𝐴𝑅 ) 

7: Find EST (temptask, tempcloud) 

8: MS (temptask, tempcloud) =ETC (temptask, tempcloud) 

+EST (temptask, tempcloud) 

9: Call RRA_task_cloud_pair( 𝑝𝑖 , 𝑞𝑖 ) that gives min( MS 

(temptask, tempcloud)) 

10: Call BE_PREMPT_TASK (EST (temptask), MS 

(temptask, tempcloud)) 

11:endfor 

12: endfor 

13: else 

14: temptask← Task (𝑄𝐵𝐸 ) 

15: CALL UPDATE 𝑄𝑇  

16: CALL SCHEDULE_AR_TASKS_MMS (ETC_AR, 

temptask) 

17: CALL SCHEDULE_BE_TASKS_MMS (ETC_BE, 

temptask) 

18: MS (temptask, k) = ETC (temptask, k) + EST (temptask, 

k) 

19: endif 

20: endif 
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21:endwhile 

The step-by-step explanation of our suggested algorithm 2, 

steepest decent method-based resource allocation is contained 

in Algorithm 2. The programs tasks are kept in QT. Tasks are 

stored in QAR or QBE depending on the type of application. 

All the tasks that need to be completed are saved in the set 

temptask, and the relevant VMs are kept in the set tempcloud. 

Step 7 determines the estimated execution time. The 

makespan time is the total of the predicted completion time 

and the waiting time, as shown in step 8.The steepest decent 

method -based resource allocation process is called in step 9. 

In the initialization stage of steepest decent method, the 

number of jobs that must be completed in a batch is equal to 

the size of the cloud. In the first generation, tasks are given at 

random to VMs that can complete them. Maximizing 

customer satisfaction rates while minimizing makespan time 

is the fitness function. Procedure 1 specifies the steps for 

steepest decent method -based resource allocation as follows. 

Step 17 indicates that the convergence requirements are 

satisfied, and the best-fit chromosome is acquired. When 

numerous jobs are assigned to a single VM, shortest job first 

scheduling is employed to handle the situation. 

As increased user tasks are allocated within the schedule, the 

VMs risk being quickly overcrowded.Inorder to make better 

load balancing decisions to determine the load factor (LF)𝜎, 

which is the average load's standard deviation. 

𝜎 =   
1

𝑚
  𝐸𝑇𝑖 − 𝐸𝑇 2𝑚
𝑖=1                                                               

(9) 

where 𝐸𝑇𝑖  , is the execution time of ith VM. 

A steepest descent algorithm would be one that applies the 

update rule, with each iteration taking the steepest possible 

course in the direction x(k).Which two significant 

computational benefits are how simple it is to implement an 

algorithm on a computer and how little storage is required. 

The line search necessary to calculate the step length 𝛼𝑘 , and 

gradient constitutes the bulk of the task. In other words, given 

a specific point x, the algorithm's goal is to determine the 

direction in which f (x + d) is minimized.determining the 

steepest angle. One can estimate the function by a first-order 

Taylor expansion and identify the steepest direction in the 

following equation (7), 

𝑓 𝑥 + 𝑑  ≈  𝑓 𝑥  +  ∇ 𝑓 𝑥 𝑇𝑑                                              
(10) 

The function’s minimum direction d suggests the following 

optimization issue. 

min𝑑∶  𝜗  ∇𝑓 𝑥 𝑇𝑑                                                       (11) 

Algorithm 3: Steepest Descent Method 

Given an initial 𝑥0, 𝑑0 = −𝑔0 and a convergence tolerance tol 

for k = 0 to maxiterdo 

Set 𝛼𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝜑𝛼 = 𝑓 𝑥𝑘 −  𝛼𝑔𝑘  

𝑥𝑘+1 =  𝑥𝑘 − 𝛼𝑘𝑔𝑘  

Compute 𝑔𝑘+1 = ∇𝑓 𝑥𝑘+1  

If||𝑔𝐾+1||2 ≤ 𝑡𝑜𝑙 𝒕𝒉𝒆𝒏 

Converged 

End if 

End for 

 

Thus, the other load balancer in that particular cloud chooses 

the VM to be assigned for the task based on a certain nation, 

then uses national level optimization with the steepest descent 

algorithm. Due to its effectiveness in handling a wide range of 

issues, such as portfolio optimization, picture pixel clustering, 

data clustering, and multi-level thresholding in image 

segmentation, Differential Evolution (DE) algorithms, a 

subset of evolutionary algorithms, are of particular 

interest.These mutational tactics are used in many 

evolutionary algorithms, such as DE algorithms, to address a 

variety of issues, including multi level objective optimization. 

Thus, the VM are viewed as different states, and the work that 

must be done is viewed as districts.  

DE is an iterative population-based method for locating the 

state-level optimal. The investigation and application of the 

algorithm are represented, respectively, by the DE algorithm 

with levy flight. The levy flights first create a population of 

answers at random before assessing each one's quality using 

the fitness function. Using Levy flights, the jobs that are 

closest to the best one will fly around it as shown in the 

following equation, 

𝑥𝑡−1 = 𝑥𝑖
𝑡 +

𝑆𝑚𝑎𝑥

𝑡2
𝐿(𝑆)                                                             

(12) 

where 𝑥𝑖
𝑡  represents the position of the i-th task at iteration t. 

while𝑆𝑚𝑎𝑥  represents the maximum walk step and L(s) 

represents the step drawn from Levy flights, using parameter 

s. Hence the Runner Root Algorithm (RRA) and the Steepest 

Descent Algorithm are combined in the DE algorithm, which 

is used as a global and local search technique to enhance job 

scheduling for resource exploitation. By minimizing the 

makespan, the DE algorithm, which was modelled in the 

cloudsim environment, aims to increase the output of the 

cloud system. 

 

3.2 Active Inactive data migration  

algorithm 
The VM migration that comes next, which does not consider 

prior task knowledge, extends the entire time the user is using 

a virtual machine (VM), possibly infringing on the deadline 

requirement with subpar Quality of Service (QoS) standards 

and unsatisfied end users. To avoid fluctuating migration 

between Virtual Machines, the suggested algorithm is used. 

To increase performance and reliability, one mitigating 

method is VM migration, in which virtual machines are 

transferred from one physical host to another.There are 

various methods for migrating VMs, including cold migration, 

hot migration, and live migration.When migrating a virtual 

machine to a specific host, cold migration requires shutting 

down the guest OS first and then restarting the system.Hot 

migration does not terminate the operating guest OS before it 
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is sent to the designated target host and resumed there it just 

suspends it. 

Although permitting a VM and its operating OS to be 

relocated from one physical host to another, live migration 

ensures that the hosted apps will continue to function.A 

virtual machine (VM) is effortlessly transported between two 

physical hosts while still running, together with its 

environment, which includes its OS, memory, vCPU, and 

occasionally its disc.Improved load balancing, transparent 

mobility, proactive fault tolerance, and green computing are 

all advantages of VM migration. 

 

Figure 3: VM live migration between two physical VM 

The figure3 demonstrates how live migration lets you relocate 

an active virtual machine from one physical server to another 

without interrupting operations. A seamless migration process 

is ensured since the virtual machine keeps its network identity 

and connections. High-speed networking is used to transfer 

the virtual machine's precise execution state and active 

memory, enabling it to move from executing on the source 

host to the destination host. Recursive algorithm with the 

intention of minimizing power interruption for the active 

machines, the algorithm used to move idle and actively 

functioning virtual machines from one overloaded or under 

loaded server to another non-overloaded server to reduce 

server load and offers more substantial energy and resource 

savings for data centres.To guarantee the greatest number of 

active virtual machines on a single server the majority of the 

time, our approach is to swap out all idle virtual machines 

from one server with the actively working, fully loaded ones 

of a no overloaded server. Since idle VMs typically use 50% 

to 70% of the host server's total power, this means that the 

power consumption of the actively operating VMs will not be 

affected.The following situations can coexist in a cloud 

environment, according to the CPU and RAM usage of a VM, 

for an instantaneous time t. 

𝑈𝑚𝑣𝑗 > 𝑈𝑝𝑗  𝑅𝐴𝑀 > 𝐶𝑃𝑈                                                     

(13) 

𝑈𝑚𝑣𝑗 > 𝑈𝑝𝑗  𝑅𝐴𝑀 < 𝐶𝑃𝑈                                                   

(14) 

𝑈𝑚𝑣𝑗 > 𝑈𝑝𝑗  𝑅𝐴𝑀 ≈ 𝐶𝑃𝑈                                                   

(15) 

Here, 𝑈𝑚𝑣𝑗  represents the memory utilization of a VM, 𝑈𝑝𝑗  

represents the processor or CPU utilization of a VM and 0 ≤ 

𝑈𝑚𝑣𝑗 ≤ 1,0 ≤ Ucj 𝑈𝑝𝑗 ≤ 1 i.e 𝑈𝑚𝑣𝑗  and 𝑈𝑝𝑗  represents the 

percentage of RAM & CPU utilization. 

The resource utilization percentage of each virtual machine 

will be used to determine the overall number of active and 

idle VMs on a single server at a given instant (t). It will be 

simpler to choose between migrating idle or active VMs as a 

result. The following formulae can be used to get the total 

number of idle virtual machines in a server for an instant t: 

𝑉𝑜 = 𝑈𝑚𝑣𝑗 −  𝑈𝑝𝑗                                                       (16) 

𝑉𝑜 =   
0
1

,
,

   0 ≤ 𝑉𝑜 ≤ 0.3
   0.4 ≤ 𝑉𝑜 ≤ (0.9 ≈ 1)

                                         (17) 

𝑉𝑜 =  
 

𝑁1

𝑜 = 1
𝑉𝑜

0

,
,
[𝑉𝑜 ∈  𝑁1]
𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

                                          (18) 

Here, N1 is a set of virtual machines.Once more, the 

following formulae can be used to determine the total number 

of active virtual machines in a server for a given time. 

𝑉𝑎 = 𝑈𝑝𝑗 −  𝑈𝑚𝑣𝑗                                                     (19) 

𝑉𝑎 = 1;   𝑖𝑓 0 ≤ 𝑉𝑎 ≤ (0.9 ≈ 1)                                           

(20) 

𝑉𝑎𝑐𝑡𝑖𝑣𝑒  =    
𝑁2 + 𝑁3

𝑎 = 1
𝑉𝑎 + 𝑐

𝑐

,
,
 𝑉𝑎 ∈ [𝑁2 + 𝑁3]

𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
                              

(21) 

𝑐 =  𝑉𝑎                                                              (22) 

The following equations can be used to determine the overall 

CPU and memory usage of the VMs when the quantity of 

running virtual machines and idle virtual machines at any 

given moment t, in any server I equals the other. 

𝑈𝐶𝑎𝑣 =   𝑈𝑚𝑣𝑗 ∗ 𝐶𝑗
𝑉𝑎𝑐𝑡𝑖𝑣𝑒

𝑗=1                                                   (23) 

𝑈𝑀𝑎𝑣 =   𝑈𝑚𝑣𝑗 ∗ 𝑀𝑗
𝑉𝑎𝑐𝑡𝑖𝑣𝑒

𝑗=1                                                   

(24) 

Here 𝑈𝐶𝑎𝑣UCva and 𝑈𝑀𝑎𝑣  stand for the CPU and Memory 

usage of virtual machines that are currently in use, 

respectively. 

Algorithm 4:   Recursive algorithm (Virtual Machine 

Migration) 

Input 

Step 1: Initialization. Compute the number of active and idle 

VMs in a single host server. Take the number of active VMs 

as Vactive and the number of idle VMs as Vidle. Compare 

VactiveandVidle. 

(1) Vidle>Vactive 

(2) Vidle<Vactive 

(3) Vidle = Vactive 

Step 2: The parameter for ACS is set to τ0. The feasible 

globally best solution is set as Sgb for placing N VMs on N 
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servers. Thus, the number of minimum servers is set to Mmin 

= N. Set iteration t=1 and maximum iteration as T. 

Step 3: Set Mt = Mmin − 1. In each iteration, m ants construct 

m solutions and perform local pheromone on each solution. 

Step 4: The fitness function f(S) is applied in order to 

evaluate the fitness value of the constructed solution. 

Step 5: The best solution Sb of the current iteration is set after 

evaluating the fitness value of the constructed solution. If Sb 

is feasible, Sgb is updated as Sb and Mmin = f1(Sb) is set. 

Otherwise, OEM local search is performed on Sb. Sgb and 

Mmin are updated respectively if local search succeeds. 

Step 6: After Sgb and Mmin are locally updated, global 

pheromone update is eventually done on Sb and Sgb. 

Step 7: Check if t is less than or equal to T. If not equal, then 

set t = t + 1 and go to Step 3. Otherwise terminate the 

algorithm. 

Step 8: After t terminates, calculate Vactive and Vidle of the 

host server. If Vactive = Vactive and V`idle = Vidle, then 

move forward to step 9. Otherwise update V`active and V`idle 

and then move to step 9. 

Step 9 (a) If Vidle>Vactive, then migrate all the actively 

working VMs from host server to a nearby (ACS) 

nonoverloaded (OEM) server with the opposite scenario i.e. 

the server in which Vidle<Vactive. The idle VMs of the 

destination server will be exchanged with the actively 

working ones from the host. 

(b) If Vidle<Vactive, then migrate all the idle VMs from host 

server to a nearby (ACS) non-overloaded (OEM) server with 

the opposite scenario i.e. the server in which Vidle>Vactive. 

The actively working VMs of the destination server will be 

exchanged with the idle ones from the host. (c) If Vidle = 

Vactive, calculate the CPU utilization (UCva&UMva) and 

memory utilization (UCvi&UMvi) of the VMs (both actively 

working and idle) and compare the total utilization of both 

type VMs. 

It migrates the virtual machine from the server by identifying 

the virtual machine with the lowest virtual load and then 

repeats the process on the server with the second-lowest 

virtual load,and so on, using a recursive algorithm. A 

recursive algorithm is one that calls a copy of itself, or an 

instance of itself, more precisely. When a set or function is 

defined recursively, the computation of its members or values 

follows the definition in a recursive manner. The initial steps 

of the recursive algorithm identify the basis items and 

correspond to the basis clause of the recursive definition. The 

inductive clause's stages are then followed, which reduce the 

computation for an element of one generation to that of 

elements of the generation just before it. The algorithm uses a 

conjugate function to determine the execution time of each 

VM in relation to the Physical Machine while also taking into 

account the timeout parameter of each server from the history 

of data centres.  

The majority of earlier studies calculate the start time of the 

current task as the most recent end time of the previous task. 

As a result, when it is their time to receive tasks, some virtual 

machines must wait. The execution time of each task ti 

depends on the output data size of every task. The execution 

time of different tasks on different VM(m, k) can be 

calculated by the following equation  

𝑇𝑒𝑥𝑒  𝑡𝑖𝑉𝑀 𝑚, 𝑘  =  
𝑊(𝑡𝑖)

𝑃(𝑚,𝑘)
                                                  

(25) 

The execution time of each task can be calculated using the 

processing capacity of VM(m,k). This is so that other VMs 

can receive numerous copies of the output that VMs produce. 

The sequence of the tasks determines how the recipient output 

is laid out. The efficiency of the process for scheduling 

applications must be maximized. Reducing execution time 

and total execution cost are necessary steps to take to meet 

users' QoS requirements. The time between the start time and 

end time of the task execution is used by the existing 

workflow algorithms to compute the VM rent time. 

When a task is finished, the virtual machine closes down and 

the results are passed on to the tasks that come after it. Data 

transfer priority is influenced by the order of the activities. 

Using the automata cellular learning function, an Optimum 

Cost Function considers the future resource utilization in each 

host to reduce the cost of unnecessary migration. The 

suggested optimization model restricts that the VMs whose 

remaining runtimes are smaller than a time slot will not be 

migrated to prevent pointless VM migrations. VM rent cost of 

task ti for each considered IaaS platform is calculated below.  

For Amazon EC2 that charges per hour, the execution cost of 

task ti on VM(1, k) is expressed in Eq. 

𝑐𝑜𝑠𝑡(𝑡𝑖 , 𝑉𝑀 1, 𝑘 =  
𝑇𝑟𝑒𝑛𝑡  𝑡𝑖 ,𝑉𝑀 1,𝑘  

𝑇𝑚𝑖𝑛𝑢𝑡𝑒
 . 𝐶(1, 𝑘)                                       

(26) 

where 𝑇𝑚𝑖𝑛𝑢𝑡𝑒  = 60.  

Microsoft Azure charges per minute, the execution cost of 

task ti on VM(2, k) is expressed in Eq 

𝑐𝑜𝑠𝑡(𝑡𝑖 , 𝑉𝑀 2, 𝑘 =  𝑇𝑟𝑒𝑛𝑡  𝑡𝑖 , 𝑉𝑀 2, 𝑘 . 𝐶92, 𝑘 )/𝑇𝑚𝑖𝑛𝑢𝑡𝑒                            

(27) 

A distributed computational mode called cellular learning 

automata (CLA) model combines the learning capabilities of 

learning automata with the computational capability of 

cellular automata. A cellular learning automaton is made up of 

a lattice of cells that cooperate to complete a computing job, 

and each cell contains a few learning automata. The CLA is 

used by each host are together with cellular networks, wireless 

networks, and evolutionary computation. Cellular learning 

automata that consider the migration and base future decisions 

on the experiences of the past. It is determining the ratio of 

the cost of running the server in active mode to the cost of 

running the server for the virtual machines on the replacement 

host, and if it exceeds the threshold, moving the VM to the 

destination reduces the unnecessary energy usage while 

maintaining service quality. This capability enhances the 

flexibility and computing power of automatic learning 

through associative CLA. Initial state of the cost is set based 

on the action probability vector of the LA in running server. 

The LA resident in each VMs then decides on an action in 

accordance with its decision function after receiving an input 

vector from the cloud. 
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Algorithm 5: Operation of Cellular Learning Automata 

Step 1: Initialize state of each cell in the CLA.  

Step 2: for each cell i in the CLA do  

Step 3: Give the input vector from the environment to cell i.  

Step 4: Cell i selects an action according to its decision 

function.  

Step 5: Apply the selected action to the environment.  

Step 6: Apply the local rule and give the reinforcement signal 

to the cell i.  

Step 7: Update the state of the cell i according to the 

reinforcement signal.  

Step 8: end for  

 

The VMs is a migrated to the cloud that gives feedback in 

conjunction with actual migration, and Learning 

Automata is taken as the cost of running server in the VM is 

migrated to the destination thereby lowering the unwanted 

energy consumption same while maintaining the quality of 

service. However, faulty data transfer during live migration 

caused a network issue. 

3.3 Data replacing approach. 
In data replacing approach, VMs must be moved to another 

host with enough resources once a host enters an over or 

underutilized state. The following circumstances lead to 

unnecessary requests: One of the request's fields was not 

accurately recorded (data contains NULL).The user is 

identified as a spammer, scanning robot, or intrusive user until 

the data is sent to the active PM, the transaction PM is 

switched to Mid active mode. Whenever a transfer error 

occurs, the method duplicates the data and resends it until the 

active PM receives the exact amount of data using a 

permutated sorting function, preventing the unintended 

network fault.Permutated Sorting Function continuously 

produces input permutations until it discovers one that is 

sorted.So, it should count the amount of original data and 

moves in order to examine a sorting algorithm.So, it should 

count the amount of original data and moves in order to 

examine a sorting algorithm. We can ignore other procedures 

and yet get the same result. We can ignore other procedures 

and yet get the same result. A flexible scheduling method that 

uses VM migration to effectively service physical servers of 

different functionality while workflows are being executed 

 

Figure 4: Flowchart of the Data replacing approach 

Figure 4 shows the Data replacing method that chooses the 

best PM from the list of techniques while switching the PM 

for the data transaction to Mid-active mode until the data is 

transferred to the Active PM. If a transfer error occurs, the 

algorithm copies the data and resends it until the precise 

amount of data is sent to the active PM. Unwanted network 

errors must be eliminated. Overall, the proposed Multi Hop 

Travel based optimization algorithm is conduct the 

economical VM migration while optimizing job scheduling 

where two load balancers that are optimized at multiple levels, 

including the international, national, and state levels, are taken 

into consideration.Active Inactive data migration 

algorithm for active-inactive data transfer removes virtual 

machines from servers by selecting the ones with the lowest 

virtual loadsusing a recursive algorithm. 

4. RESULT AND DISCUSSION 
This section provides a comparison section to ensure the 

suggested system is appropriate, performance data for the 

suggested system, and adaptive scheduling approaches of the 

implementation of the VM migration. Using an optimization 

method, the suggested VM migration strategy was put into 

practice in MATLAB, and the experimental outcomes were 

analyzed. The performance of the proposed model has been 

assessed by calculating the increased flexibility, lowest 

economic cost, and low computational time. 

4.1 Experimental Setup 
This work has been implemented in the working platform of 

Python, Matlab with the following system specification and 

the simulation results are discussed below. 

OS: Windows 10 

Software:VMware,Python, Matlab 

RAM:8 GB RAM  
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Processor : Intel i3 

4.2 Performance metrics of the proposed 

system 
The Performance metrics of the proposed Multi Optimized 

Job scheduling Framework for VM with enhanced migration 

and to develop an adaptive scheduling approach and the 

achieved outcome were explained in detail in this section. 

 
Figure 5: Throughput of the proposed system 

Figure 5 depicts the throughput of the suggested system when 

the number of VMs is changed. As the number of VMs is 

increased, the proposed system's throughput reaches a 

minimum of 9.5 Mbps and a maximum of 11.4 Mbps when 

the number of VMs is decreased. The planned system's 

throughput has decreased by using the runner root algorithm 

with consider internationally. 

 
Figure 6: Cost function of the proposed system 

Figure 6 depicts the Cost function of the suggested approach 

for adjusting the number of VM. When the number of VMs is 

increased to 100, the Cost function of the proposed system 

reaches a maximum value of 168 and the lowest value of 132 

when the number of VMs is decreased to 20. Using the 

optimal cost function has increased the cost function of the 

suggested system. 

 
Figure 7: Waiting time of the proposed system 

Figure 7 depicts the suggested system's waiting time for 

varying the number of virtual machines. The Waiting time of 

the suggested system reaches a maximum value of 0.144 sec. 

when the number of VMs is increased to 100 and the lowest 

value of 0.120 when the number of VMs is decreased to 20.  

The suggested system's waiting period has grown longer by 

using the steepest descent algorithm with national level. 

 

Figure 8: Execution time of the proposed system 

The execution time of the proposed system for varying the 

number of VM has been shown in figure 8. The execution 

time of the proposed system achieves a maximum value of 

0.62, when the number of VMs is increased to 100 and attains 

a minimum value of 0.56, when the number of VMs is 

reduced to 20. The execution of the proposed system has 

increased by differential evaluation algorithm. 

 

Figure 9: VM side load level of the proposed system 
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The VM side Load Level of the proposed system for varying 

the number of VM has been shown in figure 9. The VM side 

Load Level of the proposed system achieves a maximum 

value of 2.4, when the number of VMs is increased to 100 and 

attains a minimum value of 1.3 when the number of VMs is 

reduced to 20. The VM side Load Level of the proposed 

system has increased using recursive algorithm. 

 

Figure 10: Cloud side load level of the proposed system 

The cloud side level of the proposed system for varying the 

number of VM has been shown in figure 10. The cloud side 

load level of the proposed system achieves a maximum value 

of 10, when the number of VMs is increased to 100 and 

attains a minimum value of 2.4, when the number of VMs is 

reduced to 20. The Cloud side load level of the proposed 

system has increased by usingactive inactive data migration 

algorithm. 

 

Figure 11: Delay of the proposed system 

The delayof the proposed system for varying the number of 

VM has been shown in figure 10.The delayof the proposed 

system achieves a maximum value of 0.265 Kbps, when the 

number of VMs is increased to 100 and attains a minimum 

value of 0.235, when the number of VMs is reduced to 20. 

The delay of the proposed system has increased by using 

automata cellular learning function. 

4.3 Comparison of Proposed model with 

Previous Models 
This section highlights the proposed adaptive scheduling 

approach for effective VMs migration and to provide efficient 

service of physical servers with varying functionality during 

workflow execution by comparing it to the outcomes of 

existing approaches such as FFD [29], VMR [7], CLA-EC 

[15] and showing their results based on various comparisons 

is given below. 

 

Figure 12: Comparison of migrations 

Figure 12 shows a comparison of the number of migrations of 

the proposed model with existing techniques such as CLA-

EC, Buyya, FFD. Whereas the comparison of number of 

migrations attains a maximum time. The number of 

migrations of the proposed system achieves a minimum value 

of 50, when the time s increased to 25 hrs and attains a 

maximum value of 60, when the time is reduced.Hence the 

proposed system achieves a smaller number of migration than 

the existing technique CLA-EC. 

 

Figure 13: Comparison of Switch off PM. 

The comparison of the switch off PM of various models is 

shown in figure 13. The proposed model has a switch off PM 

of 80% compared to existing models. The graph also indicates 

the switch off PM of an increase in the time. Hence the 

proposed model has achieved high switch off PM, which is 

compared with the existing techniques VMR. 
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Figure 14: Comparison of Active PMs 

The comparison of the number of active PM of various 

models is shown in figure 14. The proposed model has several 

active PM of 25% lessthan existing models. The graph also 

indicates the number of active PM of adecrease in the time. 

Hence the proposed model has a smaller number of active PM 

than the existing technique VMR. 

 

Figure 15: Comparison of Solution size 

The comparison of the solution size of various models is 

shown in figure 15. The proposed model has a solution size of 

280less than existing models. The graph also indicates the 

solution size PM of adecrease in the time. Hence the proposed 

model has less solution size, which is compared with the 

existing technique CLA-Ec.Overall, the proposed model 

shows that it is more efficient and more accurate when 

compared to previous models such as CLA-EC, Buyya, FFD, 

VMR, and Random, which involves VM migration for 

efficient service of physical servers with varying functionality 

during workflow execution. The proposed system achieves 

less through put 9.5 Mbps in a 100 number of VM, when 

compared to other existing techniques, its Cost function value 

is 168 which ishigher than the existing techniques, and its 

waiting time is 0.144 sec higher than the existing techniques. 

This proves that the proposed system performed well when 

compared to other existing techniques like CLA-EC, Buyya, 

FFD, VMR, and Random. 

5. Conclusion 
The Runner root algorithm is deployed by the suggested 

multi-level-optimized scheduling algorithm with VM 

migration for scheduling workflows tasks in a multi-cloud to 

minimize traffic and congestion with efficient work schedule 

and resource allocation algorithm based on steepest descent 

method, which is address the issues of flexibility of the 

resource management and reduces the computation processing 

time. Where the throughput is reduced 9.5 Mbps, when the 

migration is increased by using the proposed algorithm and 

utilizing the steepest descent algorithm at the national level, 

the waiting time of the suggested system has increased by 

0.140 sec. The existing systems such as CLA-EC, FFD & 

VMR have the number of migrations as10, 58, and 12. The 

proposed system achieves 50 no. of migrations. Moreover, the 

proposed system achieves 25% less than the no. of active Pm, 

which is compared with existing techniques by using the Data 

replacing approach. Hence, resource allocation for combined 

task scheduling & migration is considered when using multi-

level optimization. Recursive algorithm to determine the 

execution duration to prevent erratic migration across virtual 

machines. Hence the proposed model performs well. Thus, the 

proposed system has been used to perform a better task 

scheduling in a complex multi cloud environment withhigher 

flexibility, lowest economic cost, and low computational time 

according to the results. 
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