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ABSTRACT 

Optimization job scheduling of virtual machines in a cloud 

computing for tasks is considered as NP-hard problem 

specifically for large task sizes in the cloud. Hence many 

techniques for job scheduling have been presented previously 

but they did not consider the combined task scheduling and 

resource allocation, which reduces the flexibility, increase 

traffic, congestion, and reduces computation processing time. 

Hence a novel technique, namely Multi Optimized Job 

scheduling Framework for VM with enhanced migration in 

a Multi Cloud Environment has been proposed, in which the 

load balancers with multi-level optimizations that utilizes the 

runner root algorithm and Differential evolution algorithm with 

Levy distribution to schedule the job and determines the VM to 

be allotted for the job based on international and national level 

optimization. Moreover, the previous techniques concentrate 

only on the migration that extends VM lifespan, lacking 

Quality of Service (QoS) and unsatisfied the end users. Hence 

a novel technique Active Inactive data migration algorithm is 

used to prevent fluctuating migration between Virtual 

Machines and recursive algorithm keeps on iterating the same 

operation on the server with the lowest virtual load and 

Optimum Cost Function is to prevent unnecessary migration 

cost. During VM migration, several applications were affected 

during a live VM migration that caused a network fault, which 

is eliminated by a novel Data replacing approach which is 

used to transfer the exact size of data to the active PM. Overall, 

the proposed method is to perform an efficient job scheduling 

in multi cloud environment with optimized VM migration. 

Keywords 

VMs migration, Load balancing, Live Migration, Federation, 

Runner root algorithm, Conjugate function, Steepest Descent 

Method, Recursive algorithm, Permutated sorting function, 

Optimum Cost Function, Levy distribution.   

General Terms 
VM: Virtual Machine 

1. INTRODUCTION 
Cloud computing is a trending technology that allows users to 

use computing resources remotely in a pay-per-use model. In 

this era of rapid growing technology, new opportunities are 

open for businesses, where recent technologies are replacing 

old ones. With the advent of cloud, small and big organizations 

all are progressing without need to concern about the storage 

and maintenance of their business data [1]. All the 

responsibility is envisaged upon the cloud service providers 

(CSPs) and hence cloud computing has become the backbone 

of modern business world. Organizations contacts various 

cloud service providers and consumes the services by signing 

Service-Layer Agreement (SLA) document. A CSP contacts 

various resource providers at datacenters to satisfy the demands 

of the customer. Usually, it is said that cloud computing 

provides infinite resources and elastic services [2]. To raise the 

flexibility or capacity of cloud service providers and fulfill the 

ever-growing demand of services, resources from different 

resource providers need to collaborate, inter-communicate and 

work in cooperation and coordination. So, collaboration of 

various cloud service providers gives root to the concept of 

multi-cloud which simply means that an enterprise can take 

services from more than one cloud service provider through a 

common interface or a single API [3]. 

The principle of multi-cloud paradigm in which each member 

cloud performs a service level agreement (SLA) with other 

member clouds that allows them to work together when data 

becomes too massive for any single cloud to manage [4].In 

multi cloud computing individual Consumer Service 

Provider(CSPs) are employed for a particular business or 

organization's purposes and they all have varying forms of 

application and SLAs. Moreover, the other benefits of 

multi cloud computing are that it avoids long-term commitment 

to a single cloud service provider, addressing concerns like 

interoperability and vendor lock-in [5]. These platforms 

develop new means of operability, either via increasing 

standardization of systems employed by creating new ways for 

clouds to communicate data with one another on a more global 

level, because they frequently rely on communication across 

their diverse cloud components. Furthermore, the users are not 

required to make any investments in new infrastructure. They 

can get the services they want from anywhere in the globe for 

a fee, and they do not have to worry about the intricacy of the 

IT infrastructure [6].  

In multi cloud a Directed Acyclic Graph (DAG) represents an 

application as a collection of many jobs. Independent tasks in a 

DAG can be run concurrently by many virtual machines 

(VMs), however linked tasks must be run in the right sequence 

as determined by task priority [7]. Scheduling tasks for 

execution with the shortest makes span (total execution time of 

all tasks) is an NP-complete issue. Also, the multi cloud 

business models and technologies create serious problems, 

such as proprietary APIs and a lack of interoperability [8]. It is 

crucial that business companies could feed data into bigger, 

more popular outlets. It is also vital to select an application 

architecture that matches and fully exploits the peculiarities of 

the underlying Cloud environments [9]. Also, resource 

contentions at the infrastructure layer because unexpected 

performance, requiring more labor for resource management, 

as well as automated VM and service migration. In recent days, 

the focus of Multi Cloud Computing has been turned towards 

answering how to schedule an application's work across 

numerous clouds which is a difficult problem in a federated 

heterogeneous multi-cloud system [10]. For diverse computing 

platforms such as cluster, grid, parallel, and distributed 
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processing, few noted job scheduling methods have been 

created. However, they fall short of meeting the cost-

effectiveness, dependability, and scalability criteria of multi-

cloud computing [11]. 

Applications come in a variety of sizes and each 

application is broken down into several tasks and these tasks 

are assigned to Virtual machines (VMs). Hence task scheduling 

is extremely important for the overall efficiency of the multi-

cloud computing system. It determines the order in which 

virtual machines execute tasks [12]. As a result, load balancing 

and scheduling are not two different methodologies but are two 

different abstraction levels. The concept of resource allocation 

is more abstract than that of load balancer and scheduler. 

Resource allocation entails assigning available tasks to VMs in 

the most efficient way possible, reducing the make span time 

[13]. Multiple jobs are discovered to be assigned to a single 

VM, resulting in improved system performance following 

optimum resource allocation and effective task scheduling. 

Executing the prioritized job requests/tasks is critical for the 

system's behavior in many circumstances [14]. One of the most 

difficult challenges in distributed computing is scheduling the 

cloud-task pair as the customers' needs are always changing. As 

the needs of consumers and working environments evolve, 

many existing algorithms become obsolete [15].  

Virtual machine migration between real computers in 

cloud data centers is an intriguing component of cloud 

computing that is employed to satisfy the dynamic response to 

user demands. A server administrator can migrate a running 

virtual machine or application across physical machines 

without having to disconnect the client or application [16]. 

Total migration time and downtime are two significant 

performance measures that VM service clients frequently 

consider since they are concerned about service deterioration 

and the length of time that the service is completely unavailable 

[17]. When migrating a virtual machine, the transfer must be 

done in a way that balances the criteria of minimizing both 

downtime and overall migration time. In multi cloud 

computing, the strategy of optimum virtual machine placement 

on real equipment in the cloud data center is critical. When the 

placement in cloud data centers operates optimally, the quantity 

of hardware resources used is regulated. As a result, energy 

usage and resource waste can be decreased [18]. The main 

contribution of this paper are as follows: 

-Distributed multi-cloud scheduling approach addresses 

scheduling issues in multi-cloud environments to maximize 

user and provider advantages. Overall time, expense, cloud 

throughput, energy use, resource use, and load balancing are all 

factors in the model. 

-A new metaheuristic algorithm known as the runner-root 

algorithm (RRA), which is a task scheduling method based on 

the general algorithm (GA), is to minimize job completion time 

and cost while maximizing resource utilization. 

-In order to save energy, proposed a method for VM placement 

in cloud data centers that combines several different 

techniques, including ensemble prediction algorithm, learning 

automata theory, and correlation. 

Hence the suggested solutions carry out the economical VM 

migration along with optimal work scheduling. The content of 

the paper is organized as follows: section 2 describes related 

works, section 3 provides a novel solution, the implementation 

results and their comparison are provided in section 4; finally, 

section 5 concludes the paper. 

2. LITERATURE SURVEY 
Jena et al [19], this study presents Genetic Algorithm-based 

Customer-Conscious Resource Allocation and Task 

Scheduling in multi-cloud computing to bridge the gap between 

rapidly changing customer requirements and available 

infrastructure for services. Genetic algorithm-based resource 

allocation and shortest task first scheduling are the two main 

phases of the algorithm. The goal is to map jobs to VMs in the 

multi-cloud federation with the shortest possibly make span 

time and highest possible customer satisfaction. Extensive 

simulations were run on synthetic data, and the results were 

compared to the existing scheduling technique. The simulation 

results show that the suggested method outperforms the current 

ones in terms of the metrics that matter. The research 

parameters are converged towards the make span time schedule 

of the computing which lowers the efficiency of resource 

utilization. 

Rama Subbareddy et al [20], this study takes job allocation in 

a multi-cloudlet context to increase user satisfaction. Response 

time aware task scheduling in the multi-cloudlet environment 

(RTTSMCE) is presented in this study to address two issues. 

First, a cloudlet server is chosen based on response time, and 

then tasks are scheduled across cloudlets using load balancing 

methods to reduce the cloud server's response time. In 

comparison to existing load balancing algorithms, the 

suggested approach performs better in the stimulation. By 

transferring applications from the mobile device to the remote 

cloud, mobile cloud computing helps to lower the power 

consumption. However, because of the large physical distance 

between a mobile user and the remote cloud, latency concerns 

arise.  

Cai et al [21], this research developed a multi cloud distributed 

scheduling model for scheduling issues in a multi-cloud 

environment to optimize the advantages of users and providers. 

Total time, cost, cloud throughput, energy consumption, 

resource usage, and load balancing were taken as six goals of 

the model. The multi-cloud distributed scheduling model was 

optimized using a many-objective intelligence algorithm based 

on the sine function (MaOEA-SIN). To increase the algorithm's 

performance, a sine function penalty selection approach and an 

angle strategy are used. In conclusion, the MaOEA-SIN 

algorithm outperforms other algorithms in terms of 

performance. The user's preference influences the choosing of 

superior schemes based on steep characteristics leading to 

higher time consumption. 

Chen et al. [22] suggested an Online Workflow Scheduling 

technique based on Resource Allocation and Consolidation 

with Adaptive Resource Allocation (OWS-A2C). When 

executing a SW in OWS-A2C, the deadline reassignment was 

initially performed for SW tasks depending on the execution 

performance of instance resources, which improves resource 

usage from a local perspective. The execution instances then 

were assigned and aggregated based on the performance needs 

of numerous SWs, improving resource usage, and lowering the 

overall costs of running many SWs. Finally, using the earliest-

deadline-first (EDF) discipline, the SW tasks were dynamically 

scheduled to execution instances and finished before their sub-

deadlines. Extensive simulation test was conducted to illustrate 

the efficacy of the proposed OWS-A2C on SW scheduling in 

MCEs, which outperforms three baseline scheduling 

approaches in terms of resource usage and execution costs 

under deadline restrictions, yet the flexibility of the system was 

constrained. 
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Farid et al [23], hosted the scientific procedures in multi-cloud 

systems has led in the development of the multi-objective 

scheduling (MOS) approach combining fuzzy resource 

utilization (FR-MOS). The suggested algorithm's major goal is 

to reduce cost and make span while also taking into 

consideration reliability restrictions. The scientific workflow 

schedule considers the following factors: (1) the IaaS cloud 

platform to be chosen; (2) the kind of VM to be allocated to the 

tasks; and (3) the sequence in which data should be transmitted. 

The FR-MOS technique uses particle swarm optimization 

(PSO) and analyses task ordering and task execution location 

in its coding approach to overcome these challenges. The 

coding system considers both the location of task execution and 

the sequence in which data is sent. But using single 

optimization to entire process expands the execution time 

thereby leveraging the exact task allocation. 

Thirumalaiselvan et al [24], presented for scheduling virtual 

jobs in a multi-cloud environment, the rate-based scheduling 

(RBS), high priority scheduling (HPS), and equal load 

balancing (ELB). In a multi cloud environment design, multiple 

scheduling methods are utilized depending on the number of 

jobs and virtual machines. The ELB scheduling technique is 

employed when the number of tasks equals the number of 

virtual machines. The high priority scheduling strategy is 

employed when the number of tasks exceeds the number of 

virtual machines. The RBS method is employed if the number 

of tasks is smaller than the number of virtual machines. 

The research increased the make span and average efficiency 

of multi cloud computing by employing the above three 

alternative scheduling techniques which extended the make 

span while lowering the delay and energy usage. But the 

flexible nature of resource handling was constrained to a 

greater extend. 

XAVIER et al [25] handle the issue of job scheduling in 

numerous heterogeneous virtual machines, a meta-heuristic 

algorithm called chaotic social spider algorithm. By simulating 

the social spider's swarm intelligence using chaotic inertia 

weight based random selection, this work focuses on lowering 

overall make span with effective load balancing. Here the two 

phase avoids local convergence and investigates global 

intelligent searching to identify the most optimized virtual 

machine for the user job from a set of virtual machines with 

minimal make span and balanced resource utilization. Later, 

additional performance metrics like security and dependability 

could be included, allowing for the identification of trust nodes 

and security risks. Additionally, we expanded this work to be 

compatible with independent jobs. 

Hamad et al [26] The proposed method aims to reduce task 

completion times and costs while maximizing resource usage. 

Using the CloudSim toolbox, the suggested algorithm's 

performance has been assessed. The key issue is resource 

management, as cloud computing uses virtualization and the 

pay-as-you-go model to give IT resources (such as CPU, 

Memory, Network, and Storage) to users. To solve the job 

scheduling problem in the context of cloud computing, this 

research suggests an enhanced genetic algorithm. The 

suggested method aims to maximize resource use while 

minimizing completion time and cost. It can be expanded to 

consider the potential for VMs to have a dynamic quality. Also, 

the QoS needs of the users would be considered. 

Zhang et al [27] The proposed method investigates global 

intelligent searching to find the best optimized virtual machine 

for the user task among a set of virtual machines with minimal 

make span and balanced resource utilization, thereby 

preventing local convergence. The flexible, and effective in 

many real-world circumstances through meticulous 

simulations involving many affecting aspects, algorithm for 

resource scheduling that reduces system costs. To address the 

resource needs of users on MCP, the system models of 

traditional CWAs are utilized. The study concludes that multi-

cloud is the most alluring for many CWA implementations and 

can be used to understand the properties of various resources. 

Several CSP interconnections and associated load paths data 

travelling through potential interconnections are introduced. In 

the future, it will address these issues and take our framework's 

appropriate computing cost into account. 

Tsakalozos et al [28] the suggested GA algorithm is to reduce 

job completion times and costs while maximizing resource 

utilization. The developer suggests a scalable, distributed 

network of brokers that monitors the status of all ongoing 

migration activities within the context of a provider. Brokers 

employ an underlying, specialized file system called 

MigrateFS, which can replicate and maintain synchronization 

of virtual discs as the hypervisor live-migrates VMs (i.e., RAM 

and CPU state). Brokers apply policies to reduce SLA breaches 

while attempting to accomplish all migration operations on 

time by restricting the resources used during migration. 

From the analysis, it is noted that [19] lowers the efficiency of 

resource utilization, [20] large physical distance, [21] higher 

time consumption, [22] deadline restrictions yet the flexibility 

of the system [23] leveraging the exact task allocation [24] 

extended the make span [25] does not include the performance 

parameters [26] need to consider the dynamic quality of VM 

and also the QoS [27] Several CSP interconnections and 

associated with load paths [28] restricting the resources used 

during VM migration. 

3. MULTI OPTIMIZED JOB 

SCHEDULING FRAMEWORK FOR VM 

WITH ENHANCED MIGRATION IN A 

MULTI CLOUD ENVIRONMENT 
The intrinsic benefits associated with cloud computing, both 

the number of users and their corresponding workloads grow 

every day, which is essential to improve task scheduling and 

migration to increase Quality of Service (QoS), end user 

satisfaction, and with the least amount of energy consumption 

even under circumstances of high workload. Many earlier 

studies did not consider the combined job scheduling and 

migration for optimized work schedule, which decreases the 

resource management's flexibility and speeds up the execution 

of computations, traffic, and congestion. Hence, a novel multi-

level optimization named, Multi Optimized Job scheduling 

Framework for VM with enhanced migration in a Multi 

Cloud Environment has been proposed, to consider the 

combined job scheduling and resource allocation, which 

utilized the two load balancers for multi-level optimization in 

multi cloud. When scheduling a task across multiple clouds, 

one load balancer uses the Runner Root Algorithm (RRA) to 

considering internationally and using the Steepest Descent 

Technique, another load balancer in a chosen cloud locates the 

VM to be assigned for the job based on a nation. The 

Differential Evolution Algorithm with Levy Distribution, 

which takes state level optimization into account, is part of the 

suggested system. Such that the multi-level optimization 

should consider both the VM's resource allocation and 

combined task scheduling. Moreover, irregular VM migration 

in the existing methods increased the duration of the user's VM, 
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decreased Quality of Service (QoS), and decreased end-user 

satisfaction. Hence a novel, Active Inactive data migration 

algorithm is used to prevent fluctuating migration between 

Virtual Machines, in which utilizes the Recursive Algorithm 

to migrate the virtual machine (VM) from the server with the 

lowest virtual load and repeating the same procedure on the 

server with the second-lowest virtual load. Conjugate function 

is used to calculate each VM's processing time in relation to the 

physical machine. An Optimum Cost Function is used to 

consider the future resource utilization in the each host and 

avoid unnecessary migration costs using the Automata cellular 

learning function that calculate the ratio of the cost of running 

the server in active mode to the cost of running the virtual 

machines on the replacement host, and if it exceeds the 

threshold, the VM is moved to the destination, reducing the 

unnecessary energy consumption while maintaining the quality 

of service (Qos).  

Furthermore, in live VM migrations, the service levels of 

running applications are severely impacted through a high 

migration rate causes a network fault and misleading 

information to be transmitted improperly. Hence a novel, Data 

replacing approach have been proposed, in which Permutated 

sorting function has been used. If any error occurs while 

transferring the file, the algorithm copies the data and resends 

it until the active PM receives the precise amount of data, 

thereby the unwanted network error is avoided.  

 

Fig1: Block diagram for Multi Optimize Job Scheduling 

Figure 1 shows the proposed system's process flow. In order to 

allocate resources efficiently and create an optimized work 

plan, the suggested system would consider combined task 

scheduling and VMs migration where in two load balancers 

with multi-level optimization are used to schedule the job and 

assign VMs for it while taking into account global, national, 

and state level of optimization. Other unique approach 

eliminates the limitation during live migration and prevents 

variable migration across virtual machines, each host avoiding 

excessive migration costs. Hence, the proposed methods 

combine efficient VM migration with improved job scheduling. 

3.1 Multi Hop Travel based 

Optimized Scheduling algorithm 
In multi-cloud computing, resource allocation is a challenging 

task because of the numerous restrictions and configurations 

required by both cloud clients and providers. Because the 

nature of the traffic is highly arbitrary, the challenge of 

mapping an incoming task request to available virtual machines 

(VMs) is not polynomial-complete. The challenge of work 

scheduling is NP-hard since VMs are diverse and there are 

several alternative translations. To consider the combined task 

scheduling and migration for an optimized work schedule, 

which is crucial for improving the flexibility of resource 

management and accelerating computation execution, traffic, 

and congestion. Hence, a novel Multi Hop Travel based 

Optimal Scheduling technique is employed, which divides 

the entire allocation into two phases and uses two load 

balancers with multi-level optimization. The purpose of load 

balancer is to more effectively match the network's available 

transmission resources to the volume of data that is currently 

being handled. One balancer in a multi-cloud to schedule the 

task to the proper cloud computing consideration globally, 

which is optimizing by Runner root algorithm (RRA). The job 

scheduling issue is regarded as an NP-Complete issue. 

Therefore, it could be resolved using optimization techniques 

while considering performance parameters like completion 

time, expense, resource utilization, etc. To create a task 

allocation and execution algorithm based on Runner root 

algorithms (RRA) for the cloud computing environment that 

will improve task completion times, lower execution costs, and 

optimize resource utilization. More specifically, in RRA, the 

local search (exploitation process) is only used when the global 

search does not significantly enhance the value of the cost 

function. In RRA, the global search for the optimal solution 

(exploration method) is undertaken at all iterations. The runner 

root algorithm is provided as a job scheduling optimization 

strategy, which is starts with an initial random population that 

is evenly distributed over the issue domain. Task scheduling to 

meet the objectives of better makespan, load balancing and 

throughput. 

Task allocation details are indicated by a task 𝑡𝑘. K represents 

the number of tasks in a population and ranges from 1 to z. The 

components of a task 𝑡𝑘 are 𝛼[𝑖] and 𝛽[𝑖], which stand for the 

details of task processing and virtual machine distribution. A 

task's length is equal to the total amount of tasks entered. A task 

schedule is expressed through the following encoding process. 

Prior to task creation, a collection of inputted jobs is sorted. 

Cloud users pay for computing services in person, in contrast 

to other distributed computing platforms. Considering this, it is 

necessary to assign tasks from cloud users with high costs to 

virtual machines more quickly than other tasks. Due to the fact 

that cloud computing services are provided through an SLA 

between cloud users and providers, task scheduling issues in 

cloud computing vary from problems with general task 

scheduling.  

Given that there are m tasks, such as t1, t2, t3, etc., and that 

there are m number of resources, and that task i (ti) has n 

subtasks, with the jth subtask of task i being designated as 

ti(j), there are a total of m tasks: 

𝑛𝑢𝑚 =  ∑ ∑ 𝑡𝑖(𝑗)
𝑛
𝑘=1

𝑚
𝑖=1                                                       (1) 

Assuming there are three tasks and three labor resources, the 

first task is divided into five smaller tasks (t1(1), t1(2), t1(3), 

t1(4), and t1(5)); the second task is divided into five smaller 
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tasks (t2(1), t2(2)); and the third task is divided into three 

smaller tasks (t3(1), t3(2), and t3(5)).(3). There are 10 subtasks 

in total. The length of the work is 10 subtasks, each with a gene 

value between 1 and 3. The jobs are generated as follows: 

{3,2,1,1,1,2,2,2,3,1} 

The job is then decoded to reveal the distribution and order of 

processing of each resource's subtasks. 

W1： { t1(3) , t1(4) , t1(5), t3(3)}  

W2： { t1(2), t2(1), t2(2), t3(1)}  

W3： { t1(1) , t3(2)} 

Through decoding, it can determine the subtasks that each 

worker must complete, and using the RRA algorithm, it can 

determine how long it will take each worker to complete the 

task that has been given to them: 

𝑊𝑜𝑟𝑘𝑒𝑟𝑡𝑖𝑚𝑒(𝑘) =  ∑ 𝑡𝑖𝑚𝑒 (𝑘, 𝑗), 𝑘 ∈ [1,𝑤]𝑛
𝑗=1                              

(2) 

time(k, j) represents a k-th worker on the time required to 

complete the j-th task. 

Time is required by the i-th task completion: 

𝑡𝑎𝑠𝑘𝑡𝑖𝑚𝑒(𝑖) = 𝑚𝑎𝑥
𝑤

𝑘 = 1
∑ 𝑡𝑖𝑚𝑒 (𝑘, 𝑗)𝑠
𝑗=1                                   

(3) 

s is the location of subtask of task i assign to the worker. One 

of the main problems with cloud computing is task scheduling. 

Quality of Service (QoS) factors are important in scheduling 

and load balancing. which is based on international 

optimization, Resource Allocation and Task Scheduling in 

Multi-Cloud Computing to close the gap between the 

continuously changing requirement and the available 

infrastructure for the services.  

Due to the huge solution space, scheduling in cloud computing 

falls under the issues known as NP-hard problems, making it 

difficult to find an ideal solution. It has been demonstrated by 

these techniques based on metaheuristics can solve these issues 

with near optimal results in a reasonable amount of time. The 

two categories for steepest decent method -based resource 

allocation tasks are (I) Advance Reservation (AR) and (ii) Best 

Effort (BE). The work is distributed among resources utilizing 

GA operators based on the multi-cloud environment's available 

resources and the anticipated makespan time. The historical 

user feedback database keeps track of the performance of the 

cloud service providers, physical machines, and virtual 

machines.  

 

Figure 2: Task scheduling Algorithm 

Figure 2 shows a cloud in an abstract form where the scheduler 

finds a good allocation for incoming tasks. The scheduler 

establishes a map when tasks are delivered to data centers. A 

cloud broker receives a mapping scheme, and then assigns jobs 

to virtual machines. Because the network bandwidth among 

edge clouds is more limited than the cloud data center 

networks, VM migration among edge clouds is more difficult 

than that in cloud computing. 

For end users, the virtual machines offer a variety of services, 

including message transfer, mobile gaming, and video 

streaming. Any application running on the VM can be referred 

to as a service, which is an abstract notion. Consider a live VM 

migration from a cloud-based source computer to a cloud-based 

destination machine. It presumes that the destination machine 

will need to receive the state stored in the virtual machine's 

memory during the migration. The memory of the VM on the 

source machine would be updated when the state was 

transmitted to the destination because the application on the 

VM could still operate throughout the migration. Pre-copy, a 

live migration method iteratively transmits this memory 

content from the source computer to the destination machine. 

Two objective metrics of a live VM migration that we are 

concerned with are migration duration and Quality of Service 

(Qos). Imagine a group of C cloud service providers that are 

linked together to create a multicloud computing, where C = 

{C1, C2, Ci}. Q is a collection of cloud apps exist, where {P = 

P1, P2,Pj}. A cloud user may submit an unlimited number of 

job requests. Each job application is divided into a number of 

independent tasks, with Pi j = {P11,P12,..., Pq1,Pq2,..., 

Pqi} and Ci j = {C11,C12,..., Cp1,Cp2,..., Cpi} being the set of 

tasks and VMs, respectively. 

Mapping function M describes: Pi j → Ci j 

The service charge for AR work is typically higher than the 

service charge for BE tasks. Below is a matrix that was created 

to display the anticipated execution time in equation (4), 
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𝐸𝑇𝐶 =

𝑇1
𝑇2
⋮
𝑇𝑛 {
 
 

 
 

𝐶1
𝐸𝑇𝐶11
𝐸𝑇𝐶21
⋮

𝐸𝑇𝐶𝑛1

𝐶2 …
𝐸𝑇𝐶12 …
𝐸𝑇𝐶22
⋮

𝐸𝑇𝐶𝑛2

…
…
…

𝐶𝑛
𝐸𝑇𝐶1𝑚
𝐸𝑇𝐶2𝑚
⋮

𝐸𝑇𝐶𝑛𝑚

                                                  

(4) 

𝐸𝑇𝐶𝑖𝑗indicates the anticipated time required to complete the ith 

task in the jth cloud. Any cloud that has a working job request 

id can run any task, and any cloud can do several tasks 

simultaneously according to priority. Chronological order is 

used by several cloud providers. 

𝐹(𝑥) = min(𝑀𝑆) + (
1

𝑚𝑎𝑥
, 𝐶𝑆𝑅)                                             

(5) 

𝑀𝑆 =  𝑓(𝑀𝐼𝑃𝑆𝑡𝑒𝑚𝑝𝑡𝑎𝑠𝑘 , 𝐸𝑆𝑇)                                                 

(6) 

𝑀𝑆 = 𝜔1 ∗ (
𝑁𝐼𝐶

𝑀𝐼𝑃𝑆
) + 𝜔2 ∗ 𝐸𝑆𝑇                                                

(7) 

𝐶𝑆𝑅 = 𝑓(𝐸𝑆𝑇𝑡𝑒𝑚𝑝𝑡𝑎𝑠𝑘 , 𝐸𝑇𝐶𝑡𝑒𝑚𝑝𝑡𝑎𝑠𝑘)                                            

(8) 

Whereas Eq.(8) shows the relationship between user 

satisfaction levels, resource waiting times, and anticipated 

completion times, make span time (MS), a computability 

indicator, reveals the rate of utilization of resources expressed 

in Eq (6)&(7). Where MS is the task's makespan time, CSR is 

the customer satisfaction rate, NIC is the number of million 

instructions in the work, MIPS is the number of million 

instructions the machine can execute, and 𝜔1 𝑎𝑛𝑑 𝜔2 are 

specified weights. Choosing the weights' value might be 

difficult because it differs from organisation to organisation. 

The following algorithm shows the runner root-based task 

scheduling. 

Algorithm1: for runner root algorithm-based   task 

scheduling in cloud computing 

Input 

Step 1: set of customer job requests following Poisson’s 

distribution. 

Step 2: set of independent tasks. (each job request is sub 

divided into single independent task) 

Step 3: setoff cloud providers involved in the federation. 

Step 4: set of virtual machines. (Multiple cloud providers are 

further divided into numerous VMs). 

Output 

(1) Makespan time 

(2) Customer Satisfaction rate 

Step 1: While 𝑄𝑟 ≠ 𝑁𝑈𝐿𝐿 

Step 2: Set makespan = 0 

Step 3: Breakup job application into multiple tasks. 

Step 4: Call GA_MAPPING (ETC, EST, p, q) 

Step 5: Call Task Scheduling  (ETC, EST, p, q, MS) 

Step 6: end while 

Temporary queues QT are initialized as part of algorithm 1. The 

Poisson distribution is used to generate a variety of applications 

with varying capacities (measured in MIPS, or million 

instructions per second). The programs divided into numerous 

separate tasks. In step 3, the relevant physical machines divided 

into several VMs. Step 4 involve calling the GA-based resource 

allocation function. Scheduling the numerous tasks assigned to 

a single VM is step 5 in the process. The algorithm produces 

the optimal task-VM pair with the shortest makespan time and 

the highest level of user satisfaction. The following algorithm 

shows the resource allocation for the scheduled task. 

Algorithm 2: For resource allocation 

START 

1: While 𝑄𝑟 ≠ 𝑛𝑢𝑙𝑙  do 

2: If 𝑄𝐴𝑅 ≠ 𝑛𝑢𝑙𝑙 (if task ready available is advance reservation 

then) 

3: If𝑄𝐵𝐸 ≠ 0(if task ready available is Best Effort task then )` 

4: For tempcloud = {1,2,3, …..., q) 

5: For temptask = {1,2,3, …..., p) 

6: temptask← Task (𝑄𝐴𝑅 ) 

7: Find EST (temptask, tempcloud) 

8: MS (temptask, tempcloud) =ETC (temptask, tempcloud) 

+EST (temptask, tempcloud) 

9: Call RRA_task_cloud_pair( 𝑝𝑖 , 𝑞𝑖 ) that gives min ( MS 

(temptask, tempcloud)) 

10: Call BE_PREMPT_TASK (EST (temptask), MS 

(temptask, tempcloud)) 

11: endfor 

12: endfor 

13: else 

14: temptask← Task (𝑄𝐵𝐸 ) 

15: CALL UPDATE 𝑄𝑇  

16: CALL SCHEDULE_AR_TASKS_MMS (ETC_AR, 

temptask) 

17: CALL SCHEDULE_BE_TASKS_MMS (ETC_BE, 

temptask) 

18: MS (temptask, k) = ETC (temptask, k) + EST (temptask, k) 

19: endif 

20: endif 

21: endwhile 
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The step-by-step explanation of our suggested algorithm 2, 

steepest decent method-based resource allocation is contained 

in Algorithm 2. The programs tasks are kept in QT. Tasks are 

stored in QAR or QBE depending on the type of application. 

All the tasks that need to be completed are saved in the set 

temptask, and the relevant VMs are kept in the set tempcloud. 

Step 7 determines the estimated execution time. The makespan 

time is the total of the predicted completion time and the 

waiting time, as shown in step 8. The steepest decent method -

based resource allocation process is called in step 9. In the 

initialization stage of steepest decent method, the number of 

jobs that must be completed in a batch is equal to the size of the 

cloud. In the first generation, tasks are given at random to VMs 

that can complete them. Maximizing customer satisfaction 

rates while minimizing makespan time is the fitness function. 

Procedure 1 specifies the steps for steepest decent method -

based resource allocation as follows. Step 17 indicates that the 

convergence requirements are satisfied, and the best-fit 

chromosome is acquired. When numerous jobs are assigned to 

a single VM, shortest job first scheduling is employed to handle 

the situation. 

As increased user tasks are allocated within the schedule, the 

VMs risk being quickly overcrowded. In order to make better 

load balancing decisions to determine the load factor (LF)𝜎, 

which is the average load's standard deviation. 

𝜎 =  √
1

𝑚
∑ (𝐸𝑇𝑖 − 𝐸𝑇)

2𝑚
𝑖=1                                                               

(9) 

where 𝐸𝑇𝑖 , is the execution time of ith VM. 

A steepest descent algorithm would be one that applies the 

update rule, with each iteration taking the steepest possible 

course in the direction x(k). Which two significant 

computational benefits are how simple it is to implement an 

algorithm on a computer and how little storage is required. The 

line search necessary to calculate the step length 𝛼𝑘, and 

gradient constitutes the bulk of the task. In other words, given 

a specific point x, the algorithm's goal is to determine the 

direction in which f (x + d) is minimized.determining the 

steepest angle. One can estimate the function by a first-order 

Taylor expansion and identify the steepest direction in the 

following equation (7), 

𝑓(𝑥 + 𝑑)  ≈  𝑓(𝑥)  + ∇ 𝑓(𝑥)𝑇𝑑                                             

(10) 

The function’s minimum direction d suggests the following 

optimization issue. 

min
𝑑∶||𝜗||

∇𝑓(𝑥) 𝑇𝑑                                                      (11) 

Algorithm 3: Steepest Descent Method 

Given an initial 𝑥0, 𝑑0 = −𝑔0 and a convergence tolerance tol 

for k = 0 to maxiterdo 

Set 𝛼𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝜑𝛼 = 𝑓(𝑥𝑘) −  𝛼𝑔𝑘  

𝑥𝑘+1 =  𝑥𝑘 − 𝛼𝑘𝑔𝑘 

Compute 𝑔𝑘+1 = ∇𝑓(𝑥𝑘+1) 

If||𝑔𝐾+1||2 ≤ 𝑡𝑜𝑙 𝒕𝒉𝒆𝒏 

Converged 

End if 

End for 

 

Thus, the other load balancer in that particular cloud chooses 

the VM to be assigned for the task based on a certain nation, 

then uses national level optimization with the steepest descent 

algorithm. Due to its effectiveness in handling a wide range of 

issues, such as portfolio optimization, picture pixel clustering, 

data clustering, and multi-level thresholding in image 

segmentation, Differential Evolution (DE) algorithms, a subset 

of evolutionary algorithms, are of particular interest. These 

mutational tactics are used in many evolutionary algorithms, 

such as DE algorithms, to address a variety of issues, including 

multi level objective optimization. Thus, the VM are viewed as 

different states, and the work that must be done is viewed as 

districts.  

DE is an iterative population-based method for locating the 

state-level optimal. The investigation and application of the 

algorithm are represented, respectively, by the DE algorithm 

with levy flight. The levy flights first create a population of 

answers at random before assessing each one's quality using the 

fitness function. Using Levy flights, the jobs that are closest to 

the best one will fly around it as shown in the following 

equation, 

𝑥𝑡−1 = 𝑥𝑖
𝑡 +

𝑆𝑚𝑎𝑥

𝑡2
𝐿(𝑆)                                                             

(12) 

where 𝑥𝑖
𝑡 represents the position of the i-th task at iteration t. 

while 𝑆𝑚𝑎𝑥 represents the maximum walk step and L(s) 

represents the step drawn from Levy flights, using parameter s. 

Hence the Runner Root Algorithm (RRA) and the Steepest 

Descent Algorithm are combined in the DE algorithm, which is 

used as a global and local search technique to enhance job 

scheduling for resource exploitation. By minimizing the 

makespan, the DE algorithm, which was modelled in the 

cloudsim environment, aims to increase the output of the cloud 

system. 

 

3.2 Active Inactive data migration   

algorithm 
The VM migration that comes next, which does not consider 

prior task knowledge, extends the entire time the user is using 

a virtual machine (VM), possibly infringing on the deadline 

requirement with subpar Quality of Service (QoS) standards 

and unsatisfied end users. To avoid fluctuating migration 

between Virtual Machines, the suggested algorithm is used. To 

increase performance and reliability, one mitigating method is 

VM migration, in which virtual machines are transferred from 

one physical host to another. There are various methods for 

migrating VMs, including cold migration, hot migration, and 

live migration. When migrating a virtual machine to a specific 

host, cold migration requires shutting down the guest OS first 

and then restarting the system. Hot migration does not 

terminate the operating guest OS before it is sent to the 

designated target host and resumed there it just suspends it. 
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Although permitting a VM and its operating OS to be relocated 

from one physical host to another, live migration ensures that 

the hosted apps will continue to function. A virtual machine 

(VM) is effortlessly transported between two physical hosts 

while still running, together with its environment, which 

includes its OS, memory, vCPU, and occasionally its disc. 

Improved load balancing, transparent mobility, proactive fault 

tolerance, and green computing are all advantages of VM 

migration. 

 

Figure 3: VM live migration between two physical VM 

The figure3 demonstrates how live migration lets you relocate 

an active virtual machine from one physical server to another 

without interrupting operations. A seamless migration process 

is ensured since the virtual machine keeps its network identity 

and connections. High-speed networking is used to transfer the 

virtual machine's precise execution state and active memory, 

enabling it to move from executing on the source host to the 

destination host. Recursive algorithm with the intention of 

minimizing power interruption for the active machines, the 

algorithm used to move idle and actively functioning virtual 

machines from one overloaded or under loaded server to 

another non-overloaded server to reduce server load and offers 

more substantial energy and resource savings for data centres. 

To guarantee the greatest number of active virtual machines on 

a single server the majority of the time, our approach is to swap 

out all idle virtual machines from one server with the actively 

working, fully loaded ones of a no overloaded server. Since idle 

VMs typically use 50% to 70% of the host server's total power, 

this means that the power consumption of the actively operating 

VMs will not be affected. The following situations can coexist 

in a cloud environment, according to the CPU and RAM usage 

of a VM, for an instantaneous time t. 

𝑈𝑚𝑣𝑗 > 𝑈𝑝𝑗[𝑅𝐴𝑀 > 𝐶𝑃𝑈]                                                    

(13) 

𝑈𝑚𝑣𝑗 > 𝑈𝑝𝑗[𝑅𝐴𝑀 < 𝐶𝑃𝑈]                                                  

(14) 

𝑈𝑚𝑣𝑗 > 𝑈𝑝𝑗[𝑅𝐴𝑀 ≈ 𝐶𝑃𝑈]                                                  

(15) 

Here, 𝑈𝑚𝑣𝑗  represents the memory utilization of a VM, 𝑈𝑝𝑗  

represents the processor or CPU utilization of a VM and 0 ≤ 

𝑈𝑚𝑣𝑗≤ 1,0 ≤ Ucj 𝑈𝑝𝑗≤ 1 i.e 𝑈𝑚𝑣𝑗  and 𝑈𝑝𝑗  represents the 

percentage of RAM & CPU utilization. 

The resource utilization percentage of each virtual machine will 

be used to determine the overall number of active and idle VMs 

on a single server at a given instant (t). It will be simpler to 

choose between migrating idle or active VMs as a result. The 

following formulae can be used to get the total number of idle 

virtual machines in a server for an instant t: 

𝑉𝑜 = 𝑈𝑚𝑣𝑗 −  𝑈𝑝𝑗                                                       (16) 

𝑉𝑜 =  {
0
1

,
,

   0 ≤ 𝑉𝑜 ≤ 0.3
   0.4 ≤ 𝑉𝑜 ≤ (0.9 ≈ 1)

                                        (17) 

𝑉𝑜 = {
∑ 𝑁1
𝑜 = 1

𝑉𝑜

0

,
,
[𝑉𝑜 ∈  𝑁1]
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                         (18) 

Here, N1 is a set of virtual machines. Once more, the following 

formulae can be used to determine the total number of active 

virtual machines in a server for a given time. 

𝑉𝑎 = 𝑈𝑝𝑗 −  𝑈𝑚𝑣𝑗                                                     (19) 

𝑉𝑎 = 1;   𝑖𝑓 0 ≤ 𝑉𝑎 ≤ (0.9 ≈ 1)                                           
(20) 

𝑉𝑎𝑐𝑡𝑖𝑣𝑒 =  {
∑
𝑁2 +𝑁3
𝑎 = 1

𝑉𝑎 + 𝑐

𝑐

,
,
𝑉𝑎 ∈ [𝑁2 + 𝑁3]
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                              

(21) 

𝑐 = ∑𝑉𝑎                                                             (22) 

The following equations can be used to determine the overall 

CPU and memory usage of the VMs when the quantity of 

running virtual machines and idle virtual machines at any given 

moment t, in any server I equals the other. 

𝑈𝐶𝑎𝑣 =  ∑ 𝑈𝑚𝑣𝑗 ∗ 𝐶𝑗
𝑉𝑎𝑐𝑡𝑖𝑣𝑒
𝑗=1                                                   (23) 

𝑈𝑀𝑎𝑣 =  ∑ 𝑈𝑚𝑣𝑗 ∗ 𝑀𝑗
𝑉𝑎𝑐𝑡𝑖𝑣𝑒
𝑗=1                                                   

(24) 

Here 𝑈𝐶𝑎𝑣UCva and 𝑈𝑀𝑎𝑣 stand for the CPU and Memory 

usage of virtual machines that are currently in use, respectively. 

Algorithm 4:   Recursive algorithm (Virtual Machine 

Migration) 

Input 

Step 1: Initialization. Compute the number of active and idle 

VMs in a single host server. Take the number of active VMs as 

Vactive and the number of idle VMs as Vidle. Compare 

Vactiveand Vidle. 

(1) Vidle>Vactive 

(2) Vidle<Vactive 

(3) Vidle = Vactive 

Step 2: The parameter for ACS is set to τ0. The feasible 

globally best solution is set as Sgb for placing N VMs on N 

servers. Thus, the number of minimum servers is set to Mmin 

= N. Set iteration t=1 and maximum iteration as T. 
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Step 3: Set Mt = Mmin − 1. In each iteration, m ants construct 

m solutions and perform local pheromone on each solution. 

Step 4: The fitness function f(S) is applied in order to evaluate 

the fitness value of the constructed solution. 

Step 5: The best solution Sb of the current iteration is set after 

evaluating the fitness value of the constructed solution. If Sb is 

feasible, Sgb is updated as Sb and Mmin = f1(Sb) is set. 

Otherwise, OEM local search is performed on Sb. Sgb and 

Mmin are updated respectively if local search succeeds. 

Step 6: After Sgb and Mmin are locally updated, global 

pheromone update is eventually done on Sb and Sgb. 

Step 7: Check if t is less than or equal to T. If not equal, then 

set t = t + 1 and go to Step 3. Otherwise terminate the algorithm. 

Step 8: After t terminates, calculate Vactive and Vidle of the 

host server. If Vactive = Vactive and V`idle = Vidle, then move 

forward to step 9. Otherwise update V`active and V`idle and 

then move to step 9. 

Step 9 (a) If Vidle>Vactive, then migrate all the actively 

working VMs from host server to a nearby (ACS) 

nonoverloaded (OEM) server with the opposite scenario i.e. the 

server in which Vidle<Vactive. The idle VMs of the destination 

server will be exchanged with the actively working ones from 

the host. 

(b) If Vidle<Vactive, then migrate all the idle VMs from host 

server to a nearby (ACS) non-overloaded (OEM) server with 

the opposite scenario i.e. the server in which Vidle>Vactive. 

The actively working VMs of the destination server will be 

exchanged with the idle ones from the host. (c) If Vidle = 

Vactive, calculate the CPU utilization (UCva&UMva) and 

memory utilization (UCvi&UMvi) of the VMs (both actively 

working and idle) and compare the total utilization of both type 

VMs. 

It migrates the virtual machine from the server by identifying 

the virtual machine with the lowest virtual load and then repeats 

the process on the server with the second-lowest virtual load, 

and so on, using a recursive algorithm. A recursive algorithm 

is one that calls a copy of itself, or an instance of itself, more 

precisely. When a set or function is defined recursively, the 

computation of its members or values follows the definition in 

a recursive manner. The initial steps of the recursive algorithm 

identify the basis items and correspond to the basis clause of 

the recursive definition. The inductive clause's stages are then 

followed, which reduce the computation for an element of one 

generation to that of elements of the generation just before it. 

The algorithm uses a conjugate function to determine the 

execution time of each VM in relation to the Physical Machine 

while also taking into account the timeout parameter of each 

server from the history of data centres.  

The majority of earlier studies calculate the start time of the 

current task as the most recent end time of the previous task. 

As a result, when it is their time to receive tasks, some virtual 

machines must wait. The execution time of each task ti depends 

on the output data size of every task. The execution time of 

different tasks on different VM(m, k) can be calculated by the 

following equation  

𝑇𝑒𝑥𝑒(𝑡𝑖𝑉𝑀(𝑚, 𝑘)) =  
𝑊(𝑡𝑖)

𝑃(𝑚,𝑘)
                                                  

(25) 

The execution time of each task can be calculated using the 

processing capacity of VM(m,k). This is so that other VMs can 

receive numerous copies of the output that VMs produce. The 

sequence of the tasks determines how the recipient output is 

laid out. The efficiency of the process for scheduling 

applications must be maximized. Reducing execution time and 

total execution cost are necessary steps to take to meet users' 

QoS requirements. The time between the start time and end 

time of the task execution is used by the existing workflow 

algorithms to compute the VM rent time. 

When a task is finished, the virtual machine closes down and 

the results are passed on to the tasks that come after it. Data 

transfer priority is influenced by the order of the activities. 

Using the automata cellular learning function, an Optimum 

Cost Function considers the future resource utilization in each 

host to reduce the cost of unnecessary migration. The suggested 

optimization model restricts that the VMs whose remaining 

runtimes are smaller than a time slot will not be migrated to 

prevent pointless VM migrations. VM rent cost of task ti for 

each considered IaaS platform is calculated below.  

For Amazon EC2 that charges per hour, the execution cost of 

task ti on VM(1, k) is expressed in Eq. 

𝑐𝑜𝑠𝑡(𝑡𝑖 , 𝑉𝑀(1, 𝑘) = [
𝑇𝑟𝑒𝑛𝑡(𝑡𝑖,𝑉𝑀(1,𝑘))

𝑇𝑚𝑖𝑛𝑢𝑡𝑒
] . 𝐶(1, 𝑘)                                       

(26) 

where 𝑇𝑚𝑖𝑛𝑢𝑡𝑒  = 60.  

Microsoft Azure charges per minute, the execution cost of task 

ti on VM(2, k) is expressed in Eq 

𝑐𝑜𝑠𝑡(𝑡𝑖 , 𝑉𝑀(2, 𝑘) =  𝑇𝑟𝑒𝑛𝑡(𝑡𝑖 , 𝑉𝑀(2, 𝑘). 𝐶92, 𝑘))/𝑇𝑚𝑖𝑛𝑢𝑡𝑒                           

(27) 

A distributed computational mode called cellular learning 

automata (CLA) model combines the learning capabilities of 

learning automata with the computational capability of cellular 

automata. A cellular learning automaton is made up of a lattice 

of cells that cooperate to complete a computing job, and each 

cell contains a few learning automata. The CLA is used by each 

host are together with cellular networks, wireless networks, and 

evolutionary computation. Cellular learning automata that 

consider the migration and base future decisions on the 

experiences of the past. It is determining the ratio of the cost of 

running the server in active mode to the cost of running the 

server for the virtual machines on the replacement host, and if 

it exceeds the threshold, moving the VM to the destination 

reduces the unnecessary energy usage while maintaining 

service quality. This capability enhances the flexibility and 

computing power of automatic learning through associative 

CLA. Initial state of the cost is set based on the action 

probability vector of the LA in running server. The LA resident 

in each VMs then decides on an action in accordance with its 

decision function after receiving an input vector from the cloud. 

 

Algorithm 5: Operation of Cellular Learning Automata 

Step 1: Initialize state of each cell in the CLA.  
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Step 2: for each cell i in the CLA do  

Step 3: Give the input vector from the environment to cell i.  

Step 4: Cell i selects an action according to its decision 

function.  

Step 5: Apply the selected action to the environment.  

Step 6: Apply the local rule and give the reinforcement signal 

to the cell i.  

Step 7: Update the state of the cell i according to the 

reinforcement signal.  

Step 8: end for  

 

The VMs is a migrated to the cloud that gives feedback in 

conjunction with actual migration, and Learning 

Automata is taken as the cost of running server in the VM is 

migrated to the destination thereby lowering the unwanted 

energy consumption same while maintaining the quality of 

service. However, faulty data transfer during live migration 

caused a network issue. 

3.3 Data replacing approach. 
In data replacing approach, VMs must be moved to another host 

with enough resources once a host enters an over or 

underutilized state. The following circumstances lead to 

unnecessary requests: One of the request's fields was not 

accurately recorded (data contains NULL). The user is 

identified as a spammer, scanning robot, or intrusive user until 

the data is sent to the active PM, the transaction PM is switched 

to Mid active mode. Whenever a transfer error occurs, the 

method duplicates the data and resends it until the active PM 

receives the exact amount of data using a permutated sorting 

function, preventing the unintended network fault. Permutated 

Sorting Function continuously produces input permutations 

until it discovers one that is sorted. So, it should count the 

amount of original data and moves in order to examine a 

sorting algorithm. So, it should count the amount of original 

data and moves in order to examine a sorting algorithm. We 

can ignore other procedures and yet get the same result. We can 

ignore other procedures and yet get the same result. A flexible 

scheduling method that uses VM migration to effectively 

service physical servers of different functionality while 

workflows are being executed 

 

Figure 4: Flowchart of the Data replacing approach 

Figure 4 shows the Data replacing method that chooses the best 

PM from the list of techniques while switching the PM for the 

data transaction to Mid-active mode until the data is transferred 

to the Active PM. If a transfer error occurs, the algorithm copies 

the data and resends it until the precise amount of data is sent 

to the active PM. Unwanted network errors must be eliminated. 

Overall, the proposed Multi Hop Travel based optimization 

algorithm is conduct the economical VM migration while 

optimizing job scheduling where two load balancers that are 

optimized at multiple levels, including the international, 

national, and state levels, are taken into consideration. Active 

Inactive data migration algorithm for active-inactive data 

transfer removes virtual machines from servers by selecting the 

ones with the lowest virtual loads using a recursive algorithm. 

4. RESULT AND DISCUSSION 
This section provides a comparison section to ensure the 

suggested system is appropriate, performance data for the 

suggested system, and adaptive scheduling approaches of the 

implementation of the VM migration. Using an optimization 

method, the suggested VM migration strategy was put into 

practice in MATLAB, and the experimental outcomes were 

analyzed. The performance of the proposed model has been 

assessed by calculating the increased flexibility, lowest 

economic cost, and low computational time. 

4.1 Experimental Setup 
This work has been implemented in the working platform of 

Python, Matlab with the following system specification and 

the simulation results are discussed below. 

OS:           Windows 10 

Software:  VMware, Python, Matlab 

RAM:        8 GB RAM  

Processor : Intel i3 
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4.2 Performance metrics of the proposed 

system 
The Performance metrics of the proposed Multi Optimized Job 

scheduling Framework for VM with enhanced migration and to 

develop an adaptive scheduling approach and the achieved 

outcome were explained in detail in this section. 

 
Figure 5: Throughput of the proposed system 

Figure 5 depicts the throughput of the suggested system when 

the number of VMs is changed. As the number of VMs is 

increased, the proposed system's throughput reaches a 

minimum of 9.5 Mbps and a maximum of 11.4 Mbps when the 

number of VMs is decreased. The planned system's throughput 

has decreased by using the runner root algorithm with consider 

internationally. 

 
Figure 6: Cost function of the proposed system 

Figure 6 depicts the Cost function of the suggested approach 

for adjusting the number of VM. When the number of VMs is 

increased to 100, the Cost function of the proposed system 

reaches a maximum value of 168 and the lowest value of 132 

when the number of VMs is decreased to 20. Using the optimal 

cost function has increased the cost function of the suggested 

system. 

 
Figure 7: Waiting time of the proposed system 

Figure 7 depicts the suggested system's waiting time for 

varying the number of virtual machines. The Waiting time of 

the suggested system reaches a maximum value of 0.144 sec. 

when the number of VMs is increased to 100 and the lowest 

value of 0.120 when the number of VMs is decreased to 20.  

The suggested system's waiting period has grown longer by 

using the steepest descent algorithm with national level. 

 

Figure 8: Execution time of the proposed system 

The execution time of the proposed system for varying the 

number of VM has been shown in figure 8. The execution time 

of the proposed system achieves a maximum value of 0.62, 

when the number of VMs is increased to 100 and attains a 

minimum value of 0.56, when the number of VMs is reduced 

to 20. The execution of the proposed system has increased by 

differential evaluation algorithm. 

 

Figure 9: VM side load level of the proposed system 

The VM side Load Level of the proposed system for varying 

the number of VM has been shown in figure 9. The VM side 

Load Level of the proposed system achieves a maximum value 

of 2.4, when the number of VMs is increased to 100 and attains 

a minimum value of 1.3 when the number of VMs is reduced 

to 20. The VM side Load Level of the proposed system has 

increased using recursive algorithm. 
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Figure 10: Cloud side load level of the proposed system 

The cloud side level of the proposed system for varying the 

number of VM has been shown in figure 10. The cloud side 

load level of the proposed system achieves a maximum value 

of 10, when the number of VMs is increased to 100 and attains 

a minimum value of 2.4, when the number of VMs is reduced 

to 20. The Cloud side load level of the proposed system has 

increased by using active inactive data migration algorithm.  

 

Figure 11: Delay of the proposed system 

The delay of the proposed system for varying the number of 

VM has been shown in figure 10. The delay of the proposed 

system achieves a maximum value of 0.265 Kbps, when the 

number of VMs is increased to 100 and attains a minimum 

value of 0.235, when the number of VMs is reduced to 20. The 

delay of the proposed system has increased by using automata 

cellular learning function. 

4.3 Comparison of Proposed model with 

Previous Models 
This section highlights the proposed adaptive scheduling 

approach for effective VMs migration and to provide efficient 

service of physical servers with varying functionality during 

workflow execution by comparing it to the outcomes of 

existing approaches such as FFD [29], VMR [7], CLA-EC 

[15] and showing their results based on various comparisons 

is given below. 

 

Figure 12: Comparison of migrations 

Figure 12 shows a comparison of the number of migrations of 

the proposed model with existing techniques such as CLA-EC, 

Buyya, FFD. Whereas the comparison of number of migrations 

attains a maximum time. The number of migrations of the 

proposed system achieves a minimum value of 50, when the 

time s increased to 25 hrs and attains a maximum value of 60, 

when the time is reduced. Hence the proposed system achieves 

a smaller number of migration than the existing technique 

CLA-EC. 

 

Figure 13: Comparison of Switch off PM. 

The comparison of the switch off PM of various models is 

shown in figure 13. The proposed model has a switch off PM 

of 80% compared to existing models. The graph also indicates 

the switch off PM of an increase in the time. Hence the 

proposed model has achieved high switch off PM, which is 

compared with the existing techniques VMR. 

 

Figure 14: Comparison of Active PMs 
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The comparison of the number of active PM of various models 

is shown in figure 14. The proposed model has several active 

PM of 25% less than existing models. The graph also indicates 

the number of active PM of adecrease in the time. Hence the 

proposed model has a smaller number of active PM than the 

existing technique VMR. 

 

Figure 15: Comparison of Solution size 

The comparison of the solution size of various models is shown 

in figure 15. The proposed model has a solution size of 280 less 

than existing models. The graph also indicates the solution size 

PM of a decrease in the time. Hence the proposed model has 

less solution size, which is compared with the existing 

technique CLA-Ec. Overall, the proposed model shows that it 

is more efficient and more accurate when compared to previous 

models such as CLA-EC, Buyya, FFD, VMR, and Random, 

which involves VM migration for efficient service of physical 

servers with varying functionality during workflow execution. 

The proposed system achieves less through put 9.5 Mbps in a 

100 number of VM, when compared to other existing 

techniques, its Cost function value is 168 which is higher than 

the existing techniques, and its waiting time is 0.144 sec higher 

than the existing techniques. This proves that the proposed 

system performed well when compared to other existing 

techniques like CLA-EC, Buyya, FFD, VMR, and Random. 

5. Conclusion 
The Runner root algorithm is deployed by the suggested multi-

level-optimized scheduling algorithm with VM migration for 

scheduling workflows tasks in a multi-cloud to minimize traffic 

and congestion with efficient work schedule and resource 

allocation algorithm based on steepest descent method, which 

is address the issues of flexibility of the resource management 

and reduces the computation processing time. Where the 

throughput is reduced 9.5 Mbps, when the migration is 

increased by using the proposed algorithm and utilizing the 

steepest descent algorithm at the national level, the waiting 

time of the suggested system has increased by 0.140 sec. The 

existing systems such as CLA-EC, FFD & VMR have the 

number of migrations as 10, 58, and 12. The proposed system 

achieves 50 no. of migrations. Moreover, the proposed system 

achieves 25% less than the no. of active Pm, which is compared 

with existing techniques by using the Data replacing approach. 

Hence, resource allocation for combined task scheduling & 

migration is considered when using multi-level optimization. 

Recursive algorithm to determine the execution duration to 

prevent erratic migration across virtual machines. Hence the 

proposed model performs well. Thus, the proposed system has 

been used to perform a better task scheduling in a complex 

multi cloud environment with higher flexibility, lowest 

economic cost, and low computational time according to the 

results. 
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