
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.27, June 2024

20

Implementation of Polynomial Regression using Least
Squares and Gradient Descent in Python

Ahmad Farhan AlShammari
Department of Computer and Information Systems

College of Business Studies, PAAET
Kuwait

ABSTRACT
The goal of this research is to develop a polynomial regression

program using least squares and gradient descent in Python.

Polynomial regression helps to predict the output data based on

the features of the input data using a polynomial function of

degree (n). Least squares is used to minimize the error between

the observed and predicted data. Gradient descent is used to

find the optimal solution that provides the minimum value of

error function.

The basic steps of polynomial regression using least squares

and gradient descent are explained: preparing observed data,

computing matrix of features, initializing weights, computing

predicted data, computing error function, computing partial

derivatives, updating weights, computing final predictions, and

plotting predicted data.

The developed program was tested on an experimental dataset.

The program successfully performed the basic steps of

polynomial regression using least squares and gradient descent

and provided the required results.

Keywords
Artificial Intelligence, Machine Learning, Prediction,

Polynomial Regression, Least Squares, Mean Squared Error,

MSE, Gradient Descent, Python, Programming.

1. INTRODUCTION
In recent years, machine learning has played a major role in the

development of computer systems. Machine learning (ML) is a

branch of Artificial Intelligence (AI) which is focused on the

study of computer algorithms to improve the performance and

efficiency of computer programs [1-12].

Polynomial regression is one of the important applications in

machine learning. It is sharing the knowledge between the

related fields: machine learning, programming, data science,

mathematics, statistics, and numerical methods [13-20].

Fig 1: Field of Polynomial Regression

In this paper, polynomial regression is applied using least

squares and gradient descent to predict the output data based on

the features of the input data. Polynomial regression has a wide

range of applications in different fields like industry, business,

education, marketing, advertising, medicine, public health,

agriculture, environment, climate change, etc.

2. LITERATURE REVIEW
The review of literature revealed the major contributions in the

field of polynomial regression using least squares and gradient

descent [21-32].

Polynomial regression is an important algorithm in machine

learning. It helps to model the relationship between the

independent variable (x) and the dependent variable (y) using a

polynomial function of degree (n) in the following form:

y = a0 + a1 x + a2 x2 + … + an xn

where: (y) is the dependent variable, (x) is the independent

variable, (a0, a1, …, an) are the coefficients (or weights)

associated with the powers of the independent variable.

In general, polynomial regression can provide linear and non-

linear models, for example: linear, quadratic, and cubic.

Linear: f(x) = a0 + a1x

Quadratic: f(x) = a0 + a1x + a2x2

Cubic: f(x) = a0 + a1x + a2x2 + a3x3

Fig 2: Models of Polynomial Regression

Polynomial Regression:
Polynomial regression is a prediction algorithm used to predict

the output data based on the features of the input data. The

concept of polynomial regression is illustrated in the following

diagram:

Fig 3: Explanation of Polynomial Regression

The input data (X) is transformed to compute the matrix of

features (Xf). Then, it is processed using the weights (W) to

predict the output data (Yp).

Polynomial
Regression

Mathematics

Numerical

Methods

Statistics

Machine
Learning

Data Science

Programming

Cubic Quadratic Linear

 .

Weights

W

Output

Data

Yp

Matrix

of Features

Xf

Input

Data

X

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.27, June 2024

21

The matrix of features (Xf) holds the powers of the input data

(X). It is represented in the following form:

 Xf =

[

 1
1

x0 x0
2

x1 x1
2

⋯ x0
n-1

⋯ x1
n-1

1 x2 x2
2 ⋯ x2

n-1

⋮
1

⋮ ⋮
xm-1 xm-1

2
⋱
⋯

⋮
xm-1

n-1]

The fundamental concepts of polynomial regression using least

squares and gradient descent are explained in the following

section.

Least Squares:
Least Squares is a mathematical method used to minimize the

error between the observed and predicted data. The error

function is defined by the Mean Squared Error (MSE). It is

computed by the following formula:

 MSE = (
1

m
) ∑(𝑦 − 𝑦𝑝)

2
 (1)

where: (y) is the observed value, (yp) is the predicted value, and

(m) is the number of samples.

The concept of least squares is illustrated in the following

diagram:

Fig 4: Explanation of Least Squares

Gradient Descent:
Gradient descent is an optimization method used to find the

optimal solution that provides the minimum value of error

function.

The concept of gradient descent is illustrated in the following

diagram:

Fig 5: Explanation of Gradient Descent

Gradient descent is an iterative method that starts by giving

initial values to the parameters. Then, the partial derivatives of

error function with respect to parameters are used to update the

parameters. This process continues until the optimal solution is

reached to provide the minimal value of error function.

In general, the parameter (p) is updated by the following

formula:

 p
new

 = p
old

 − α (
∂E

∂p
) (2)

where: (pnew) is the new value of parameter, (pold) is the old

value of parameter, (α) is the learning rate, (
∂E

∂p
) is the partial

derivative of error function with respect to parameter.

By using formula (1), the partial derivative of error function

(MSE) with respect to weight (w) is given by the following

formula:

∂MSE

∂w
 = (

−1

m
) ∑ (y − y

p
) 𝑥𝑗 (3)

Therefore, the weight (w) is updated by the following formula:

wnew = wold − α (
∂MSE

∂w
) (4)

The steps of gradient descent method are explained in the

following algorithm:

Algorithm 1: Gradient Descent Method

initialize weights

W = [0, …]

learning rate

α = 0.0001

number of iterations

nt = 1000

for t = 0 to nt do

 # compute predicted data

 yp = ∑(w * x)

 # compute error function

 MSE = (1/m) ∑(y – yp)2

 # compute partial derivative w.r.t. weights

 dw = (–1/m) ∑(y – yp) xj

 # update weights

 w = w – α * dw

end for

R-Squared:
R-squared (R2) is a statistical measure used to evaluate the

polynomial regression model. It is computed by the following

formula:

R2 = 1 − (
∑(y − y

p
)2

∑(y − y̅)2
) (5)

where: (y) is the observed value, (yp) is the predicted value, and

(y̅) is the average of the observed values.

R2 can take values between (0) and (1), where: (1) indicates that

the predicted data fully fits with the observed data and (0)

indicates that the predicted data does not fit with the observed

data.

Observed

Predicted

(y - yp)

x

y

yp

E(p)

p

Minimum

Error

Initial

Value
Optimal

Value

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.27, June 2024

22

Polynomial Regression System:
The polynomial regression system is explained in the following

outline:

Input: Observed data (X, Y).

Output: Predicted data (Yp).

Processing: The observed data is prepared for processing.

First, the matrix of features is computed and the weights are

initialized to zeros. Then, the predicted data is computed for the

current values of weights and the error function is computed.

After that, the partial derivatives of error function are computed

and the weights are updated. At last, the final predictions are

computed and the predicted data is plotted.

Fig 6: Diagram of Polynomial Regression System

Python:
Python [33] is a general high-level programming language. It

is very simple, easy to learn, and powerful. It is the most

popular programming language, especially for the development

of machine learning applications.

Python provides many additional libraries for different

purposes such as Numpy [34], Pandas [35], Matplotlib [36],

NLTK [37], SciPy [38], and SK Learn [39].

In this research, the standard functions of Python are applied

without using any additional library.

3. RESEARCH METHODOLOGY
The basic steps of polynomial regression are: (1) preparing

observed data, (2) computing matrix of features, (3)

initializing weights, (4) computing predicted data, (5)

computing error function, (6) computing partial derivatives,

(7) updating weights, (8) computing final predictions, and

(9) plotting predicted data.

Fig 7: Steps of Polynomial Regression

Fig 8: Flowchart of Polynomial Regression

The steps of polynomial regression using least squares and

gradient descent are explained in the following section.

1. Preparing Observed Data:
The observed data (X, Y) is obtained from the original source

and converted into lists in the following form:

X = [x0, x1, x2, ..., xm-1]

Y = [y0, y1, y2, ..., ym-1]

2. Computing Matrix of Features:
The matrix of features (Xf) is represented in the following form:

Xf = [[1, x0, x02, ..., x0n-1],

 [1, x1, x12, ..., x1n-1],

 ...

 [1, xm-1, xm-12, ..., xm-1n-1]]

It is computed by the following code:

def compute_Xf(X):

 Xf = []

 for i in range(m):

 row = []

 for j in range(n):

 row.append(X[i]**j)

 Xf.append(row)

 return Xf

Polynomial

Regression System

Observed Data

(X, Y)

Predicted Data

(Yp)

1. Preparing Observed Data

2. Computing Matrix of Features

3. Initializing Weights

4. Computing Predicted Data

5. Computing Error Function

6. Computing Partial Derivatives

7. Updating Weights

8. Computing Final Predictions

9. Plotting Predicted Data

Initialize

Weights

Compute
Matrix of

Features

Compute

Final

Predictions

Plot
Predicted

Data

Gradient Descent:

•Compute Predicted Data:

yp = ∑(w * x)

•Compute Error Function

MSE = (1/m) ∑(y – yp)2

•Compute Partial Derivatives:

dw = (–1/m) ∑(y – yp) x j

•Update Weights:

w = w – α * dw

Observed

Data

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.27, June 2024

23

3. Initializing Weights:
The weights (W) are initialized to zeros by the following code:

W = [0, ...]

4. Computing Predicted Data:
The predicted data (Yp) is computed by the following code:

def compute_Yp(Xf, W):

 Yp = []

 for i in range(m):

 Yp.append(dot(Xf[i], W))

 return Yp

5. Computing Error Function:
The error function (MSE) is computed by the following code:

def compute_MSE(Y, Yp):

 sum = 0

 for i in range(m):

 sum += (Y[i] - Yp[i])**2

 return sum/m

6. Computing Partial Derivatives:
The partial derivatives of error function with respect to weights

(dW) are computed by the following code:

def compute_dW(Xf, Y, Yp):

 Xf_t = transpose(Xf)

 delta = subtract(Y, Yp)

 dW = []

 for i in range(n):

 dW.append((-1/m)*dot(delta, Xf_t[i]))

 return dW

7. Updating Weights:
The weights (W) are updated by the following code:

def update_W(W, alpha, dW):

 W = subtract(W, multiply(alpha, dW))

 return W

8. Computing Final Predictions:
The final predicted data (Yp) is computed by the following

code:

Yp = compute_Yp(Xf, W)

9. Plotting Predicted Data:
The predicted data (Yp) is plotted using the "matplotlib" library.

It is done by the following code:

import matplotlib.pyplot as plt

plt.scatter(X, Y, color="blue")

plt.plot(X, Yp, color="red")

plt.show()

4. RESULTS AND DISCUSSION
The developed program was tested on an experimental dataset

from Kaggle [40]. The program output is explained in the

following section.

Observed Data:

The observed data (X, Y) is printed as shown in the following

view:

 X Y

0 : 63.45649398 156.3996764

1 : 63.97432572 172.8834702

2 : 64.30418789 163.1080171

3 : 64.7319256 177.5492634

4 : 64.76632913 167.1274611

5 : 64.78258298 165.6116262

6 : 65.11748489 165.7171122

7 : 65.23704952 181.0119732

8 : 65.27034552 168.6177462

9 : 65.27930021 155.2504207

...

Matrix of Features:
The matrix of features (Xf) is printed as shown in the following

view:

 Xf

0 : 1.0 63.45649398

1 : 1.0 63.97432572

2 : 1.0 64.30418789

3 : 1.0 64.7319256

4 : 1.0 64.76632913

5 : 1.0 64.78258298

6 : 1.0 65.11748489

7 : 1.0 65.23704952

8 : 1.0 65.27034552

9 : 1.0 65.27930021

...

Processing Gradient Descent:
The gradient descent method is processed (1,000) iterations.

For each iteration; the current value of error function (MSE) is

printed as shown in the following view:

t MSE

0 35280.73598330422

100 139.632191285907

200 139.6321664935802

300 139.63216649358026

400 139.63216649358026

500 139.63216649358026

600 139.63216649358026

700 139.63216649358026

800 139.63216649358026

900 139.63216649358026

Error Function Plot:
The error function (MSE) is plotted as shown in the following

chart:

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.27, June 2024

24

Fig 9: Error Function Plot

The plot shows that the error function is decreasing with

iterations which indicates that the polynomial regression model

is converging to the optimal solution.

Final Weights:
The final values of weights (W) are printed as shown in the

following view:

Weights (W):

w0 : 186.84726033099986

w1 : 15.139521908242594

Final Predictions:
The final predicted data (Yp) is printed as shown in the

following view:

 Y Yp

0 : 156.3996764 154.1124867702328

1 : 172.8834702 157.14256355063677

2 : 163.1080171 159.0727420716572

3 : 177.5492634 161.57563635769336

4 : 167.1274611 161.77694757399104

5 : 165.6116262 161.87205648615847

6 : 165.7171122 163.83172489351398

7 : 181.0119732 164.53135371333212

8 : 168.6177462 164.72618425129866

9 : 155.2504207 164.77858234926907

...

Predicted Data Plot:
The final predicted data (Yp) is plotted as shown in the

following chart:

Fig 10: Polynomial Regression Model (Degree=1)

The plot shows that the predicted data (Yp) is strongly related

to the observed data (Y).

R-Squared:
The R-squared (R2) of the polynomial regression model is

printed as shown in the following view:

R2 = 0.621426

The R2 value is accepted which indicates that the predicted data

fits with the observed data in about (%62) of the samples.

Plotting Higher Degrees:
The plots of higher degrees (quadratic and cubic) are shown in

the following charts:

Fig 11: Polynomial Regression Model (Degree=2)

Fig 12: Polynomial Regression Model (Degree=3)

In summary, the program output shows that the program

successfully performed the basic steps of polynomial

regression using least squares and gradient descent and

provided the required results.

5. CONCLUSION
Machine learning is playing a major role in the development of

computer systems. It helps to improve the performance and

efficiency of computer programs.

Polynomial regression is one of the important applications in

machine learning. It helps to predict the output data based on

the features of the input data. Polynomial regression is applied

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.27, June 2024

25

using least squares and gradient descent. Least squares is used

to minimize the error between the observed and predicted data.

Gradient descent is used to find the optimal solution that

provides the minimum value of error function.

In this research, the author developed a program to perform

polynomial regression using least squares and gradient descent

in Python. The basic steps of polynomial regression are:

preparing observed data, computing matrix of features,

initializing weights, computing predicted data, computing error

function, computing partial derivatives, updating weights,

computing final predictions, and plotting predicted data.

The program was tested on an experimental dataset and

provided the required results: matrix of features, predicted data,

error function, weights, and final predictions.

In future work, more research is needed to improve and develop

the current methods of polynomial regression using least

squares and gradient descent. In addition, they should be more

investigated on different fields, domains, and datasets.

6. REFERENCES
[1] Sammut, C., & Webb, G. I. (2011). "Encyclopedia of

Machine Learning". Springer Science & Business Media.

[2] Jung, A. (2022). "Machine Learning: The Basics".

Singapore: Springer.

[3] Kubat, M. (2021). "An Introduction to Machine

Learning". Cham, Switzerland: Springer.

[4] Mohammed, M., Khan, M. B., & Bashier, E. B. M. (2016).

"Machine Learning: Algorithms and Applications". Crc

Press.

[5] Dey, A. (2016). "Machine Learning Algorithms: A

Review". International Journal of Computer Science and

Information Technologies, 7 (3), 1174-1179.

[6] Bonaccorso, G. (2018). "Machine Learning Algorithms:

Popular Algorithms for Data Science and Machine

Learning". Packt Publishing.

[7] Jo, T. (2021). "Machine Learning Foundations:

Supervised, Unsupervised, and Advanced Learning".

Springer.

[8] Chopra, D., & Khurana, R. (2023). "Introduction to

Machine Learning with Python". Bentham Science

Publishers.

[9] Müller, A. C., & Guido, S. (2016). "Introduction to

Machine Learning with Python: A Guide for Data

Scientists". O'Reilly Media.

[10] Raschka, S. (2015). "Python Machine Learning". Packt

Publishing.

[11] Forsyth, D. (2019). "Applied Machine Learning". Cham,

Switzerland: Springer.

[12] Sarkar, D., Bali, R., & Sharma, T. (2018). "Practical

Machine Learning with Python". Apress.

[13] Holmes, M. H. (2023). "Introduction to Scientific

Computing and Data Analysis". Springer Nature.

[14] Brandt, S. (2014). "Data Analysis: Statistical and

Computational Methods for Scientists and Engineers".

Springer.

[15] Igual, L., & Seguí, S. (2024). "Introduction to Data

Science: A Python Approach to Concepts, Techniques and

Applications". Springer Nature.

[16] Qamar, U., & Raza, M. S. (2023). "Data Science Concepts

and Techniques with Applications". Berlin/Heidelberg,

Germany: Springer.

[17] Aggarwal, C. C. (2024). "Probability and Statistics for

Machine Learning: A Textbook". Cham, Switzerland:

Springer.

[18] VanderPlas, J. (2017). "Python Data Science Handbook:

Essential Tools for Working with Data". O'Reilly Media.

[19] James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor,

J. (2023). "An Introduction to Statistical Learning: With

Applications in Python". Springer Nature.

[20] Kong, Q., Siauw, T., & Bayen, A. (2020). "Python

Programming and Numerical Methods: A Guide for

Engineers and Scientists". Academic Press.

[21] Peckov, A. (2012). "A Machine Learning Approach to

Polynomial Regression". Ljubljana, Slovenia.

[22] Ostertagová, E. (2012). "Modelling using Polynomial

Regression". Procedia Engineering, 48, 500-506.

[23] Groß, J. (2003). "Linear Regression". Springer Science &

Business Media.

[24] Olive, D. J. (2017). "Linear Regression". Berlin,

Germany: Springer.

[25] Yan, X., & Su, X. (2009). "Linear Regression Analysis:

Theory and Computing". World Scientific.

[26] Schroeder, L. D., Sjoquist, D. L., & Stephan, P. E. (2016).

"Understanding Regression Analysis: An Introductory

Guide". Sage Publications.

[27] Montgomery, D.C., Peck, E.A., Vining G. G. (20012).

"Introduction to Linear Regression Analysis". Wiley

Series in Probability and Statistics: John Wiley & Sons.

[28] Kutner, N., Nachtsheim, C., & Neter, J. (2004). "Applied

Linear Regression Models". McGraw-Hill/Irwin Series:

Operations and Decision Sciences.

[29] Seber, G. A., & Lee, A. J. (2003). "Linear Regression

Analysis". John Wiley & Sons.

[30] Leemis, L.M. (1991). "Applied Linear Regression

Models". Journal of Quality Technology, 23, 76-77.

[31] Weisberg, S. (2005). "Applied Linear Regression". John

Wiley & Sons.

[32] Massaron, L., & Boschetti, A. (2016). "Regression

Analysis with Python". Packt Publishing.

https://search.proquest.com/openview/4a45f40fc5151f21eca9a93888725f89/1?pq-origsite=gscholar&cbl=24108
https://search.proquest.com/openview/4a45f40fc5151f21eca9a93888725f89/1?pq-origsite=gscholar&cbl=24108

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.27, June 2024

26

[33] Python: https://www.python.org

[34] Numpy: https://www.numpy.org

[35] Pandas: https:// pandas.pydata.org

[36] Matplotlib: https://www. matplotlib.org

[37] NLTK: https://www.nltk.org

[38] SciPy: https://scipy.org

[39] SK Learn: https://scikit-learn.org

[40] Kaggle: https://www.kaggle.com

IJCATM : www.ijcaonline.org

