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ABSTRACT 
The goal of this research is to develop a polynomial regression 

program using least squares and gradient descent in Python. 

Polynomial regression helps to predict the output data based on 

the features of the input data using a polynomial function of 

degree (n). Least squares is used to minimize the error between 

the observed and predicted data. Gradient descent is used to 

find the optimal solution that provides the minimum value of 

error function. 

 

The basic steps of polynomial regression using least squares 

and gradient descent are explained: preparing observed data, 

computing matrix of features, initializing weights, computing 

predicted data, computing error function, computing partial 

derivatives, updating weights, computing final predictions, and 

plotting predicted data. 

 

The developed program was tested on an experimental dataset. 

The program successfully performed the basic steps of 

polynomial regression using least squares and gradient descent 

and provided the required results. 
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1. INTRODUCTION 
In recent years, machine learning has played a major role in the 

development of computer systems. Machine learning (ML) is a 

branch of Artificial Intelligence (AI) which is focused on the 

study of computer algorithms to improve the performance and 

efficiency of computer programs [1-12]. 

  

Polynomial regression is one of the important applications in 

machine learning. It is sharing the knowledge between the 

related fields: machine learning, programming, data science, 

mathematics, statistics, and numerical methods [13-20]. 

 

 
 

Fig 1: Field of Polynomial Regression 

 

In this paper, polynomial regression is applied using least 

squares and gradient descent to predict the output data based on 

the features of the input data. Polynomial regression has a wide 

range of applications in different fields like industry, business, 

education, marketing, advertising, medicine, public health, 

agriculture, environment, climate change, etc. 

2. LITERATURE REVIEW 
The review of literature revealed the major contributions in the 

field of polynomial regression using least squares and gradient 

descent [21-32].  

 

Polynomial regression is an important algorithm in machine 

learning. It helps to model the relationship between the 

independent variable (x) and the dependent variable (y) using a 

polynomial function of degree (n) in the following form:  

 

y = a0 + a1 x + a2 x2 + … + an xn  

 

where: (y) is the dependent variable, (x) is the independent 

variable, (a0, a1, …, an) are the coefficients (or weights) 

associated with the powers of the independent variable. 

 

In general, polynomial regression can provide linear and non-

linear models, for example: linear, quadratic, and cubic.  

 

Linear:     f(x) = a0 + a1x 

Quadratic:   f(x) = a0 + a1x + a2x2 

Cubic:     f(x) = a0 + a1x + a2x2 + a3x3  

 
 

Fig 2: Models of Polynomial Regression 

 

Polynomial Regression: 
Polynomial regression is a prediction algorithm used to predict 

the output data based on the features of the input data. The 

concept of polynomial regression is illustrated in the following 

diagram:  

 

 
 

Fig 3: Explanation of Polynomial Regression 

 

The input data (X) is transformed to compute the matrix of 

features (Xf). Then, it is processed using the weights (W) to 

predict the output data (Yp).  
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The matrix of features (Xf) holds the powers of the input data 

(X). It is represented in the following form: 

 

 Xf = 

[
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The fundamental concepts of polynomial regression using least 

squares and gradient descent are explained in the following 

section. 

 

Least Squares: 
Least Squares is a mathematical method used to minimize the 

error between the observed and predicted data. The error 

function is defined by the Mean Squared Error (MSE). It is 

computed by the following formula: 

 

 MSE  =  (
1

m
) ∑(𝑦 − 𝑦𝑝)

2
                (1) 

 

where: (y) is the observed value, (yp) is the predicted value, and 

(m) is the number of samples. 

 

The concept of least squares is illustrated in the following 

diagram: 

 

 
Fig 4: Explanation of Least Squares 

 

Gradient Descent: 
Gradient descent is an optimization method used to find the 

optimal solution that provides the minimum value of error 

function.  

 

The concept of gradient descent is illustrated in the following 

diagram: 

 

 
 

Fig 5: Explanation of Gradient Descent 

 

Gradient descent is an iterative method that starts by giving 

initial values to the parameters. Then, the partial derivatives of 

error function with respect to parameters are used to update the 

parameters. This process continues until the optimal solution is 

reached to provide the minimal value of error function.  

 

In general, the parameter (p) is updated by the following 

formula: 

 

 p
new

 = p
old

 −  α (
∂E

∂p
)                          (2) 

 

where: (pnew) is the new value of parameter, (pold) is the old 

value of parameter, (α) is the learning rate, (
∂E

∂p
) is the partial 

derivative of error function with respect to parameter.  

 

By using formula (1), the partial derivative of error function 

(MSE) with respect to weight (w) is given by the following 

formula: 

 
∂MSE

∂w
  =  (

−1

m
) ∑ (y −  y

p
) 𝑥𝑗        (3) 

 

Therefore, the weight (w) is updated by the following formula: 

 

wnew = wold −  α (
∂MSE

∂w
)                   (4) 

 

The steps of gradient descent method are explained in the 

following algorithm: 

 

Algorithm 1: Gradient Descent Method 

# initialize weights 

W = [0, …] 

# learning rate 

α = 0.0001 

# number of iterations 

nt = 1000 

for t = 0 to nt do 

       # compute predicted data 

       yp = ∑(w * x) 

       # compute error function 

       MSE = (1/m) ∑(y – yp)2 

       # compute partial derivative w.r.t. weights 

       dw = (–1/m) ∑(y – yp) xj  

       # update weights 

       w = w – α * dw 

end for 

 

R-Squared: 
R-squared (R2) is a statistical measure used to evaluate the 

polynomial regression model. It is computed by the following 

formula: 

 

R2 =  1 −  ( 
∑(y − y

p
)2

∑(y − y̅)2 
 )         (5) 

 

where: (y) is the observed value, (yp) is the predicted value, and 

(y̅) is the average of the observed values. 

 

R2 can take values between (0) and (1), where: (1) indicates that 

the predicted data fully fits with the observed data and (0) 

indicates that the predicted data does not fit with the observed 

data. 
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Polynomial Regression System: 
The polynomial regression system is explained in the following 

outline: 

 

Input: Observed data (X, Y). 

Output: Predicted data (Yp).   

Processing: The observed data is prepared for processing. 

First, the matrix of features is computed and the weights are 

initialized to zeros. Then, the predicted data is computed for the 

current values of weights and the error function is computed. 

After that, the partial derivatives of error function are computed 

and the weights are updated. At last, the final predictions are 

computed and the predicted data is plotted. 

 

 
 

Fig 6: Diagram of Polynomial Regression System 

 

Python: 
Python [33] is a general high-level programming language. It 

is very simple, easy to learn, and powerful. It is the most 

popular programming language, especially for the development 

of machine learning applications.  

 

Python provides many additional libraries for different 

purposes such as Numpy [34], Pandas [35], Matplotlib [36], 

NLTK [37], SciPy [38], and SK Learn [39]. 

 

In this research, the standard functions of Python are applied 

without using any additional library. 

 

3. RESEARCH METHODOLOGY 
The basic steps of polynomial regression are: (1) preparing 

observed data, (2) computing matrix of features, (3) 

initializing weights, (4) computing predicted data, (5) 

computing error function, (6) computing partial derivatives, 

(7) updating weights, (8) computing final predictions, and 

(9) plotting predicted data. 

 

 
 

Fig 7: Steps of Polynomial Regression 

 

 
 

Fig 8: Flowchart of Polynomial Regression 

 

The steps of polynomial regression using least squares and 

gradient descent are explained in the following section.  

 

1. Preparing Observed Data: 
The observed data (X, Y) is obtained from the original source 

and converted into lists in the following form: 

 
X = [x0, x1, x2, ..., xm-1] 

Y = [y0, y1, y2, ..., ym-1] 

 

2. Computing Matrix of Features: 
The matrix of features (Xf) is represented in the following form: 

 
Xf = [[1, x0, x02, ..., x0n-1], 

      [1, x1, x12, ..., x1n-1], 

       ... 

      [1, xm-1, xm-12, ..., xm-1n-1]] 

 

It is computed by the following code: 

 
def compute_Xf(X): 

    Xf = [] 

    for i in range(m): 

        row = [] 

        for j in range(n): 

            row.append(X[i]**j) 

        Xf.append(row) 

    return Xf 
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3. Initializing Weights: 
The weights (W) are initialized to zeros by the following code: 

 
W = [0, ...] 

 

4. Computing Predicted Data: 
The predicted data (Yp) is computed by the following code: 

 
def compute_Yp(Xf, W): 

    Yp = [] 

    for i in range(m): 

        Yp.append(dot(Xf[i], W)) 

    return Yp 

 

5. Computing Error Function: 
The error function (MSE) is computed by the following code: 

 
def compute_MSE(Y, Yp): 

    sum = 0 

    for i in range(m): 

        sum += (Y[i] - Yp[i])**2 

    return sum/m 

 

6. Computing Partial Derivatives: 
The partial derivatives of error function with respect to weights 

(dW) are computed by the following code: 

 
def compute_dW(Xf, Y, Yp): 

    Xf_t = transpose(Xf) 

    delta = subtract(Y, Yp) 

    dW = []     

    for i in range(n): 

        dW.append((-1/m)*dot(delta, Xf_t[i])) 

    return dW 

 

7. Updating Weights: 
The weights (W) are updated by the following code: 

 
def update_W(W, alpha, dW): 

    W = subtract(W, multiply(alpha, dW)) 

    return W 

 

8. Computing Final Predictions: 
The final predicted data (Yp) is computed by the following 

code: 

 
Yp = compute_Yp(Xf, W) 

 

9. Plotting Predicted Data: 
The predicted data (Yp) is plotted using the "matplotlib" library. 

It is done by the following code: 

 
import matplotlib.pyplot as plt 

 

plt.scatter(X, Y, color="blue") 

plt.plot(X, Yp, color="red")  

plt.show() 

 

4. RESULTS AND DISCUSSION 
The developed program was tested on an experimental dataset 

from Kaggle [40]. The program output is explained in the 

following section. 

 

Observed Data: 

The observed data (X, Y) is printed as shown in the following 

view:  
 

  X   Y 

------------------------------------ 

0 :  63.45649398   156.3996764 

1 :  63.97432572   172.8834702 

2 :  64.30418789   163.1080171 

3 :  64.7319256   177.5492634 

4 :  64.76632913   167.1274611 

5 :  64.78258298   165.6116262 

6 :  65.11748489   165.7171122 

7 :  65.23704952   181.0119732 

8 :  65.27034552   168.6177462 

9 :  65.27930021   155.2504207 

... 

 

Matrix of Features: 
The matrix of features (Xf) is printed as shown in the following 

view:  

 
        Xf 

---------------------------  

0 : 1.0  63.45649398  

1 : 1.0  63.97432572  

2 : 1.0  64.30418789  

3 : 1.0  64.7319256  

4 : 1.0  64.76632913  

5 : 1.0  64.78258298  

6 : 1.0  65.11748489  

7 : 1.0  65.23704952  

8 : 1.0  65.27034552  

9 : 1.0  65.27930021 

... 

 

Processing Gradient Descent: 
The gradient descent method is processed (1,000) iterations. 

For each iteration; the current value of error function (MSE) is 

printed as shown in the following view: 

 
t  MSE 

--------------------------- 

0   35280.73598330422 

100   139.632191285907 

200   139.6321664935802 

300   139.63216649358026 

400   139.63216649358026 

500   139.63216649358026 

600   139.63216649358026 

700   139.63216649358026 

800   139.63216649358026 

900   139.63216649358026 

 

Error Function Plot: 
The error function (MSE) is plotted as shown in the following 

chart:  
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Fig 9: Error Function Plot  

 

The plot shows that the error function is decreasing with 

iterations which indicates that the polynomial regression model 

is converging to the optimal solution. 

 

Final Weights: 
The final values of weights (W) are printed as shown in the 

following view: 

 
Weights (W): 

w0 :  186.84726033099986 

w1 :  15.139521908242594 

 

Final Predictions: 
The final predicted data (Yp) is printed as shown in the 

following view: 

 
  Y   Yp 

------------------------------------------- 

0 :  156.3996764   154.1124867702328 

1 :  172.8834702   157.14256355063677 

2 :  163.1080171   159.0727420716572 

3 :  177.5492634   161.57563635769336 

4 :  167.1274611   161.77694757399104 

5 :  165.6116262   161.87205648615847 

6 :  165.7171122   163.83172489351398 

7 :  181.0119732   164.53135371333212 

8 :  168.6177462   164.72618425129866 

9 :  155.2504207   164.77858234926907 

... 

 

Predicted Data Plot: 
The final predicted data (Yp) is plotted as shown in the 

following chart: 

 

Fig 10: Polynomial Regression Model (Degree=1) 

 

The plot shows that the predicted data (Yp) is strongly related 

to the observed data (Y).  

 

R-Squared: 
The R-squared (R2) of the polynomial regression model is 

printed as shown in the following view: 

 
R2 = 0.621426 

 

The R2 value is accepted which indicates that the predicted data 

fits with the observed data in about (%62) of the samples.  

 

Plotting Higher Degrees: 
The plots of higher degrees (quadratic and cubic) are shown in 

the following charts: 

 
Fig 11: Polynomial Regression Model (Degree=2) 

 
Fig 12: Polynomial Regression Model (Degree=3) 

 

In summary, the program output shows that the program 

successfully performed the basic steps of polynomial 

regression using least squares and gradient descent and 

provided the required results. 

 

5. CONCLUSION 
Machine learning is playing a major role in the development of 

computer systems. It helps to improve the performance and 

efficiency of computer programs. 

 

Polynomial regression is one of the important applications in 

machine learning. It helps to predict the output data based on 

the features of the input data. Polynomial regression is applied 
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using least squares and gradient descent. Least squares is used 

to minimize the error between the observed and predicted data. 

Gradient descent is used to find the optimal solution that 

provides the minimum value of error function. 

 

In this research, the author developed a program to perform 

polynomial regression using least squares and gradient descent 

in Python. The basic steps of polynomial regression are: 

preparing observed data, computing matrix of features, 

initializing weights, computing predicted data, computing error 

function, computing partial derivatives, updating weights, 

computing final predictions, and plotting predicted data. 

 

The program was tested on an experimental dataset and 

provided the required results: matrix of features, predicted data, 

error function, weights, and final predictions. 

 

In future work, more research is needed to improve and develop 

the current methods of polynomial regression using least 

squares and gradient descent. In addition, they should be more 

investigated on different fields, domains, and datasets. 
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