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ABSTRACT 

Let S be a set of graphs on which a measure of distance (a 

metric) has been defined. The distance graph D(S) of S is that 

graph with vertex set S, such that two vertices(graphs) G 

and H are adjan- cent if and only if the distance between G 

and H is one. A graph H is obtained from a graph G by an 

edge rotation if G contains three distinct vertices u,v and w 

such that uv ∈ E(G), uw ∈/ E(G) and H ∼=G − uv + uw. In 

this case, G is transformed into H by “rotating” the edge uv 

of G into uw. A graph H is obtained from a graph G by an 

edge jump if G contains four distinct vertices u, v, w and x such 

that uv∈ E(G), wx ∈/ E(G) and H ∼= G − uv + wx. 

In this paper, I investigate the effect of the above mentioned 

edge operations viz., rotation and jump on certain graph 

parameters. I investigate rotations on DDR graphs, rotations 

on cycles, paths, Eulerian graphs, eccentric digraphs and the 

planarity property of the connected graph post edge rotation. 

We also present an algorithm that generates all rotation distance 

graphs at distance one. 
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1. INTRODUCTION 
Unless mentioned otherwise, for terminology and notation the 

reader may refer Buckley and Harary [3] and Chartrand and 

Zhang [9], new ones will be introduced as and when found 

necessary. 

In this paper, by a graph G, I mean a simple, undirected, 

connected graph without self-loops. The order and size are 

respectively the number of vertices denoted by n and the 

number of edges denoted by m.  

The distance d(u, v) between any two vertices u and v, of G, is 

the length of a shortest path between u and v. The eccentricity 

e(u) of a vertex u is the distance to a farthest vertex from u. 

The maximum and the minimum eccentricity amongst the 

vertices of G are respectively called the diameter diam(G) and 

radius rad(G). If d(u, v) = e(u), (v ≠ u) then we say that v is 

an eccentric vertex of u. 

 

Definition 1.1. The distance degree sequence (dds) of a 

vertex v in a graph G = (V , E) is the list of number of vertices 

at distance 1, 2, ....,e(v), in that order, where e(v) denotes the 

eccentricity of v. Thus the sequence (di0 ,di1 ,di2 ,.dij ), is the 

distance degree sequence (dds) of the vertex vi in G where dij 

denotes the number of vertices at distance j from vi. 

Several distances between graphs works with respect to 

transformations. In this paper I consider two elementary 

transformations namely edge rotations and edge jump.  

The transformation between graphs here is completely based on 

edge operations like edge jump and edge rotation. To perform 

them the basic idea is to usually consider two graphs G and H 

having the same order and the same size. V. Balaz et al. in [1] 

showed that a graph H is said to be obtained from G by an edge 

move if G contains vertices u, v, w and x (not necessarily 

distinct) such that uv ∈ E(G), wx ∈/ E(G) and H ∼= G − uv 

+ wx. A graph G is m − transformed (or move transformed) 

into a graph H if H is obtained from G by a sequence of edge 

moves. In [6] Chartrand et al. showed that a graph H is said 

to be obtained from G by an edge rotation if G contains 

distinct vertices u, v and w such that uv ∈ E(G) and uw ∈/ 

E(G) and H ∼=  G − uv + uw.  The rotation distance between 

graphs G and H is denoted by dr(G, H), if there exists a 

sequence of graphs G1, G2, . . . , Gk−1 such that G1 is obtained 

by an edge rotation on G, and for each 1 ≤ i ≤ k, Gi+1 is 

obtained by an edge rotation on Gi, with H obtained from 

Gk−1 by one edge rotation. In this case we denote the rotation 

distance from G to H as dr(G, H) and it is equal to k. We shall 

denote the rotation operated graph as Gr for convenience.  

 

Definition 1. [6] Let S = G1, G2,...,Gk be a set of graphs all 

of the same order and the same size. Then the rotation 

distance graph D(S) of S has S as its vertex set and vertices 

(graphs) Gi and Gj are adjacent if dr(Gi,Gj) = 1, where dr(Gi, 

Gj) is the rotation distance between Gi and Gj. 

 

Definition 1. [6] Let S = G1, G2,...,Gk be a set of graphs all 

of the same order and the same size. Then the rotation 

distance graph D(S) of S has S as its vertex set and vertices 

(graphs) Gi and Gj are adjacent if dr(Gi,Gj) = 1, where dr(Gi, 

Gj) is the rotation distance between Gi and Gj. 

 

A graph G is a edge rotation distance graph(ERDG) (or r -

distance graph) if G ∼= D(S) for some set S of graphs. 

 

Definition 2. [8] Let S = G1, G2,...,Gk be a set of graphs all 

of the same order and the same size (atleast 5). Then the jump 

distance graph Dj(S) of S has S as its vertex set and vertices 

(graphs) Gi and Gj are adjacent if dj(Gi,Gj) = 1, where dj(Gi, 

Gj) is the jump distance between Gi and Gj. A graph G is a 

jump rotation distance graph(EJDG) (or j - distance graph) if G 

∼= D(S) for some set S of graphs. 

 

In 1990, Chartrand et al. [7] showed that the cycles, the 

complete bipartite graphs K3,3, and K2,n (n ≥ 1) are edge rotation 
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distance graphs (ERDG). Later in 1997, Jarrett [20] gave a 

different proof technique and thus showed complete graphs, 

trees and wheel (W1,n) belong to the class of edge rotation 

distance graphs. It was shown that the complete bipar- tite 

graph Km,n (3 ≤ m ≤ n) is a edge rotation distance graph. In 

[17], [18], [19] Chitra et al. characterized few graphs to be 

ERDG and EJDG, and also showed that the Generalized 

Petersen Graph, Gp(n, 1), the generalized star, K(1,n) are edge 

rotation distance graphs. In [18] Chitra et al. showed that the 

Generalized Petersen graph, Gp(n, 1) and the general- ized 

star, K(1,n) are edge jump distance graphs. They further 

extended the work in [19] in showing the Ladder graph, 

Triangular snake, Quadrilateral Snake,Double triangular snake, 

Double Quadrilateral snake, Alternate triangular snake, 

Alternate quadrilateral snake are all edge rotation distance 

graphs (ERDG). Similar study is undertaken for jump 

distance, and several families of graphs have been shown to be 

edge jump distance graphs (EJDG). Many results are due to 

Jarrett [20] and Chartrand et al. [8].  

In this paper I find rotations on randomly generated Eulerian 

graphs from 0(zero) vertices. Also rotations on Distance 

degree regular (DDR) graphs and few results on some standard 

graphs with respect to edge rotation and edge jump and their 

effect on certain graph parameters. I present two conjectures 

with respect to edge rotation and also show Eulerian graph 

generated from 0 vertices is Edge rotation distance graph 

(ERDG).  

 

2. EDGE ROTATIONS AND EDGE 

JUMP ON DISTANCE DEGREE 

REGULAR GRAPHS 
The concept of distance degree regular (DDR) graphs was 

introduced by Bloom et al.[5] as the graphs for which all vertices 

have the same distance degree sequence. The study of DDR 

graphs was undertaken further by Bloom et al.[4], 

Halberstam et al.[12] and Huilgol et al. [13] ,[14] , [15]. In 

[13] Huilgol et al. have characterized DDR graphs of 

diameter three of certain extreme regularities. In the same 

paper they have given a general construction of a diameter 

three DDR graphs. But till date the characterizations for DDR 

graphs do not exist. Huilgol et al. [16] have defined Almost 

Distance Degree Regular graphs (or ADDR in short). 

Almost Distance Degree Regular (ADDR) graphs is defined 

as a graph G of order n if n − 1 vertices have the same 

distance degree sequences and one vertex with different 

distance degree sequence. Here I consider the graphs from [13], 

and operate rotations on them.  

 

3. MAIN RESULTS  
Theorem 2.1. If G is a DDR graph of diameter 3 and regularity 

d = p - 6, then rotation of any edge does not result in a 

DDR/ADDR graph. 

Proof. The DDR graphs were characterized by Huilgol et al. in 

[13] having diameter three and regularity , d = p − 6. Applying 

the definition of rotations, we start considering the edges from 

the set A to the set B. Taking one edge rotation, results in a non 

DDR graph. Hence we consider two rotations. Also we 

consider rotation with in the set A and rotation between the set 

A and the set B. First, let us consider the rotation(with in set A) 

from the vertex u1 to the say another vertex ui from the same set 

which is at distance two. By performing this, the degrees of 

atmost two vertices change, thus resulting in a vertex of 

higher degree and one vertex of lesser degree. To avoid this 

we make one more rotation, to the vertex which lost one degree 

in the earlier edge operation. The second case would be 

considering rotation between the set of vertices from the set A 

to the set B. Here again we consider two rotations in order to 

balance the degree of all the vertices. Thus, on repeating such 

several edge operation between the two sets we find that the 

distance degree sequence is not uniform through out the graph, 

which does not result in DDR graph.   

 

Remark 1.  

If G is a DDR graph of diameter three and regularity two, then 

given a rotation of any length, the graph requires atmost four 

rotations to regain its original structure. In [13] it was shown 

that C7 and C6 are the only two DDR graphs with diameter three 

and regularity two. Given a rotation on either of the graphs 

results in a induced cycle followed by a path. We shall consider 

them case by case. 

 

Case (i): In C6, a rotation results in a induced cycle followed 

by a path,  where the length of the induced cycle varies from 

a minimum of three to a maximum length of  

(n − 1). Thus depending on the length of the induced cycle 

formed the graph requires three or four rotations to regain the 

original structure in forming a C6. 

 

Case(ii): Similarly for C7, we again perform three to four 

rotations to get back C7 , given a edge rotation of any length. 

 

Theorem 2.2. Given a edge rotation on a cycle, Cn of any length, 

it requires at most four rotations to again form a cycle. 

 

Proof. Consider a cycle Cn of any length. Applying the 

definition of edge rotation, lets consider any edge ‘e’ of the 

cycle for rotation.  

 

Remark 2. Given a rotation of any length on a path, it 

requires atmost (n − 1) rotations to again form a path of the 

same length. 

 

4. RANDOMLY EULERIAN FROM 

ZERO VERTICES 
 

Definition 3. A closed trail containing all vertices and edges is 

called an Eulerian trail. A graph having Eulerian trail is called 

an Eulerian graph. 

 

Definition 4. [28] Randomly Eulerian from zero vertices. 

Note that all eulerian graphs on n ≤ 5 vertices are randomly 

Eulerian from atleast one of their vertices. If n ≥ 6 is even then 

take Cn/2 (n/2 here indicates that we consider half length of the 

cycle) and use the remaining n/2 vertices to form triangles each 

with a base on a different edge of the cycle. If n ≥ 7 is odd, 

form the graph described above for n − 1 and then subdivide 

any one of its edges with an additional vertex. 

 

Theorem 3.1. If G is a randomly Eulerian graph from 0(zero) 

vertices, then given a single edge rotation, the resultant graph 

requires at most four rotations to again form the same graph. 

 

Proof. As defined above if n is even, the first half of n is the 

inner cycle. Given any rotation of an edge of the inner cycle, 

we find that it requires at most four rotations to form the cycle 

as mentioned in Theorem 2.2 and Remark 1. 

 

Theorem 3.2. A randomly Eulerian graph from zero vertices is 

a ERDG. 

 

Proof. To prove this theorem I shall follow the method proposed 
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by Chartrand et al. in [7] with slight modifications adaptable to 

prove the proposed theorem. 

If n is even, then for the first n/2 (inner cycle), the construction 

is as follows: 

For n ≥ 3, let C : x1, x2, . . ., x2n+2, x1 be a (2n + 2) cycle, for i 

= 1, 2, . . .,n. Let Fi = C + x1 xi+2. For i = 1, 2, . . ., n − 1, 

define Hi = Fi ∪ Fi+1 and define Hn/2 = Fn ∪ F1. Then Cn/2 

∼= Dr(H1, H2, . . ., Hn/2). The modification that is done here, is 

by adding a new vertex vi for all the first Cn/2. That is vi is 

adjacent to xi. Next step is to generate the outer cycle for n 

≥ 3.  The above specified method shall be used again. Thus, 

we get Cn/2 ∼= Dr(Hn/2+1, Hn/2+2, . . ., Hn). Here also we add a 

new vertex yi in the reverse(backward) manner such that yi is 

adjacent to x2n+2. Since an edge rotation changes the degree of 

exactly two vertices, dr(Hi, Hj) ≥ 1 for integers i and j such 

that 1 ≤ i ≤ j ≤ n. On the other hand, 

dr(H1, H2, . . ., Hn/2),(Hn/2+1, Hn/2+2, . . ., Hn), 

(H1,Hn/2+1,H2,Hn/2+2,. . ., Hn/2,Hn) ∼= Eulerian graph from 

Zero vertices. 

 

Example: For generating a Eulerian graph from zero vertices. 

 

 
  

 

     FIGURE 1. Eulerian graph from zero vertices 

5. PLANARITY AND ROTATIONS 
 

Here in this section, the discussion would be  about the graphs 

that remain planar even after a single edge rotation. That is, I 

check out for the graphs that will be planar after an edge 

rotation. To consider general graphs and finding the planarity 

of the graph post rotation seems pretty. Hence, consider paths 

and then consider single edge rotations on them. Upon this then 

consider the power of such graphs and can later check for the 

planarity of the graph. As mentioned above in the beginning the 

denotion Gr denotes the newly obtained graph after a single 

edge rotation. 

 

Theorem 4.1. The graph (Gr)2 is planar only if G is a path of 

length 3 or length 4. 

 

Proof. Let the length of the path be less than three. Consider a 

P3 as shown below. The complement has just one edge, and 

applying the definition of rotation we find the resultant is again 

a P3. Now taking the first power we obtain a C3, which is planar 

which is a trivial case. 

 

Fig 2 : A planar graph post rotation and power  

 

Now if we consider the length of the path to be greater than 

five, i.e., P6 and shall perform the edge rotation on the pendant 

edges of the path and later take the first power of the resultant 

graph, which results in a non-planar graph. Thus, by 

considering the edges in the interior region also results in a non-

planar graph. Hence let us consider the length of the path to be 

three, that is P4. Here in this graph, the maximal sub graph is of 

length two along with a pendant edge. Taking the first power 

of this newly graph, we find  that the resultant graph is planar. 

Similarly the same operation is performed on a P5. Thus we 

again find that, the resultant graph is planar. 

   

6. ALGORITHM 
In the following algorithm,I shall generate all rotation distance 

graphs at distance one. 

 

Algorithm 5.1. This algorithm gives the maximum number of 

graphs that can be obtained by one edge rotation. 

 

Step 1: Input the adjacency matrix of the given graph. 

Step 2: In each row , for every removal of 1, one by one, 

append 0 to 1 , except vii [diagonal entries]. 

Step 3: For each row, sum the number of zeros appended to 1. 

Step 4: The sum of each rows numbers of zeros appended to 1 

gives the number of edge rotated graphs from the given graph. 

Step 5: Stop. 

 

Here are few conjectures presented below, that is left as an open 

problem to the readers which may be of some interest. 

 

Conjecture 5.1. A regular graph is a ERDG. 

 

Conjecture 5.2. A self-centered regular graph is a ERDG.  

 

Remark 3. If G is a ERDG, then the prism of G is again a 

ERDG.  

 

Conjecture 5.3. A Eulerian graph is a ERDG. 
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