
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.25, June 2024

8

New Framework for Securing Web APIs Token-based
Authentication / Authorization with Auto Expire Auto

Refresh (AEAR) Features

Mohamed Amer
Helwan University

Cairo, Egypt

Tarek S. Sobh
El Shorouk Academy

Cairo, Egypt

ABSTRACT
Token-based authentication for Web APIs allows users to

verify their unique identity. In return, they receive a unique

token that grants access to specific resources for a limited

period of time. These tokens are stored on the client's browser

with expiration properties [1, 2], making them vulnerable to

cyber-attacks such as Stealing Tokens through Redirection,

Cross-Site Request Forgery (CSRF), and Cross-Site Scripting

(XSS) [3]. The algorithms themselves can also be a source of

vulnerabilities, including Weak Symmetric Keys and Incorrect

Composition of Encryption and Signature [4]. Various

authentication protocols like Open Authorization (OAuth),

Security Assertion Markup Language (SAML), OpenID

Connect (OIDC), Client Initiated Backchannel Authentication

(CIBA), and JSON Web Token (JWT) and their associated

attacks are examined. A new framework that incorporate Multi-

Factor Authentication (MFA) and One Time Password (OTP)

is proposed to address these vulnerabilities, along with detailed

analysis and guidelines for its implementation.

General Terms

Web Development. Secure web apps. Token protocols

Keywords

Tokens; OAuth; SAML; OIDC; CIBA; JWT; XSS, CSRF

 INTRODUCTION
The Internet is accessible to everyone, allowing anyone to

access various services and resources. To safeguard these from

unauthorized access, legitimate users are required to verify

identities. However, repeatedly requesting legitimate users to

verify their identity for stateless applications can be frustrating

and may result in decreased customer satisfaction. This can

have a significant impact on the business, for example, on a

social media platform, if a user is constantly asked for

credentials when posting, they may interact less and potentially

deactivate their account, resulting in loss of customers and

ultimately the entire business. Token-based authentication for

Web APIs endpoints offers a smooth authentication process by

creating a unique access token for each server request,

eliminating the need to re-enter credentials. This ensures a

seamless user experience while maintaining data security. [1,

2] Attackers often target client endpoints during

authentication, waiting for the token to be stored in the browser

before launching attacks through poor implementation or

exploiting weaknesses in cryptographic algorithms. Token

expiration is designed to mitigate the risk of token theft or reuse

from browser caches, similar to CSRF attacks [5].Token-based

authentication is stateless, providing detailed access control,

scalability, efficiency, and flexibility with configurable

expiration times. Although efficient, it does come with

drawbacks such as data overhead, shorter lifespan, token

forgery, reply, disclosure, and redirect vulnerabilities [6, 1, 5].

This paper presents a secure framework for automatically

expiring tokens and implementing a seamless auto-renewal

scheme without user intervention.
 TOKEN AUTHENTICATION

AUTHORIZATION SCHEMATIC

STEPS
As explained in Fig 1, Token authentication-authorization

uses 6 steps:

1. Access Request: this step involves client requesting access

to a protected resource hosted by the Service Provider

(SP).

2. Identity Check: Service Provider verifies the identity of

the user by sending a request to the Identity Provider (IdP)

[7].

3. Login Request: The Identity Provider redirects the user to

a Login Page for authentication purposes.

4. Verification: After the user is authenticated by providing

credentials to the Identity Provider, they are authorized

and authorization claims against the protected resource are

created [7].

5. Token Generation: The authorization claims and identity

information are combined into a token and provided to

both the client and service provider. This token contains

the user's identification and permissions for future

requests, along with details on its active or expiry time [2].

Client stores token locally on their user agent [8] for future

use.

6. Resource Access: client includes the token in all

subsequent requests to access the protected resource until

it expires. When the token expires, the client must either

refresh it or request a new one by following the same steps

again.

Fig 1: API Endpoint Token Authentication-Authorization

User
Endpoint

1 3
6 4,

5

Service
Provider

 (SP)

Identity
Provider

(IdP)
5

2

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.25, June 2024

9

 OVERVIEW OF TOKEN-BASED

AUTHENTICATION FOR WEB APIS

PROTOCOLS
Authentication refers to the act of identifying and confirming

the digital identity of an entity, such as a user [9]. Token-Based

Authentication for web APIs involves authenticating the entity

once and then providing it with a token that must be included

in each API request. This token is utilized to either identify

the entity or supply details about its authorized resources.

3.1 Open Authorization (OAuth)
The OAuth authorization protocol allows third-party apps to

access a resource owned by a user without needing to share the

user's account credentials [7, 1, 2]. The key players in the

OAuth protocol are the Resource owner (Ro), the Client (Cl),

the Resource server (Rs), and the Authorization server (As).

The Client (Cl) aims on behalf of the Resource owner (Ro) to

access a resource hosted at the Resource server (Rs), the

Authorization server (As) grants or denies client requests and

issues tokens upon approval.

3.2 Security Assertion Markup Language

(SAML)
SAML, while considered the ancestor of authentication

protocols, remains a key component of web-based single sign-

on (SSO). It specifically facilitates identity federation [10, 11],

allowing identity providers (IdPs) to securely transmit

authenticated identities and attributes to service providers (SPs)

seamlessly and transparently. [12] This XML-based framework

created by “Security Services Technical Committee of the

Organization for the Advancement of Structured Information

Standards” (OASIS) [13], for transmitting user authentication,

entitlement, and attribute information. It serves as a language

for assertion, enabling its use with various authentication and

authorization protocols such as OAuth [14].

3.3 OpenID Connect (OIDC)
OpenID Connect is a public authentication protocol that uses

OAuth 2.0. Clients can authenticate an end user's identity with

the authorization server. [15]. It serves as a unified protocol for

securing mobile applications, web applications, and APIs [16].

OIDC introduces a new component known as the UserInfo

Endpoint [17], a safeguarded resource that provides

authenticated End-User claims [18].

3.4 Client-Initiated Backchannel

Authentication (CIBA)
 Client-Initiated Backchannel Authentication (CIBA) is an

extension to the OpenID Connect system [17]. CIBA decouples

the client application and authentication server, avoiding

redirection through the user's browser [19]. In order to decouple

the client application and authentication server, CIBA

introduces two devices the Consumption Device and

Authentication Device, as well as two new endpoints: the

backchannel authentication endpoint and backchannel client

notification endpoint [16]. A consumption device is a device

used by the user to access the service, such as a mobile device.

The authentication device is used by the user to authenticate

and give consent. The authentication endpoint is responsible

for starting an out-of-band authentication of the end-user by

sending a direct HTTP POST from the Client to the OpenID

Provider's Backchannel Authentication Endpoint. The

notification endpoint is responsible for informing the end-user

about the success or failure of the out-of-band authentication.

3.5 JSON Web Token (JWT)
JWT is a claims [20] container represented as JSON [21]

object, encoded using Base64-URL-safe [22] encoding, ready

to be transmitted between two parties [23]. These claims can

be authenticated and relied upon as it has been digitally signed.

3.6 Cross-interoperability of Token-Based

authentication protocols.
As explained earlier some token based protocols are either

extensions to other schemes, i.e. OAuth is extended by OIDC

which is in turn extended by CIBA, or payload to another one

i.e. SAML and JWT work as packing carrier for OAuth, ODIC

and CIBA. Finally, SAML could be converted to JWT and act

as a payload for it. Table 1 represents summery of relations

between token protocols and how can protocols are used

interchangeably.

Table 1: Cross-interoperability of Token-Based authentication protocols

 OAuth

SAML
 Integrated using access and

refresh tokens

SAML

OIDC

 OIDC expands OAuth 2.0 by

including an extra layer for

identity verification.

 Access, refresh, and ID

tokens are packed as SAML

objects.

OIDC

CIBA

Extends OIDC Which Extends

OAuth. CIBA decouples client

applications from the

authentication server

Access, refresh, ID, and

notification tokens Packed

into SAML Objects

CIBA Extends OIDC by

decoupling client

applications from the

authentication server

CIBA

JWT
 Access and refresh tokens

packed into JWT objects

SAML could be converted To

JSON objects and loaded into

JSON payload

Integrated by packing

access, refresh tokens,

and ID Tokens into JWT

Access, refresh, ID, and

notification tokens

Packed into JWT

Tokens

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.25, June 2024

10

3.7 Common Vulnerabilities in Token

Authentication Protocols
These protocols, essential for ensuring secure digital

communication, possess several vulnerabilities that can be

manipulated by malicious individuals. Recognizing these flaws

and the potential security risks they present is essential for

formulating tactics to safeguard confidential data and systems

[6, 1, 5].

3.7.1 Stealing Tokens through Redirection and

URL Manipulation
 Various token authentication protocols such as OAuth and

OIDC share a prominent weakness related to insecure

redirection and URL manipulation [24, 25]. This vulnerability

can be leveraged by attackers to intercept or redirect users

during the authentication procedure in order to pilfer

credentials or tokens. An example of this is demonstrated in

OAuth, where the reliance on redirection can be exploited if the

redirect URIs lack stringent validation, enabling attackers to

redirect responses and seize authorization codes or tokens.

3.7.2 Cross-Site Request Forgery (CSRF)
 The OpenID Connect (OIDC) protocol, derived from OAuth

2.0, is susceptible to Cross-Site Request Forgery (CSRF)

attacks, particularly when the state parameter is absent or

improperly utilized. In such cases, malicious actors can deceive

users into performing unauthorized actions within a web

application where they are logged in. [25] It is imperative to

adopt robust methods for generating and validating CSRF

tokens to counteract this threat, and this precaution must be

consistently implemented across various protocols to safeguard

the continuity of user sessions.

3.7.3 Reusability of Access Token
Tokens with long lifetimes, has no expiration field or Stored

in Browser History can be hijacked and reused by attackers

[24] to gain access to unauthorized resources [26]. OAuth,

SAML are sensitive to this class of attacks.

3.7.4 Signature and Assertion Flaws
Both JWT and SAML are vulnerable to issues related to

signatures and assertions. In the case of JWT, inadequate

implementation or validation of signature algorithms can

enable attackers to manipulate the token or evade signature

verification [27]. Likewise, SAML can be compromised

through the manipulation of assertion statements, enabling

attackers to assert false identities or attributes if these

statements are not adequately protected.

3.7.5 Endpoint Security and Misconfiguration
CIBA and OAuth are susceptible to compromise due to

vulnerabilities in endpoint security and misconfigurations.

These weaknesses frequently stem from inadequate security

protocols established at the endpoints managing authentication

requests, or from improperly configured services that

inadvertently make sensitive data or features accessible to

unauthorized entities [27, 28].

 MULTIFACTOR AUTHENTICATION
Multi-factor authentication (MFA) is a robust security

mechanism that necessitates the use of multiple authentication

methods from different categories of credentials to validate a

user's identity during a login or other transaction [29]. This

approach merges two or more separate credentials including

knowledge-based (password), possession-based (security

token), and intrinsic factors (biometric verification) to enhance

security measures [10].MFA provides increased security as it

establishes numerous security layers beyond single sign-ons to

mitigate potential single point failures, also it strengthen

protection against attacks such as brute force, dictionary,

malware, key loggers, and others [30]. On the other hand, it has

Challenges in usability as (MFA) tools may present various

usability challenges, including user apathy, difficulty

comprehending risk trade-offs [31], and the presence of user

interfaces that are not intuitive, also researchers have found a

lower adoption rate to be inevitable for MFAs, while avoidance

was pervasive among mandatory use [32].

 ONE TIME PASSWORD
 One-Time Password (OTP) is a password that remains valid

for a singular login session or transaction, commonly utilized

in MFA protocols to enhance security, especially in critical

operations such as online banking and digital payments [33].

OTPs offer robust security by virtue of their singe use, greatly

minimizing the chances of password theft and replay attacks.

These passwords are usually produced through cryptographic

methods that guarantee unpredictability, enhancing their

resistance to prediction. Time-based and Hash-based OTPs

(TOTP and HOTP) represent a prevalent manifestation of this

technology, wherein the password remains valid for a brief

duration, thereby heightening the security of the authentication

procedure. Nevertheless, despite the advantages they offer [34],

OTP systems may have weaknesses. In the event that a

confidential code utilized to create the OTP is leaked, an

unauthorized individual could potentially create a legitimate

OTP.

 ONE TIME JWT (OTP-JWT) WITH

AUTO EXPIRATION AUTO

RECOVERY (AEAR) FEATURES

PROPOSED MODEL
This proposed model has been introduced to mitigate

vulnerabilities and attacks related to token-based mechanisms.

This model requires a correctly signed JWT and involves three

essential stages: registration, authentication, and service

utilization. JWT is used as in implementation Example for the

model which could be also utilized for other protocols such as

OAuth, SAML, OIDC, CIBA as all are interoperable as

described in Table 1.

6.1 Registration stage
During this stage, the client enrolls with an Identity Provider

(IdP) [10]. The registration process typically involves

providing profile details and access credentials such as a

username or email address and password. An extra component

is included in the access information, serving as the shared key

(K) for the OTP algorithm OTP(K.C) where C represents a

counter for HOTP or a Time (T) for TOTP. Following a

successful registration, the user's information and login details,

including (K), are securely stored by the CSP [35].

6.2 Login phase
The user utilizes their credentials for the purpose of logging in.

Once authentication is completed successfully, the client-side

application will receive an initial JWT for use in subsequent

requests, with this initial JWT being denoted as JWT0.

6.3 Service utilization (Consuming) phase
Client application per server request (Ri) uses a shared key (K)

obtained in the registration phase to generate OTPi and use it

to sign the entire initial JWT (JWT0) including its signature

part.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.25, June 2024

11

𝑆𝑖 = 𝐻𝑀𝐴𝐶𝑆𝐻𝐴256(𝐽𝑊𝑇0. 𝑂𝑇𝑃𝑖)

Equation 1: Shared Key Generation

then the signature part of the original JWT0 is replaced by the

new signature (Si). The newly generated JWT is called One

Time JWT (OTJWT) and noted as (JWTi) as it changes with

the change of the OTPi.

𝐽𝑊𝑇𝑖 = 𝐵𝑎𝑠𝑒64(𝐻𝑒𝑎𝑑𝑒𝑟) + "∙" + 𝐵𝑎𝑠𝑒64(𝑃𝑎𝑦𝑙𝑜𝑎𝑑) +
"∙" + 𝐵𝑎𝑠𝑒64(Si)

Equation 2: JWT Generation

On the server side when it receives JWTi it uses the same steps

as the client side described above to calculate the signature

(Sic) then the calculated signature (Sic) is compared with the

received Si to validate the request Ri. Because OTPi signs the

entire JWT0 including the signature part then if JWTi is

validated this means that the original signature of the original

JWT (JWT0) is validated as it is included in Si.

Fig 2 Proposed Model Flow

6.4 Implementation Guidelines
Implementing a One-Time JSON Web Token (JWT) with auto-

expiration and auto-recovery features involves setting up a

secure and efficient token management system. Next guidelines

outline the steps and considerations necessary to implement

these features effectively.

6.4.1 Setting Up JWT with Auto-Expiration.
Lifespan of tokens should be defined. JWTs support the “exp”

claim, which specifies the expiration time. The value must be a

number containing a Numeric Date value the shorter the

expiration value the more secure from security prospective and

more error prone from reusability prospective as any delta time

difference between client user agent and server causes the token

to be expired and should be recovered. Auto Expiration

mitigates the risk of Access Token Reusability. As any stored

Access token as it becomes useless because of using OTP Key,

6.4.2 Auto-Recovery Feature for Expired Tokens
Detection and Response: server side should be able to identify

instances when an expired token is utilized. This usually

requires intercepting the precise error generated when

validating JSON Web Token (JWT) during the validation of an

expired token. Token renewal endpoint should be capable of

receiving expired tokens. Upon verification of the token's

integrity and the identity of the user, a new token should be

generated. Implementing rate limiting on the token renewal

endpoint is essential in order to avoid misuse and abuse.

6.4.3 Security Considerations
Secret Key Management: Utilize a robust, OTP generated key

that is stored securely. Base URL should be included as part of

OTP seed key to mitigate any redirect attack that when client is

redirected to fake URL the generated OTP will not match the

next JWTi according to Equation 2. Regularly change this key

and ensure it is not fixed within your application code. It is

crucial to utilize HTTPS for all communication involving

JWTs to safeguard against interception by unauthorized

individuals. Token Storage: Safely store tokens on the client's

device. When developing web applications, it is advisable to

utilize the HttpOnly flag in cookies in order to restrict access

from JavaScript.

6.4.4 Conformity to regulations and the

implementation of optimal methods
Regular updates are essential in order to ensure that JWT

library and other dependencies are up to date, thereby

safeguarding against potential security threats posed by known

vulnerabilities. Compliance should be a top priority to ensure

that your token handling practices align with the appropriate

regulations, including but not limited to GDPR, HIPAA, and

other relevant laws specific to industry.

 IMPLEMENTATION

PERFORMANCE COMPARISON

BETWEEN NORMAL JWT AND

OTP-JWT
The proposed algorithm has been executed utilizing the NodeJs

Open source "MPL 1.1/GPL 2.0/LGPL 2.1" JWT standard

Package [36] on both the server and client aspects. A genuine

JWT package was utilized to assess regular functionality

without alterations, with the execution time being noted.

Subsequently, the recommended adjustments were integrated,

and the test was performed once more, capturing the execution

time. The evaluation took place within an environment

comprising a Windows 10 machine having 32GB RAM Core

i7 processor, serving as both client and server to eliminate any

potential propagation or network lags. Each package (original

and modified) was tested in 30 separate runs using fixed

payload. Maximum execution time in case of Original JWT

was 20 milliseconds while minimum was 11milliseconds. In

case of proposed OTP-JWT maximum execution time was 22

and minimum was 12 milliseconds. Average overhead time

delay due to modification was 1.8 milliseconds with average

14.15% increase in execution time.

 Si=Sic

Si <> Sic

alt

 Client Authenticated

Invalid Login

alt

Client
Server

Register (username, Password , K)

Data Store Credentials and (K)

OK

Invalid Credentials

Authenticate Request

Access Denied

Response i

Login (Username, Password)

OK (JWT0)

Login phase

Registration phase

OTPi= OTP(K,C)

Si= HMACSHA256(JWT0, OPTi)

JWTi=Base64(Header) + "." +

Base64(Payload) + "." + Base64(Si)

OTPi= OTP(K,C)

Sic= HMACSHA256(JWT0, OPTi)

JWTi=Base64(Header) + "." +

Base64(Payload) + "." +

Ri(JWTi)

Consuming service phase

Process Request

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.25, June 2024

12

Fig 3: Performance Comparison between Normal JWT and OTP-JWT (30 Runs).

In Figure 3, it is demonstrated that the execution time ranges

from 10 to 20 milliseconds, with a shift of 1.8 milliseconds

upwards in the case of OTP-JWT. In practical situations,

additional delays may occur due to network latency, security

measures, and various other factors that impact the overall

delay from the client-side to the server-side and vice versa.

 CONCLUSION AND FUTURE WORK
In this work, a comparative analysis of various web-API token-

based authentication methods is presented, along with a

proposal for a new framework incorporating Multi-Factor

Authentication (MFA) and One-Time Password (OTP). The

proposed framework offers protection against well-known

security attacks such as token theft through redirection, Cross-

Site Request Forgery (CSRF), and Cross-Site Scripting (XSS).

Implementation guidelines are provided, detailing the setup of

auto-expiration, auto-recovery (AEAR) features, security

considerations, regulatory compliance, and optimal methods.

Future work should focus on incorporating enhanced

encryption technique, such as post-quantum algorithms, to

address emerging processing powers and new attacks.

Additionally, efforts should be made to integrate the

framework with emerging technologies such as the Internet of

Things (IoT) and Blockchain. Developing an open-source

Software Development Kit (SDK) will facilitate the integration

of the framework into existing or new applications.

 REFERENCES
[1] P. Siriwardena, Advanced API Security OAuth 2.0 and

Beyond, Second Edition ed., San Jose, CA, USA: Apress,

2020.

[2] D. Hardt and M. , "Request for Comments: 6749 - The

OAuth 2.0 Authorization Framework," October 2012.

[Online]. Available:

https://datatracker.ietf.org/doc/html/rfc6749. [Accessed

21 4 2022].

[3] S. E. Peyrott, The JWT Handbook, Auth0 Inc, 2016-2018.

[4] Y. Sheffer, D. Hardt and M. Jones, RFC 8725 JSON Web

Token Best Current Practices, Internet Engineering Task

Force (IETF), February 2020.

[5] Ksenia Peguero and Xiuzhen Cheng, "CSRF protection in

JavaScript frameworks and the security of JavaScript

applications," High-Confidence Computing, 2021.

[6] Lodderstedt, "OAuth 2.0 Threat Model and Security

Considerations RFC 6819," IETF, January 2013. [Online].

Available: https://datatracker.ietf.org/doc/html/rfc6819.

[7] Microsoft, "RFC 6750 - The OAuth 2.0 Authorization

Framework: Bearer Token Usage," October 2012.

[Online]. Available:

https://datatracker.ietf.org/doc/html/rfc6750.

[8] Fielding, "Request for Comments: 2616," Network

Working Group, 1999. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc2616.

[9] D. Rountree, Federated Identity Primer, Elsevier, Ed.,

Syngress, 2013.

[10] Paul A. Grassi, Michael E. Garcia and James L. Fenton,

Digital Identity Guidelines, NIST Special Publication

800-63-3, June 2017.

[11] B. W. S. E. Hans-Jörg Vögela, "Federation solutions for

inter- and intradomain security in next-generation mobile

service platforms," International Journal of ELectronics

and Communications, 2006.

[12] "Extensible Markup Language (XML)," [Online].

Available: https://www.w3.org/XML/. [Accessed 4

2022].

[13] "OASIS Open - OASIS Open," Organization for the

Advancement of Structured Information Standards,

[Online]. Available: https://www.oasis-open.org/.

[14] Campbell, "Assertion Framework for OAuth 2.0 Client

Authentication and Authorization Grants RFC 7521,"

Internet Engineering Task Force (IETF), May 2015.

[Online]. Available:

https://datatracker.ietf.org/doc/html/rfc7521. [Accessed

April 2022].

[15] M. B. Jorge Navas, "Understanding and mitigating

OpenID," Computers & Security, 2019.

[16] "OpenID Connect," [Online]. Available:

https://openid.net/connect/. [Accessed April 2022].

[17] "OpenID Connect Core," OpenID Connect, November

2014. [Online]. Available:

https://openid.net/specs/openid-connect-core-1_0.html.

[Accessed April 2022].

0

5

10

15

20

25

0

5

10

15

20

25

Performance Comparison Between Normal JWT and OTP-JWT

JWT OTP-JWT

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.25, June 2024

13

[18] R. C. G. S. S. R. Amir Sharif, "Best current practices for

OAuth/OIDC Native Apps A study of their adoption in

popular providers and top-ranked Android clients,"

Journal of Information Security and Applications, 2022.

[19] "OpenID Connect Client-Initiated Backchannel

Authentication Flow," openid.net, September 2021.

[Online]. Available: https://openid.net/specs/openid-

client-initiated-backchannel-authentication-core-

1_0.html. [Accessed April 2022].

[20] "JSON Web Token jwt.io," jwt.io, [Online]. Available:

https://jwt.io/. [Accessed April 2022].

[21] Tim Bray, "The JavaScript Object Notation (JSON) Data

Interchange Format, rfc7159," Internet Engineering Task

Force (IETF), March 2014. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc7159. [Accessed

April 2022].

[22] S. Josefsson, "RFC 4648 - The Base16, Base32, and

Base64 Data Encodings," IETF-Network Working Group,

October 2006. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc4648. [Accessed

April 2022].

[23] Michael B. Jones, John Bradley and Nat Sakimura, "JSON

Web Token (JWT) rfc7519," Internet Engineering Task

Force (IETF), May 2015. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc7519. [Accessed

April 2022].

[24] D. Fett and Ralf Küsters, "A Comprehensive Formal

Security Analysis," in Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications

Security, Vienna Austria, 2016.

[25] K. Munonye1 and Martinek Péter1, "Machine learning

approach to vulnerability detection in OAuth 2.0,"

International Journal of Information Security, p. 223–237,

2021.

[26] Vasyl Bukovetskyi and Vasyl Rizak, "Developing The

Algorithm And Software For Access Token Protection

Using Request Signing With Temporary Secret," Eastern-

European Journal of Enterprise Technologies, 2022.

[27] San-Tsai Sun and Author Picture Konstantin Beznosov,

"The devil is in the (implementation) details: an empirical

analysis of OAuth SSO systems," in ACM Conference on

Computer and Communications Security, 2012.

[28] Marios Argyriou, Nicola Dragoni and Angelo Spognardi,

"Security Flows in OAuth 2.0 Framework: A Case Study,"

in Computer Safety, Reliability, and Security, Trento,

Italy, 2017.

[29] Aleksandr Ometov and Sergey Bezzateev, "Multi-Factor

Authentication: A Survey †," mdpi Cryptography, 2017.

[30] S. Das, B. Wang, Z. Tingle and a. L. J. Camp, "Evaluating

User Perception of Multi-Factor Authentication," School

of Informatics, Computing, and Engineering.

[31] K. Abhishek, S. Roshan, P. Kumar and R. Ranjan, "A

Comprehensive Study on Multifactor Authentication," in

Proceedings of the Second International Conference on

Advances in Computing and Information Technology

(ACITY) , Chennai, India, 2012.

[32] T. Suleski1, M. Ahmed, W. Yang and E. Wang, "A review

of multi-factor authentication," DIGITAL HEALTH, vol.

9, pp. 1-20, 2023.

[33] H. Kim and O. Yi, "Analysis of Distinguishable Security

between the One-Time Password Extraction Function

Family and Random Function Family," Applied Sciences,

2023.

[34] R. Dubey and J. S.Nair, "A Review on Secured One Time

Password Based Authentication and Validation System,"

International Journal of Computer Sciences and

Engineering, vol. 5, no. 6, pp. 232-236, 2017.

[35] Paul A. Grassi , James L. Fenton , Elaine M. Newton, Ray

A. Perlner , Andrew R. Regenscheid , William E. Burr ,

Justin P. Richer , Naomi B. Lefkovitz , Jamie M. Danker ,

Yee-Yin Choong , Kristen K. Greene and Mary F.

Theofanos , Digital Identity Guidelines Authentication

and Lifecycle Management, NIST Special Publication

800-63B , June 2017.

[36] M. Robenolt, "jwt-node," npm, 2010. [Online]. Available:

https://github.com/mattrobenolt/jwt-node.

[37] Y. Sheffer, Intuit, D. Hardt, M. Jones and Microsoft,

"JSON Web Token Best Current Practices," Internet

Engineering Task Force (IETF), February 2020.

[38] V. Radha and D. Hitha Reddy, "A Survey on Single Sign-

On Techniques," Procedia Technology, vol. 134, no. 139,

2012.

[39] Tarek S. Sobh, "Identity management using SAML for

mobile clients and Internet of Things," Journal of High

Speed Networks, 2019.

[40] Scott Cantor, John Kemp, Rob Philpott and Eve Maler,

"Assertions and Protocols for the OASIS Security

Assertion Markup Language (SAML) V2.0," OASIS

Standard, 15 March 2005. [Online]. Available:

http://docs.oasis-open.org/security/saml/v2.0/saml-core-

2.0-os.pdf. [Accessed April 2022].

[41] M. Jones, "RFC 7797 - JSON Web Signature (JWS)

Unencoded Payload Option," Internet Engineering Task

Force (IETF), February 2016. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc7797. [Accessed

April 2022].

[42] M. Jones, "RFC 7518 - JSON Web Algorithms (JWA),"

Internet Engineering Task Force (IETF), May 2015.

[Online]. Available:

https://datatracker.ietf.org/doc/html/rfc7518. [Accessed

April 2022].

[43] M. Jones, "RFC 7517 - JSON Web Key (JWK)," Internet

Engineering Task Force (IETF), May 2015. [Online].

Available: https://datatracker.ietf.org/doc/html/rfc7517.

[Accessed April 2022].

[44] M. Jones and J. Hildebrand, "RFC 7516 - JSON Web

Encryption (JWE)," Internet Engineering Task Force

(IETF), May 2015. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc7516. [Accessed

April 2022].

[45] R. Barnes, "Use Cases and Requirements for JSON Object

Signing and Encryption (JOSE) -RFC 7165," Internet

Engineering Task Force (IETF), April 2014. [Online].

Available: https://datatracker.ietf.org/doc/html/rfc7165.

[Accessed April 2022].

[46] authlete.com, authlete, [Online]. Available:

https://www.authlete.com/developers/ciba/.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.25, June 2024

14

[47] Anthony Nadalin, Marc Goodner, Martin Gudgin, David

Turner, Abbie Barbir and Hans Granqvist, "WS-Trust

1.4," OASIS , 25 April 2012. [Online]. Available:

http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-

trust.html. [Accessed April 2022].

[48] "Internet Assigned Numbers Authority (IANA)," IANA,

[Online]. Available: https://www.iana.org/. [Accessed

April 2022].

[49] "SAML Security Cheat Sheet," OWASP , [Online].

Available:

https://cheatsheetseries.owasp.org/cheatsheets/SAML_Se

curity_Cheat_Sheet.html. [Accessed 2024].

[50] D. Rountree, Federated Identity Primer, Elsevier Inc,

December 10, 2012. decisions", Journal of Systems and

Software, 2005, in press.

 ACKNOWLEDGMENTS
Many thanks to the Doctor Hawaf who helped me while he was

alive and inspired me after he passed away.

IJCATM : www.ijcaonline.org

