
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.21, May 2024

41

Building an AI-Native Software Engineering Team: A

Stepwise Approach using Multi-Agent Systems

Hariharan Balasubramani

ABSTRACT
The realm of Generative Artificial Intelligence (Gen AI) has

propelled human ingenuity to unprecedented heights,

promising to revolutionize the field of software engineering.

Large Language Models (LLMs) and Generative Pre-trained

Transformers are at the forefront of this transformation,

reshaping the landscape of Software Engineering. With the

integration of multi-agent systems, the evolution of software

engineering is poised to accelerate even further. Multiple

generative agents interacting with each other can handle not

only basic tasks like coding, debugging, and scripting, but also

creativity-intensive tasks and other aspects of the software

engineering lifecycle such as requirement gathering, software

design, project planning, QA testing, and documentation.

Human engineers will play a crucial role in providing high-level

instructions and making course corrections. The emergence of

AI-native firms with AI-driven software engineering teams will

lead to significantly reduced turnaround times for ideas to

become finished products. This approach will streamline the

entire software development process, from requirement

gathering and planning to the final product, resulting in faster

delivery and lower production and operational costs compared

to traditional IT firms. In this paper I will provide empirical

evidence for the above claims and a stepwise framework for

building such a team.

Keywords
Large Language Models, Artificial Intelligence, Software

Engineering, Multi Agent System, Generative AI

1. INTRODUCTION
Just as how we saw the widespread adoption and affordability

of cloud computing technology led to the rise of cloud-native

firms, we are now witnessing the emergence of AI-native firms.

These companies will leverage the power of artificial

intelligence to revolutionize business operations and deliver

value to customers. As generative AI makes software

engineering more accessible, new companies can develop

software without the need for maintaining an expensive team of

software developers. This trend is creating a new profession, the

AI Native engineer, focused on training models and integrating

AI-created software for endusers.AI-native firms, free from

bureaucratic processes and legacy IT planning and decision

strategies, can rapidly build and deploy software using the most

efficient frameworks. These firms disrupt industries by

significantly reducing time-to-market, measured in weeks

instead of months, and compelling existing firms to innovate or

be acquired [1]. While AI-driven software engineering may

initially lag human-driven development, its speed and cost-

effectiveness will make it appealing to many customers,

provided it maintains reliability, security, and core value.

1.1 Software Engineering
Software Engineering (SE) is a branch of computer science

which focuses on systematically and predictably designing,

developing, testing, and maintaining software systems [4]. In

today's landscape, where the software industry serves as the

backbone of numerous other industries, software engineering

(SE) assumes a pivotal position in modern society. Its primary

responsibility lies in ensuring that systematic, reliable, and

efficient software systems are built [5]. Apart from this software

engineering can be termed as a field that requires a variety of

different skillsets for an engineer to thrive.

1.2 Large Language Models in SE
Large Language Models (LLMs) are deep learning models that

are pre-trained on large corpuses. They are built upon

transformers, which are neural network architectures consisting

of an encoder and a decoder. These enable the extraction of

semantic relationships from sequences of texts and understand

the interrelationships between them. Advanced LLMs like

BERT[7], GPT-4[8] have significantly enhanced performances

across a wide range of NLP based tasks. More and more coding

centric LLMs are being developed such as codellama, deepseek

coder, phi and many more.[5]. There are three types of LLMs

for coding specific tasks the encoder-only, decoder-only and

encode-decoder based LLMs. These LLMs are specifically

trained on large corpuses of code related data. Some of the most

common tasks that LLMs perform in SE are code generation,

code completion, code search, API synthesis, comment

generation, etc. [9]

Below is an example of different context or corpuses can be

used to train or used in conjunction with a model to perform a

code translation task.

Figure 1: Example of a code translation task by an

LLM[5]

1.3 Multi-Agent Systems (MAS)
This system refers to the use of multiple autonomous agents to

solve complex problems. Each of these agents have their own

goals, knowledge, and reasoning. In our context these agents

can represent various entities like coder, tester, developer, etc.

These individual agents interact to achieve a collective

objective. This is commonly referred to as Multi-Agent System

(MAS)[6].The primary advantage of MAS is their ability to

capture the complexity and dynamics of a software

development process, which are often characterized by

uncertainty and non-linearity.[10]

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.21, May 2024

42

Figure 2 : Multiple Agents working for generating the

code for a simple game [6]

1.4 Small Language Models
For rapid prototyping of AI models to be feasible the basic

requirement is to be able to run the training from a developer’s

laptop. LLMs with 7B to 1B parameters can fit and run in a

good configuration system. But running complex models with

a lot of parameters on a small machine is virtually impossible.

A breakthrough to solve this problem is tackled by running

small models with textbook quality data, which are small, use

lesser compute but are still performant. For software

development this opens a performant and environmentally

sustainable option.

2. LITERATURE REVIEW
The blog post by Omar Ansari[1] was a huge inspiration for my

paper. It led me to understand why addressing this is a need for

the hour. In their work, Quanjun et al have summarized the

usage of LLMs in Software Engineering tasks. Their paper also

offers insight about how different LLMs are used for source

code translation, syntax validation, pre-training, and other tasks

downstream. This covers the holistic life cycle of different SE

tasks in different phases. Zeeshan et al in [6] have covered the

role of autonomous agents in SE tasks. This was the foundation

of my thought process around how a firm will approach or

handle building an AI-Native team. It not just talks about how

different tasks in SE are addressed by these agents but also

describes how this improves the accuracy and quality of the

code that is generated.

3. PROPOSED FRAMEWORK
Large IT firms will soon be feeling the pressure caused by

reduced time to market and low operation cost products created

by AI driven firms. To be prepared for this, many firms are

encouraging their engineers to experiment in a safe way with

AI and how it can be integrated into different parts of their

SDLC and product life cycle. Companies that are pro-actively

engaging in this will have a head start in the race against their

competitions and will also be more resilient.

The journey of each firm will be different as each of them are

unique in their own way. Each of them might face specific

challenges brought in by the complexity of their systems such

as using languages / platforms/tools which are incompatible

with AI. They might have complex architectures which are

unable to accommodate the new changes as a result of unique

customizations, technical debts, etc. Even simple things like

documentation, how to structure a code commit and style

checks need to change to accommodate AI integration.

The first step in bridging this gap is to understand the current

state and take the first step as close to the target state as possible.

Then there needs to be constant course corrections to make sure

we progress in the right direction. Starting with extensions for

IDEs and performing AI assisted development is a great first

step that many companies have started doing. However, it is not

sufficient. Let us examine a detailed stepwise framework for

such a transition.

Phase 1 : Evaluation and Strategizing
This is the first and foremost step in any major change.

Assessment and Planning are the core of the entire process.

a. Evaluate and Plan
Evaluate the software development processes while trying to

understand the core tasks or responsibilities of each engineer

like planning, coding, testing and documentation. This

evaluation helps identify the extra services needed for teams to

integrate an AI Software Engineer into the existing software

delivery workflow.

b. IT Infrastructure and Environment Evaluation:
Identify potential challenges for AI agents by thoroughly

examining the deployment and management process. This

includes analyzing authentication management and the

deployment steps that are currently performed manually.

Streamlining these steps will be crucial to ensure efficiency and

scalability. Additionally, addressing these issues can

significantly reduce operational overhead and improve the

overall effectiveness of AI agent deployment.

c. Adopt and Assess:
Identify early adopters and applications that would benefit the

most from AI integration, and evaluate the potential impact. Use

scoring and metrics to perform a comprehensive cost-benefit

analysis. By targeting early adopters, you can effectively

showcase the advantages of AI integration. Additionally, this

analysis will help in prioritizing applications based on their

potential return on investment and strategic value.

d. Project Planning:
Create a well-defined plan with timelines and a detailed

roadmap with long term and short-term goals.

e. Prototype and test:
Perform a POC driven testing of different AI technologies. This

will enable a quick feedback loop and reap all benefits of a test-

driven development. It is highly advisable to form a highly

efficient, close-knit cohort consisting of software engineering

leader, an architect with in-depth production and deployment

knowledge and a lead engineer. This Elite team will plan and

oversee the smooth transitioning.

Phase 2: Creating an internal AI Consultant

Division
Each individual team/developer experimenting with AI in their

daily activities is important. However, establishing this internal

division is very critical. This division should consist of the

following core teams.

a. Central AI Group:
The main responsibility of this group is to stay up to speed with

advancements related to AI. This team builds, customizes, and

maintains custom AI models for the firm. They are also

responsible for establishing data contracts for sharing data with

the model, fine-tuning the model, and building guard rails

around misuse of the system.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.21, May 2024

43

b. Core Data Platforms:
This team takes care of the firm’s end to end data needs. From

data gathering to ensuring quality and security. This data will

be used to train the AI models hence accuracy, relevance and

consistency matters a lot.

c. Integration and Testing Team:

This team takes care of integrating the build models into various

systems of the firm and evaluate the outcome. This is very

critical as this will increase the wider adoption and integration.

d. Ethics and Compliance:
Ensures the ethical development and deployment of AI models.

It also takes care of building the guard rails for compliance

concerns.

The milestone to mark the end of this phase will be creating a

fully functional SDE (Software Development Engineer) Agent

and testing it with an actual scrum/team.

Phase 3: Introducing the new team member

into the scrum Mr.AI-SDE
This phase involves the on-field testing where the Agent is

introduced into an actual scrum for a team with the supervision

of the Lead Engineer. The agent can start with some simple

tasks such as making a code pull, documentation, resolving a

technical debt. This is to check how good the AI-SDE is in

comparison to a real human developer.

Figure 3: The Agent can internally have the following

agents and responsibilities [1]

An interesting thing to note here is this AI agent is a

combination of multiple agents each one specializing in a

domain. This testing allows the Lead Engineer to finalize what

tuning is needed for each of these individual agents.

Figure 4: Multi-Agent examples showing how mini

agents talk to and critique each other to produce a

superior final output.[12]

Figure 5: Zooming into an AI Agent [1]

The milestone for completion of this phase can be at least each

division/team having one such agent and then being able to

successfully pick up a task from the scrum and complete it

while also updating the project management system and

maintaining code quality.

Phase 4: Introducing semi-AI Native teams

into each domain.

This phase marks creation of teams completely made of AI

agents. The teams should now be able to complete a whole epic

by themselves, demanding a much higher level of

communication with other agents and humans. Agents can have

different roles like SDE, Product Manager, Scrum Master, etc.

each specializing in a specific task/domain.

While AI is becoming better in coding, communication, and

planning, it currently struggles with non-functional

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.21, May 2024

44

requirements like performance and scalability. Human

intervention is needed to ensure these benchmarks are met.

The milestone to mark this phase complete can be handling

complete epics while using human supervision for tasks

requiring complex critical thinking and dealing with

nonfunctional requirements.

This phase marks introducing AI agents into other teams

drawing from the experience gathered in the last phase. Senior

engineers can now assume more responsibilities since AI agents

take care of implementations. An end-to-end QA team,

comprising both AI and human engineers, is crucial. This team

ensures the end-to-end experience is verified and integration-

tested before release, including performance testing. This phase

will see a clear reduction in time to develop for features since

the AI agents are more widely adopted into teams.

Final Phase: Decentralizing AI Shared

Services
With the scaling out of AI teams, human SDEs take up more

high-level responsibilities, supervising multiple AI agents /

teams. Their focus will be to review and approve code changes

and documentation of the AI SDEs. While the AI agents can

handle most tasks, they will always need human engineering

teams to act as a safety net, making sure nonfunctional

requirements are catered.

Decentralizing AI Shared Services becomes important as

technology and products mature. Each domain should build its

own muscle to customize AI models, curate training data, and

maintain custom integrations. The AI consultant Division

transitions into an AI Standards Group (ASG), focusing on

horizontally required services and maintaining standardized

integrations. The ASG also ensures code quality and security,

potentially using sentinel software to track and report on the

overall security posture centrally.

4. CONCLUSION

To sum up, the implementation of AI-driven software

development and engineering (SDE) heralds a paradigm shift

that is fraught with opportunities and difficulties. Human

developers still have a significant advantage in creativity,

problem-solving, and subtle comprehension even though AI is

excellent at repetitive activities and can increase efficiency.

Organizations should carefully incorporate AI into their teams

to maximize benefits while minimizing dangers. This involves

maintaining human oversight over crucial jobs like code quality

and non-functional requirements. Additionally, to solve ethical,

social, and dependability problems, it is imperative to establish

a balance between AI and human expertise. Engineers should

concentrate on developing unique abilities like creativity,

problem-solving, and communication as the industry develops

since they are talents that will be useful in the AI-powered SDE

environment. Eventually, businesses that accept and adjust to

these changes will thrive or at least have a head start when

compared with their peers.

Figure 6: Metrics and Factors for evaluation

Expanding on this, it is essential to conduct thorough

assessments of AI tools before integration to ensure they align

with the organization's goals and values. Implementing

continuous training programs for engineers to familiarize them

with AI technologies can significantly enhance the

effectiveness of these tools. Moreover, fostering a collaborative

culture where AI and human expertise are seen as

complementary can drive innovation and productivity. For

instance, AI can handle large-scale data analysis and testing,

allowing human developers to focus on strategic planning and

complex design problems. Regularly reviewing the outcomes

of AI integration through scientific tables and metrics, , can

provide valuable insights into performance improvements and

areas needing adjustment. By leveraging AI's strengths while

safeguarding human-centric skills, organizations can navigate

this transformative era with confidence and foresight.

5. ACKNOWLEDGEMENT
I would like to extend my sincere thanks to my mentors and

colleagues for their unwavering encouragement and inspiration

in pursuing this topic. Their guidance and support have been

invaluable throughout this journey. Additionally, Omar Ansari’s

blog provided brilliant insights that propelled me to write this

paper. His detailed analysis and innovative ideas offered a fresh

perspective that was instrumental in shaping my research. I am

deeply grateful for all the knowledge and motivation I have

received from these remarkable individuals.

6. REFERENCE
[1] Towards Data Science, 2020. *Designing AI-Driven

Software Engineering Teams*. [online]

<https://towardsdatascience.com/designing-ai-

drivensoftware-engineering-teams-8afd8de13f1a>

[Accessed 21 May 2024].

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.21, May 2024

45

[2] Saklamaeva, V. and Pavlič, L., 2023. The Potential of

AIDriven Assistants in Scaled Agile Software

Development. Applied Sciences, 14(1), p.319.

[3] Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo,

X., Lo, D., Grundy, J. and Wang, H., 2023. Large

Language Models for Software Engineering: A Systematic

Literature Review. *arXiv preprint*, arXiv:2308.10620

[cs.SE].

[4] J. Biolchini, P. G. Mian, A. C. C. Natali, and G. H.

Travassos, “Systematic review in software engineering,”

System engineering and computer science department

COPPE/UFRJ, Technical Report ES, vol. 679, no. 05, p.

45, 2005.

[5] A Survey on Large Language Models for Software

Engineering Quanjun Zhang, Chunrong Fang, Yang Xie,

Yaxin Zhang, Yun Yang, Weisong Sun, Shengcheng Yu,

Zhenyu Chen arXiv:2312.15223 [cs.SE]

[6] Autonomous Agents in Software Development: A Vision

Paper Zeeshan Rasheed, Muhammad Waseem, Kai-

Kristian Kemell, Wang Xiaofeng, Anh Nguyen Duc, Kari

Systä, Pekka Abrahamsson arXiv:2311.18440 [cs.SE]

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:

Pretraining of deep bidirectional transformers for

language understanding,” arXiv preprint

arXiv:1810.04805, 2018.

[8] OpenAI. 2023. GPT-4 Technical Report.

arXiv:2303.08774 [cs.CL]

[9] Xinyun Chen, Chang Liu, and Dawn Song. 2017. Towards

synthesizing complex programs from input-output

examples. arXiv preprint arXiv:1706.01284 (2017).

[10] Wei Ma, Shangqing Liu, Wenhan Wang, Qiang Hu, Ye Liu,

Cen Zhang, Liming Nie, and Yang Liu. 2023. The Scope

of ChatGPT in Software Engineering: A Thorough

Investigation. arXiv preprint arXiv:2305.12138 (2023).

[11] Feng et al , Investigating Code Generation Performance of

Chat- GPT with Crowdsourcing Social Data

[12] Cañas, J.J., 2022. AI and ethics when human beings

collaborate with AI agents. Frontiers in psychology, 13,

p.836650.

[13] Belloni, A., Berger, A., Boissier, O., Bonnet, G., Bourgne,

G., Chardel, P.A., Cotton, J.P., Evreux, N., Ganascia, J.G.,

Jaillon, P. and Mermet, B., 2015, April. Dealing with

ethical conflicts in autonomous agents and multi-agent

systems. In Workshops at the twenty-ninth AAAI

conference on artificial intelligence.

IJCATM : www.ijcaonline.org

