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ABSTRACT  
The realm of Generative Artificial Intelligence (Gen AI) has 

propelled human ingenuity to unprecedented heights, 

promising to revolutionize the field of software engineering. 

Large Language Models (LLMs) and Generative Pre-trained 

Transformers are at the forefront of this transformation, 

reshaping the landscape of Software Engineering. With the 

integration of multi-agent systems, the evolution of software 

engineering is poised to accelerate even further. Multiple 

generative agents interacting with each other can handle not 

only basic tasks like coding, debugging, and scripting, but also 

creativity-intensive tasks and other aspects of the software 

engineering lifecycle such as requirement gathering, software 

design, project planning, QA testing, and documentation. 

Human engineers will play a crucial role in providing high-level 

instructions and making course corrections. The emergence of 

AI-native firms with AI-driven software engineering teams will 

lead to significantly reduced turnaround times for ideas to 

become finished products. This approach will streamline the 

entire software development process, from requirement 

gathering and planning to the final product, resulting in faster 

delivery and lower production and operational costs compared 

to traditional IT firms. In this paper I will provide empirical 

evidence for the above claims and a stepwise framework for 

building such a team.    
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1. INTRODUCTION  
Just as how we saw the widespread adoption and affordability 

of cloud computing technology led to the rise of cloud-native 

firms, we are now witnessing the emergence of AI-native firms. 

These companies will leverage the power of artificial 

intelligence to revolutionize business operations and deliver 

value to customers. As generative AI makes software 

engineering more accessible, new companies can develop 

software without the need for maintaining an expensive team of 

software developers. This trend is creating a new profession, the 

AI Native engineer, focused on training models and integrating 

AI-created software for endusers.AI-native firms, free from 

bureaucratic processes and legacy IT planning and decision 

strategies, can rapidly build and deploy software using the most 

efficient frameworks. These firms disrupt industries by 

significantly reducing time-to-market, measured in weeks 

instead of months, and compelling existing firms to innovate or 

be acquired [1]. While AI-driven software engineering may 

initially lag human-driven development, its speed and cost-

effectiveness will make it appealing to many customers, 

provided it maintains reliability, security, and core value.  

1.1 Software Engineering  
Software Engineering (SE) is a branch of computer science 

which focuses on systematically and predictably designing, 

developing, testing, and maintaining software systems [4]. In 

today's landscape, where the software industry serves as the 

backbone of numerous other industries, software engineering 

(SE) assumes a pivotal position in modern society. Its primary 

responsibility lies in ensuring that systematic, reliable, and 

efficient software systems are built [5]. Apart from this software 

engineering can be termed as a field that requires a variety of 

different skillsets for an engineer to thrive.   

1.2 Large Language Models in SE  
Large Language Models (LLMs) are deep learning models that 

are pre-trained on large corpuses. They are built upon 

transformers, which are neural network architectures consisting 

of an encoder and a decoder. These enable the extraction of 

semantic relationships from sequences of texts and understand 

the interrelationships between them. Advanced LLMs like 

BERT[7], GPT-4[8] have significantly enhanced performances 

across a wide range of NLP based tasks. More and more coding 

centric LLMs are being developed such as codellama, deepseek 

coder, phi and many more.[5]. There are three types of LLMs 

for coding specific tasks the encoder-only, decoder-only and 

encode-decoder based LLMs. These LLMs are specifically 

trained on large corpuses of code related data. Some of the most 

common tasks that LLMs perform in SE are code generation, 

code completion, code search, API synthesis, comment 

generation, etc. [9]  

Below is an example of different context or corpuses can be 

used to train or used in conjunction with a model to perform a 

code translation task.  

  
Figure 1: Example of a code translation task by an 

LLM[5] 

1.3 Multi-Agent Systems (MAS)  
This system refers to the use of multiple autonomous agents to 

solve complex problems. Each of these agents have their own 

goals, knowledge, and reasoning. In our context these agents 

can represent various entities like coder, tester, developer, etc. 

These individual agents interact to achieve a collective 

objective. This is commonly referred to as Multi-Agent System 

(MAS)[6].The primary advantage of MAS is their ability to 

capture the complexity and dynamics of a software 

development process, which are often characterized by 

uncertainty and non-linearity.[10]  
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Figure 2 : Multiple Agents working for generating the 

code for a simple game [6]  

  

1.4 Small Language Models  
For rapid prototyping of AI models to be feasible the basic 

requirement is to be able to run the training from a developer’s 

laptop. LLMs with 7B to 1B parameters can fit and run in a 

good configuration system. But running complex models with 

a lot of parameters on a small machine is virtually impossible. 

A breakthrough to solve this problem is tackled by running 

small models with textbook quality data, which are small, use 

lesser compute but are still performant. For software 

development this opens a performant and environmentally 

sustainable option.  

2. LITERATURE REVIEW  
The blog post by Omar Ansari[1] was a huge inspiration for my 

paper. It led me to understand why addressing this is a need for 

the hour. In their work, Quanjun et al have summarized the 

usage of LLMs in Software Engineering tasks. Their paper also 

offers insight about how different LLMs are used for source 

code translation, syntax validation, pre-training, and other tasks 

downstream. This covers the holistic life cycle of different SE 

tasks in different phases. Zeeshan et al in [6] have covered the 

role of autonomous agents in SE tasks. This was the foundation 

of my thought process around how a firm will approach or 

handle building an AI-Native team. It not just talks about how 

different tasks in SE are addressed by these agents but also 

describes how this improves the accuracy and quality of the 

code that is generated.   

3. PROPOSED FRAMEWORK  
Large IT firms will soon be feeling the pressure caused by 

reduced time to market and low operation cost products created 

by AI driven firms. To be prepared for this, many firms are 

encouraging their engineers to experiment in a safe way with 

AI and how it can be integrated into different parts of their 

SDLC and product life cycle. Companies that are pro-actively 

engaging in this will have a head start in the race against their 

competitions and will also be more resilient.  

The journey of each firm will be different as each of them are 

unique in their own way. Each of them might face specific 

challenges brought in by the complexity of their systems such 

as using languages / platforms/tools which are incompatible 

with AI. They might have complex architectures which are 

unable to accommodate the new changes as a result of unique 

customizations, technical debts, etc. Even simple things like 

documentation, how to structure a code commit and style 

checks need to change to accommodate AI integration.  

The first step in bridging this gap is to understand the current 

state and take the first step as close to the target state as possible. 

Then there needs to be constant course corrections to make sure 

we progress in the right direction. Starting with extensions for 

IDEs and performing AI assisted development is a great first 

step that many companies have started doing. However, it is not 

sufficient. Let us examine a detailed stepwise framework for 

such a transition.  

Phase 1 : Evaluation and Strategizing  
This is the first and foremost step in any major change. 

Assessment and Planning are the core of the entire process.  

a. Evaluate and Plan 
Evaluate the software development processes while trying to 

understand the core tasks or responsibilities of each engineer 

like planning, coding, testing and documentation. This 

evaluation helps identify the extra services needed for teams to 

integrate an AI Software Engineer into the existing software 

delivery workflow.  

b. IT Infrastructure and Environment Evaluation: 
Identify potential challenges for AI agents by thoroughly 

examining the deployment and management process. This 

includes analyzing authentication management and the 

deployment steps that are currently performed manually. 

Streamlining these steps will be crucial to ensure efficiency and 

scalability. Additionally, addressing these issues can 

significantly reduce operational overhead and improve the 

overall effectiveness of AI agent deployment. 

c. Adopt and Assess:  
Identify early adopters and applications that would benefit the 

most from AI integration, and evaluate the potential impact. Use 

scoring and metrics to perform a comprehensive cost-benefit 

analysis. By targeting early adopters, you can effectively 

showcase the advantages of AI integration. Additionally, this 

analysis will help in prioritizing applications based on their 

potential return on investment and strategic value.   

d. Project Planning:  
Create a well-defined plan with timelines and a detailed 

roadmap with long term and short-term goals.  

e. Prototype and test:  
Perform a POC driven testing of different AI technologies. This 

will enable a quick feedback loop and reap all benefits of a test-

driven  development. It is highly advisable to form a highly 

efficient, close-knit cohort consisting of software engineering 

leader, an architect with in-depth production and deployment 

knowledge and a lead engineer. This Elite team will plan and 

oversee the smooth transitioning.   

Phase 2: Creating an internal AI Consultant 

Division  
Each individual team/developer experimenting with AI in their 

daily activities is important. However, establishing this internal 

division is very critical. This division should consist of the 

following core teams.  

a. Central AI Group:  
The main responsibility of this group is to stay up to speed with 

advancements related to AI. This team builds, customizes, and 

maintains custom AI models for the firm. They are also 

responsible for establishing data contracts for sharing data with 

the model, fine-tuning the model, and building guard rails 

around misuse of the system.  
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b. Core Data Platforms:   
This team takes care of the firm’s end to end data needs. From 

data gathering to ensuring quality and security. This data will 

be used to train the AI models hence accuracy, relevance and 

consistency matters a lot.  

c. Integration and Testing Team:  

This team takes care of integrating the build models into various 

systems of the firm and evaluate the outcome. This is very 

critical as this will increase the wider adoption and integration.  

d. Ethics and Compliance:   
Ensures the ethical development and deployment of AI models. 

It also takes care of building the guard rails for compliance 

concerns.  

  

The milestone to mark the end of this phase will be creating a 

fully functional SDE (Software Development Engineer) Agent 

and testing it with an actual scrum/team.  

  

Phase 3: Introducing the new team member 

into the scrum Mr.AI-SDE  
This phase involves the on-field testing where the Agent is 

introduced into an actual scrum for a team with the supervision 

of the Lead Engineer. The agent can start with some simple 

tasks such as making a code pull, documentation, resolving a 

technical debt. This is to check how good the AI-SDE is in 

comparison to a real human developer.  

  

  
Figure 3: The Agent can internally have the following 

agents and responsibilities [1]  

   

An interesting thing to note here is this AI agent is a 

combination of multiple agents each one specializing in a 

domain. This testing allows the Lead Engineer to finalize what 

tuning is needed for each of these individual agents.  

  

  
Figure 4:  Multi-Agent examples showing how mini 

agents talk to and critique each other to produce a 

superior final output.[12] 

  

  
Figure 5: Zooming into an AI Agent [1]  

 

The milestone for completion of this phase can be at least each 

division/team having one such agent and then being able to 

successfully pick up a task from the scrum and complete it 

while also updating the project management system and 

maintaining code quality.  

  

Phase 4: Introducing semi-AI Native teams 

into each domain.  
  
This phase marks creation of teams completely made of AI 

agents. The teams should now be able to complete a whole epic 

by themselves, demanding a much higher level of 

communication with other agents and humans. Agents can have 

different roles like SDE, Product Manager, Scrum Master, etc. 

each specializing in a specific task/domain.  

  

While AI is becoming better in coding, communication, and 

planning, it currently struggles with non-functional 
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requirements like performance and scalability. Human 

intervention is needed to ensure these benchmarks are met.  

The milestone to mark this phase complete can be handling 

complete epics while using human supervision for tasks 

requiring complex critical thinking and dealing with 

nonfunctional requirements.  

This phase marks introducing AI agents into other teams 

drawing from the experience gathered in the last phase.  Senior 

engineers can now assume more responsibilities since AI agents 

take care of implementations. An end-to-end QA team, 

comprising both AI and human engineers, is crucial. This team 

ensures the end-to-end experience is verified and integration-

tested before release, including performance testing. This phase 

will see a clear reduction in time to develop for features since 

the AI agents are more widely adopted into teams.  

Final Phase: Decentralizing AI Shared 

Services  
With the scaling out of AI teams, human SDEs take up more 

high-level responsibilities, supervising multiple AI agents / 

teams. Their focus will be to review and approve code changes 

and documentation of the AI SDEs. While the AI agents can 

handle most tasks, they will always need human engineering 

teams to act as a safety net, making sure nonfunctional 

requirements are catered.  

Decentralizing AI Shared Services becomes important as 

technology and products mature. Each domain should build its 

own muscle to customize AI models, curate training data, and 

maintain custom integrations. The AI consultant Division 

transitions into an AI Standards Group (ASG), focusing on 

horizontally required services and maintaining standardized 

integrations. The ASG also ensures code quality and security, 

potentially using sentinel software to track and report on the 

overall security posture centrally. 

4. CONCLUSION  

To sum up, the implementation of AI-driven software 

development and engineering (SDE) heralds a paradigm shift 

that is fraught with opportunities and difficulties. Human 

developers still have a significant advantage in creativity, 

problem-solving, and subtle comprehension even though AI is 

excellent at repetitive activities and can increase efficiency. 

Organizations should carefully incorporate AI into their teams 

to maximize benefits while minimizing dangers. This involves 

maintaining human oversight over crucial jobs like code quality 

and non-functional requirements. Additionally, to solve ethical, 

social, and dependability problems, it is imperative to establish 

a balance between AI and human expertise. Engineers should 

concentrate on developing unique abilities like creativity, 

problem-solving, and communication as the industry develops 

since they are talents that will be useful in the AI-powered SDE 

environment. Eventually, businesses that accept and adjust to 

these changes will thrive or at least have a head start when 

compared with their peers. 

 

 
Figure 6: Metrics and Factors for evaluation 

Expanding on this, it is essential to conduct thorough 

assessments of AI tools before integration to ensure they align 

with the organization's goals and values. Implementing 

continuous training programs for engineers to familiarize them 

with AI technologies can significantly enhance the 

effectiveness of these tools. Moreover, fostering a collaborative 

culture where AI and human expertise are seen as 

complementary can drive innovation and productivity. For 

instance, AI can handle large-scale data analysis and testing, 

allowing human developers to focus on strategic planning and 

complex design problems. Regularly reviewing the outcomes 

of AI integration through scientific tables and metrics, , can 

provide valuable insights into performance improvements and 

areas needing adjustment. By leveraging AI's strengths while 

safeguarding human-centric skills, organizations can navigate 

this transformative era with confidence and foresight. 
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