
International Journal of Computer Applications (0975 – 8887) 

Volume 186 – No.19, May 2024 

10 

Examining Software Coupling and Cohesion Patterns 

using Social Network Analysis 

Mohamed Maddeh 
College of Applied Computer Science, King Saud University, 

Riyadh 11451, Saudi Arabia. 
Higher Institute of Finance and Taxation Sousse, 

University of Sousse, Sousse 4023, Tunisia 
 

 

ABSTRACT  
Social network analysis (SNA) is an emerging research area that 

has gained significant attention in recent years. Analyzing OO 

program through SNA can provide insights into how a program 

component, classes and methods interact and collaborate. In fact, 

an OO program is composed of a set of classes that interact with 

each other. Considering a class as a node and the interaction as a 

relationship, we can take advantage from SNA capabilities to the 

benefit of OO programming. Therefore, SNA is an excellent way 

for detecting and quantifying coupling and cohesion in an Object 

Oriented Programming (OOP) based on the class interaction, by 

analyzing the connections between classes and methods. An 

accurate coupling and cohesion detection helps developers to 

optimize codes and improve its overall performance and 

maintainability. In this paper, we represent four java open source 

projects (JUnit 5.10.2, Spring 6.1.4, Apache Commons BCEL 

6.8.2 and Guava 33.0) as a social network. We also, applied SNA 

techniques to identify lowly cohesive classes and highly coupled 

classes. 

Keywords Object Oriented Programming, Coupling, 

Cohesion, Social Network Analysis, Refactoring, 

Maintainability. 

1. INTRODUCTION  
Social network analysis (SNA) is a technique for representing and 
analyzing the relationships between individuals or entities in a 
network. It is commonly used in fields such as sociology, 
anthropology, and marketing to understand social dynamics, 
collaboration patterns, and information diffusion. SNA [1] [2] can 
also be applied to object-oriented software systems to gain 
insights into their structure and dynamics. By viewing class 
interactions as a social network, we can identify key classes and 
components, detect communities and modules, and analyze 
information flow and dependencies. SNA measures such as 
degree centrality and betweenness centrality can be used to 
identify classes that have a high number of connections or play a 
critical role in information flow. Network visualization tools such 
as Gephi [3] can be used to visualize the class interaction network 
and identify patterns and anomalies. 

This innovative approach offers a valuable alternative to 
conventional methods of detecting class coupling and cohesion. 
[4] [5] [6] [7], and offers new insights into the design and 
maintenance of object-oriented software systems. In fact, in the 
field of software engineering, various metrics are employed to 
evaluate the coupling and cohesion of classes in object-oriented 
systems. These metrics assist developers in identifying and 
refactoring code to enhance its modularity, reusability, and 
maintainability. For instance, coupling metrics include [8] [9] 
[10] [11]: Coupling Between Objects (CBO), it measures the 
number of other classes that a class is coupled to. Depth of 
Inheritance Tree (DIT), it measures the depth of the inheritance 
hierarchy in which a class resides. Number of Children (NOC) it 
measures the number of subclasses that a class has. Cohesion 

metrics include: Lack of Cohesion in Methods (LCOM), it 
measures the number of methods in a class that do not access the 
same instance variables. Coupling Between Methods (CBM), it 
measures the number of pairs of methods in a class that access the 
same instance variables. 

The challenge lies in the multitude of metrics and their 
associated thresholds, which can complicate the measurement 
process [12] [13] [14] [15]. This new approach of viewing class 
interactions as a social network offers a promising alternative to 
traditional coupling and cohesion metrics. By leveraging SNA 
techniques, we can gain a more comprehensive understanding of 
the relationships between classes and identify potential areas for 
improvement. It can help reduce the number of classes that need 
to be studied, as the most problematic areas that can be targeted 
first. This can make the process of refactoring and improving the 
system more efficient and effective. Avoiding to manually inspect 
every class, which can be very time-consuming for large 
codebases. Only the top-ranked classes from the SNA 
prioritization need to be studied in depth, reducing the overall 
number of classes that require detailed analysis. 

2. LITERATURE REVIEW 
The concepts of coupling and cohesion have long been 

recognized as fundamental pillars of high-quality, maintainable 
code. As software systems grow in complexity, the balance 
between these two design principles becomes increasingly critical 
to ensure that code is not only efficient and effective but also easy 
to understand, modify, and extend. In their study [16], the authors 
conducted a systematic mapping to determine the commonly used 
coupling and cohesion metrics and their practical applicability. 
They found four distinct categories, evolution of coupling and 
cohesion metrics, research type, contribution, and context focus. 
This categorization allowed for a structured analysis of the 
existing body of research. The work presented in [17] provides a 
comprehensive framework to deal with all sorts of coupling. It 
propose a framework that takes into account the distinction 
between object level-and class level coupling. This distinction 
refers to dynamic dependencies between objects on one hand and 
static dependencies between implementations on the other hand. 
In [18] researchers focused on improving software design quality, 
reliability, and reducing complexity in component-based software 
engineering. The paper proposes a component selection 
framework that utilizes the Hexa-oval optimization algorithm to 
select the most suitable components from a repository. This 
framework aims to analyze the relationship between component 
modules by measuring their coupling and cohesion. Another work 
presented in [19] propose a framework for calculating hybrid 
system metrics in software quality metrics, specifically focusing 
on aspect-oriented and object-oriented programming. The paper 
emphasizes the importance of both static and dynamic software 
metrics for a comprehensive evaluation of software quality. In [5] 
the paper proposes an automated approach to measure and 
visualize class cohesion in object-oriented systems. Traditionally, 
measuring cohesion has been a manual and time-consuming 
process for software engineers and developers. The proposed 
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approach aims to overcome these challenges by automatically 
measuring cohesion, which can provide a more efficient and 
interactive way to assess software quality. The approach works by 
parsing the program source code into an XML file using an 
existing tool and then extracting class tokens based on the 
definitions of cohesion metrics. It then identifies cohesion 
relationships by comparing these tokens with class features and 
generates interactive visualizations of the cohesion using various 
charts. Authors in [4] proposes a new source code level class 
cohesion metric for Object Oriented (OO) software. The paper 
addresses the limitations of existing cohesion metrics, which the 
authors argue do not adequately capture the cohesiveness of 
classes. The proposed metric is based on the usage of instance 
variables by methods within a class. In [20] authors focus on the 
use of code refactoring [21] as a strategy for improving the 
internal structure of software systems without changing their 
external behavior. The paper addresses the issue of software 
maintenance and the degradation of software systems' internal 
structures over time due to maintenance operations. The paper 
proposes the use of object-oriented metrics, specifically cohesion 
metrics, to assess the quality of object-oriented classes and to 
guide the decision-making process for code refactoring [22] [23]. 
Work in [24] focuses on class cohesion as a critical factor in the 
quality assurance of object-oriented software. The abstract 
mentions that there are over thirty different metrics to measure 
cohesion, which are based on the analysis of class members such 
as attributes and methods. The study aims to utilize these metrics 
to promote the quality of Java code static analysis, improve 
object-oriented programming practices, and suggest more 
advanced and efficient practices. 

3. COUPLING AND COHESION 
Coupling and cohesion are two important concepts in OOP 

that describe the relationships among classes. In fact, the degree 
of connectivity between classes in an object-oriented system 
measures how closely one class interacts with other classes. Class 
coupling includes method invocations accessing data members, 
attributes and methods in other classes.  

Cohesion measures how well the methods within a class are 
logically grouped and organized. Cohesion insure that we create 
classes with the right methods and attributes. In this paper, we 
focus on functional cohesion, which means that a class 
encapsulates single, well-defined functions that are highly 
interconnected. They also, depend on the data members of that 
class. High cohesion means that a class has a clear and specific 
purpose, while low cohesion suggests that a class performs 
multiple unrelated tasks. Low cohesion is synonym of bad design, 
methods and/or attributes are not defined in the appropriate class.  

Coupling and cohesion are inversely proportional, a low 
coupling induces a high cohesion and vice versa. In an object 
oriented analysis and design (OOAD), it is important to decrease 
the coupling to enhance flexibility, maintainability, and 
reusability and guaranty independent development. A loose 
coupling reduces the scope of software modifications, making the 
maintainability, and reusability easier. It is also important to 
maintain a high cohesion in class design that enhances readability, 
reusability, and maintainability. 

4. SOCIAL NETWORK ANALYSIS FOR 

OBJECT ORIENTED PROGRAM 
Social Network Analysis (SNA) studies social structures and 

relationships within a network of individuals, organizations, or 
other entities based on the patterns of connections, interactions, 
and information flow among the members of a network.  SNA 
focuses on understanding the structure of social networks, the 
relationships between network nodes, and the influence and 
information flow within the network. It can help uncover hidden 
patterns, identify key actors or influencers, measure centrality and 
connectivity, and explore how information, resources, and 

behaviors spread through the network. 

In this paper, we represent SNA as graph, where nodes 
represent classes, and edges represent the associations. In fact, 
classes are active entity that communicates with each other, they 
access data members of other classes, and they provides data and 
methods for other classes. They could be used as a data type for 
other classes. As matter of fact, a UML class diagram can be 
likened to a social network, where classes represent individuals 
and their relationships depict connections between them. The 
different is that in SNA we focus on interaction rather that the 
structure of the classes. The objective of this work is to quantify 
this interaction to the benefit of OOAD, especially coupling and 
cohesion measurements. 

In SNA we differentiate between directed and undirected 
relationship. The relationship can be weighted or unweighted. For 
an OOP we consider the association a directed relationship. A 
class C1 can access a class C2, in this case the flow is from C1 to 
C2. If the flow is from C2 to C1, it means that C1 is accessed by 
C2. The relationship is also weighted to measure the number of 
occurrence each class access other classes or is accessed by other 
classes. 

In Table 1, we present the mapping between UML class 
diagram and SNA graph: 

Table 1 mapping UML class diagram and SNA 

UML Properties SNA  Properties 

Class Attributes 

Methods 

Nodes Number of 

accessed 

attributes  

Number of 

accessed 

methods 

Number of 

usage as 

datatype 

Association Multiplicity  Relationship Directed 

weighted 

If we consider the example presented in Figure 1, the class 
diagram contains four classes. In SNA each class is a node in the 
graph, the edges weight shows the number of communication 
between classes as presented in Table 1. This graph is based on 
the adjacency matrix in Table 2. 
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Fig 1. Mapping UML Class diagram to SNA graph 
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In Table 2, we have the Adjacency matrix representing all 
communications between classes. For example, the class C1 
communicates with itself eight times and it sends and it access  C2 
eight times ,C3 five times and C4 seven times. C1 is accessed by 
C2 two times, C 3 three times and C4 one time. 

Table 2. Adjacency matrix 

 C1 C2 C3 C4 

C1 8 9 5 7 

C2 2 10 0 0 

C3 3 0 4 2 

C4 1 0 6 3 

 
When considering class diagram as SNA we can identify 

many OOP concepts throw the measurement of nodes importance 
like degree centrality, it measures the number of connections a 
node has to other nodes in the network. Closeness centrality (CC) 
[1], it measures the distance between a node and all other nodes 
in the network. Betweenness centrality (BC) [1], it measures the 
number of shortest paths between all other pairs of nodes that pass 
through a given node. Eigenvector centrality (EC) algorithm 
measures the influence or importance of a node based on its 
connections to other influential nodes.  

5. MODELLING COUPLING AND 

COHESION AS SOCIAL NETWORK 

INTERACTION 
Modeling coupling and cohesion as social network 

interactions provides an interesting perspective on how the OOP 
design principles are defined. Figure 2 illustrates the methodology 
for applying social network analysis (SNA) to detect coupling and 
cohesion. 

 

1.Entity and 

Attribute 

Identification

2.Relationship 

Definition

3.Relationship 

Detection

4.Network 

Construction

5.Centrality 

Measure 

Calculation

6.Network 

Visualization

7.Result 

Analysis and 

Interpretation  
Fig 2. Methodology for applying social network analysis 

 
Entity and Attribute Identification: Define the Java classes as 

the nodes in the network. For each class, consider the number of 
attributes and methods accessed by other classes as relevant 
attributes. 

Relationship Definition: Establish relationships by counting 
the number of times one class accesses attributes and/or methods 
from another class. Additionally, count the instances where one 
class is used as a data type in another class. The relationships are 
directed to identify class dependencies. 

Relationship Detection: The Java program we developed 
extracts and inspects all classes in a given Java project. This 
program generates an Excel file containing the list of edges 
(relationships) between classes. 

Network Construction: In this paper, we use the Gephi tool to 
import the Excel file generated in step 3. This tool will map the 
entities (classes) as nodes and the relationships as edges, creating 
the network representation. 

Centrality Measure Calculation [2]: Compute various 
centrality measures (degree, betweenness, closeness, eigenvector) 
to identify influential or highly connected nodes (classes). 

Network Visualization: The Gephi’s network visualization 
tools represents the network graphically, highlighting patterns of 
coupling and cohesion visually. 

Result Analysis and Interpretation: We focus on the emergent 
classes (highly connected or influential nodes) and analyze the 

causes of coupling and cohesion defects. Based on this analysis, 
we could generate a list of refactoring recommendations to 
improve the OOP. 

6. VALIDATION 

6.1 Project characteristics 
To validate our approach of modeling class interactions as a 

social network, we conducted our research on four well-
established open-source Java projects: JUnit 5.10.2, Spring 6.1.4, 
Apache Commons BCEL 6.8.2, and Guava 33.0. The primary 
objective was to identify classes that exhibit low cohesion or high 
coupling, thereby indicating potential candidate classes for 
refactoring. These classes, referred to as "suspect classes," are 
characterized by their lack of cohesive functionality or excessive 
dependencies on other classes. Table 3 presents the key 
characteristics of the selected projects. We intentionally chose 
projects with diverse characteristics, ranging from small-scale to 
medium-sized and large-scale projects. This diversity in project 
sizes and complexities allows for a comprehensive evaluation of 
our approach across various software system scales. 

Table 3. Project characteristics 

Project Version Classes Relationships 

JUnit 5.10.2 1014 2845 

Spring 6.1.4 4070 14118 

BCEL  6.8.2 585 3871 

Guava  33.0 946 2002 

 
After following the procedure outlined in Figure 2, we developed 

a Java program that examines the root directory of any Java 

project, Figure 3. The program comprises three modules.  

 

 
Fig 3. Main Interface 

The first module includes the "ClassExtractor" class, which 
accepts the root directory of the Java project as input and returns 
the extracted class names for the project. The second module 
contains the "ClassUsageCounter" class, which counts the 
number of classes that access each extracted class, including 
itself. As illustrated in Figure 4, it also generates a text file that 
lists the accessing classes for each class, along with the 
corresponding access counts.  

 
Fig 4. Access count text file 

The third module incorporates the "GenerateExcelFile" class, 
which takes the text file and an empty Excel file as inputs and 
generates an edges list for the Gephi tool in the Excel file, as 
presented in Figure 5.   
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Fig 5.Excel edges list for the Gephi tool 

6.2 Limits of identifying suspect classes based 

on degree centrality 
In our work, coupling and cohesion in software design are 

evaluated using degree centrality from social network analysis. 

Degree centrality gives the number of connections or 
communication paths between classes. A class diagram can be 
represented as a directed network, where in-degree centrality 
measures how many classes access or use a given class. Out-
degree centrality measures the number of communication from a 
class to others classes. A class with high degree centrality, 
meaning it has many incoming and/or outgoing connections, 
likely suffers from high coupling and low cohesion issues. High 
coupling indicates that the class is heavily dependent on many 
other classes, while low cohesion means that the class's 
responsibilities are spread out across multiple unrelated functions. 
In Figure 6, we present the classes with highest degree centrality, 
the colors range from green to yellow, purple, and blue. The nodes 
depicted in blue signify the highest degree centrality. 

 
 

Spring  

 
 

 

 

 

JUnit 

 
Guava 

 
 

 

 

 

 

BCEL 

 

Fig 6. Visualization of the classes with highest degree centrality 

Table 4 illustrates an example from the Spring project, 
showcasing the application of the degree centrality measure. This 
measure provides a ranking of the most connected classes within 
the project. Notably, it identifies classes like TestBean  and 

IllegalStateException present  a high degree, each having a degree 
of 3723 and 1166 respectively. However, these classes exhibit an 
unbalanced in and out degree, as for class TestBean the in-degree 
is 3714 compared to its out-degree of 9 and for class 
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IllegalStateException the in-degree is 1161 compared to its out-
degree of 5. This issue of unbalanced connectivity is prevalent 

among the highest-ranking classes in the table. 

Table 4. Spring project degree centrality simple

In certain scenarios, high coupling is not a design flaw but an 

intentional and unavoidable consequence of the specific purpose 

and requirements of particular classes or modules. This is evident 

in the examples of the TestBean class from the Spring Framework 

and the Attribute class for bytecode manipulation. 

The TestBean class is not intended for real-world business 

purposes but serves as a comprehensive utility for testing the 

Spring Framework's features, such as dependency injection, type 

conversion, bean lifecycle management, and container callbacks. 

While high coupling is generally discouraged in production code 

due to maintainability concerns, in the case of the TestBean class 

within the test suite, this high coupling is deliberate and justified 

by the need for thorough framework testing. Importantly, this high 

coupling is isolated within the test suite and does not affect the 

loose coupling and modular design principles promoted by the 

Spring Framework for application code through dependency 

injection and inversion of control. 

Similarly, the IllegalStateException class in the Spring Java 

Message Service (JMS) package appears to be a critical 

component for managing and handling JMS-related exceptions. 

Its high in-degree suggests that it plays a central role in the error 

handling strategy of the Spring framework, providing a consistent 

and flexible way to deal with JMS errors across different parts of 

the application. 

Additionally, we observe that the class 

AutowiredAnnotationBeanPostProcessorTests has an in degree 

value of null. This null value occurs because the class is 

responsible for instantiating beans, registering them within the 

bean factory, and conducting assertion tests to ensure the proper 

functioning of the AutowiredAnnotationBeanPostProcessor class. 

Consequently, the class 

AutowiredAnnotationBeanPostProcessorTests actively interacts 

with and relies on other classes from both the Spring Framework 

and JUnit to carry out its testing responsibilities. This class uses 

other classes without being accessed by any other classes. 

These examples clearly demonstrate that in certain cases, high 

coupling and unbalanced in/out degree is not a design defect [3] 

[4] [5] but an intentional and unavoidable consequence employed 

by developers to fulfill specific requirements or purposes. As 

discussed in the next section, the key is to isolate and encapsulate 

this high coupling within the necessary components, while 

ensuring that the rest of the system adheres to loose coupling and 

modular design principles for maintainability and extensibility. 

6.3 Refining suspect class detection 
When examining the issue of unbalanced classes, one notable 

finding is that these classes exhibit a very low CC and/or BC 

and/or EC values. In fact, BC is a measure of a class's position as 

a bridge or intermediary between other classes in the program. 

Classes with high BC play a crucial role in connecting different 

program components and can represent potential bottlenecks or 

critical communication points between various clusters or 

components. Identifying such nodes can help identify areas of 

potential coupling or lack of cohesion within the program. CC is 

a measure of how close a class is to all other classes in the 

diagram. Classes with high CC are considered to be central and 

therefore more important than other classes. 

Eigenvector centrality, on the other hand, is an algorithm that 

assesses the importance or influence of classes in the class 

diagram based on their communication patterns. It assigns higher 

scores to classes that are linked to other significant classes. EC 

helps identifying classes with a substantial impact within the class 

diagram. Classes with high EC scores indicate central or 

influential components, which can be indicative of strong 

cohesion or coupling within those components. 

Figure 7 illustrates the social network visualizations of class 

interactions for the four chosen projects, utilizing the concept of 

BC.  
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Spring  

 
JUnit 

 
Guava 

 
 

 

 

BCEL 

 

Fig 7. Visualizations of class interactions based on BC 

Classes with highest BC are shown in blue, purple, and yellow. 

Class in green has the lowest BC. 

Table 5 provides an illustration of the spring project, where the 

classes are listed in descending order of their BC. Before detecting 

the suspect classes using weighted degree centrality, and assess 

the class coupling and cohesion through the analysis of in and out 

weighted degrees.  

Table 5. Spring project BC simple
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To refine our selection, we apply filters that are based on BC, CC 

, and EC. This strategy allows us to omit classes that were 

designed purely for programming needs, directing our focus to 

classes that are most pertinent to the business logic. Our analysis 

is centered on the classes that are deemed most significant, as they 

embody a balanced degree they also represent the business logic. 

The importance of these classes is determined by their ranking in 

one of the three metrics: BC, CC , and EC. 

7. RESULTS AND DISCUSSION 
The outcomes of the network analysis are examined to 

comprehend the program's architecture and to pinpoint classes 

that may be problematic. As previously mentioned, we aim to 

extract classes with a high degree centrality. We then evaluate 

these classes based on their BC, CC, and EC. 

Fig 8. Metrics distribution for the Spring Project 

For each of these metrics, we seek the optimal threshold to fine-

tune the detection process. Figure 8 illustrates the distribution of 

each metric. After examining various threshold values, we select 

the third quartile as an acceptable threshold for filtering out 

classes with the highest degree of centrality. Consequently, for the 

Spring project the thresholds for the BC, CC , and EC metrics are 

set at 0.174521, 0.0000695, and 0.0188085, respectively. In table 

6 we present the thresholds for each project. 

Table 6. Project thresholds 

Project CC threshold  BC threshold EC threshold 

JUnit 0.714286 0.00001925 0.03126 

Spring 0.174521 0.0000695 0.0188085 

BCEL 0.4772205 0.000625 0.11379 

Guava 1 0.000004 0.024199 

 
Once the thresholds for each metric have been established, and 

given the average weighted degree, we can concentrate on classes 

with a high degree of connectivity to identify both coupling and 

cohesion. Classes with a high weighted degree might exhibit a 

high degree of coupling and low cohesion. Conversely, classes 

with a low weighted in degree might show signs of low cohesion. 

Additionally, classes with a high out-weighted degree should be 

examined for potential high coupling. In table 7 we present the 

detected classes. 

The detection process starts by identifying all classes with a 

weighted degree centrality exceeding the Average Weighted 

Degree (AWD). Subsequently, three filters are applied to this 

subset of classes based on the thresholds identified previously. 

These filters serve as criteria to further refine the selection of the 

suspect classes. For instance, in the JUNIT project, which 

encompasses 1014 classes, we observe that 220 classes are greater 

than the average. When applying the CC filter, this number is 

reduced to 57 classes. Similarly, the BC filter decreases it to 55 

classes, while the EC filter selects 55 classes. Following the same 

approach, we identified the relevant classes for the remaining 

projects, and the results are presented in Table 7. 

Table 7. Detected classes 

Proje

ct 

Numb

er of 

classes 

AW

D 

Class

es 

great

er 

than 

the 

AWD 

CC 

class

es 

BC 

class

es 

EC 

class

es 

JUnit 1014 19.6

9 

220 57 55 55 

Sprin

g 

4070 33.6

6 

907 227 227 227 

BCE

L 

585 53.6

8 

122 31 31 32 

Guav

a 

946 12.4

0 

189 65 49 48 

 
By examining the filtered classes, we are able to analyze and 

explore each suspected. By reducing the number of classes to a 

manageable size, we have identified and isolated the potential 

candidates for investigation. At this stage, the designer's expertise 

becomes crucial. The designer can examine the final list and 

pinpoint the classes that require refactoring. Table 8 displays a 

sample of the classes selected for review in the Spring project, 

based on the BC. For each project, we select the most connected 

classes based on the CC, BC and EC. 
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Table 8. Spring project Sample of ranked classes. 
Class Name In-

degre

e 

Out-

degree 

Deg

ree BC 

ClassPathBeanDefinitionSca

nner 

114 59 173 0.07

617 

Component 489 6 495 0.19

9 

ConfigurationClassPostProc

essor 

129 63 192 0.02

3 

ResolvableType 1738 262 200

0 

0.32

8 

AnnotationConfigApplicatio

nContext 

979 37 101

6 

0.18

3 

InjectionMetadata 70 23 93 0.01

0 

AutowiredAnnotationBeanP

ostProcessor 

70 102 172 0.02

8 

PersistenceAnnotationBeanP

ostProcessor 

57 65 122 0.01

2 

LocalContainerEntityManag

erFactoryBean 

45 26 71 0.02

8 

JpaTransactionManager 55 56 111 0.03

2 

TypeDescriptor 1232 118 135

0 

0.21

7 

 
Given the Spring project and the extracted classes mentioned in 

table 8 it is evident that classes such as Component, 

ResolvableType, and AnnotationConfigApplicationContext 

exhibit a significant level of coupling. Therefore, these classes 

should be further investigated. For instance, if we analyze the 

class Component, it provides service or data for 489 classes and 

it access data or services only from 6 classes. As shown in Table 

9, the Component class provides a maximum of 46 services or 

data to the class MergedAnnotationsTests. Similarly, other classes 

in the ranked list exhibit comparable behavior. However, the 

Component class accesses itself only twice. This indicates that the 

class is highly coupled but lacks cohesion. In fact in Spring 

project, the Component class is used to mark a class as a managed 

component. Spring will create an instance of this class and 

manage its lifecycle. The Component annotation is a stereotype, 

which means it is used to identify a class as a particular type of 

concern. Several others classes in Spring provides other 

stereotype annotations such as Service, Repository, and 

Controller, each of which is used to identify different types of 

beans within a Spring application. This class is intentionally 

highly coupled and it don’t need a refactoring.  

Table 9. Component class interaction simple 

Source Target Weigh

t 

MergedAnnotationsTests 

Componen

t 46 

AnnotationUtilsTests 

Componen

t 35 

TestContextAnnotationUtilsTests 

Componen

t 35 

AnnotationDrivenEventListenerTest

s 

Componen

t 20 

AnnotatedElementUtilsTests 

Componen

t 15 

AnnotationMetadataTests 

Componen

t 14 

…   

Component 

Componen

t 2 

…   

Table 10 presents a simplified view of the ResolvableType class 

connections, showing that it provides services to the 

ResolvableTypeTests class 443 times. Interestingly, it also serves 

itself 234 times. Examining all the tables, we can deduce that this 

class, with a high degree of self-service, appears to be well-

balanced and exhibits an acceptable level of coupling and 

cohesion. 

Class AnnotationConfigApplicationContext, presents a degree of 

1016 but it accesses its own data and services in only 9 times. This 

kind of classes present a high coupling and a low cohesion and 

needs to be refactored, since it encapsulates too many 

responsibilities. 

Table 10. ResolvableType class connections simple 

Source Target Weight 

ResolvableTypeTests ResolvableType 443 

ResolvableType ResolvableType 234 

ConstructorResolver ResolvableType 52 

…   

Table 11 presents the optimized number of classes that a designer 

should focus on. Through this analysis, the number of classes 

requiring scrutiny has been considerably reduced. This reduction 

enhances the investigation process, saving valuable time and 

effort while improving the efficiency of assessing coupling and 

cohesion within the system. We identified the most central and 

influential classes in the four projects. By focusing on these key 

classes, developers can quickly identify the areas that are most 

critical for understanding the system's architecture and behavior. 

Table 11 Suspect classes. 

 JUnit  Spring  BCEL  Guava  

Metrics 
CC BC EC CC BC EC CC BC EC CC BC EC 

Refined classes  
17 19 22 63 103 133 19 20 12 5 10 15 

Initial classes  
1014 4070 585 946 

Max-Union 
58 299 51 30 

Max-Intersection 
22 133 20 15 

Percentage of detected class 

Max-Union 

0.057 0.073 0.087 0.031 

Percentage of detected class 

Max-Intersection 

0.021 0.032 0.034 0.015 

Average detection 0.039 0.0525 0.0605 0.023 
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We apply three filters to extract the highly coupled and lowly 

cohesive classes. As shown in Table 11, for each metric, we 

compile a set of classes. The "Max-Union" approach signifies the 

maximum number of classes detected, which happens when the 

classes in each set are entirely distinct from one another. 

Conversely, "Max-Intersection" provides the minimum number of 

detected classes; this occurs when every set is contained within 

the others. 

 
Fig 9. Comparative number of classes 

As illustrated in Figure 9, we present a comparative number of 

classes. The application of SNA has consistently reduced the 

number of classes across all projects, regardless of their size. On 

average, the detection rate is below 0.07, significantly refining the 

number of classes that require investigation. As example, for the 

Guava project, we identified 16 classes across the three metrics, 

resulting in a detection rate of 0.016.  

8. CONCLUSION 
Coupling and cohesion are two fundamental concepts that 

contribute significantly to the quality and maintainability of 

software systems. Achieving high cohesion and low coupling is a 

key goal in OOP design. It leads to more modular, maintainable, 

and understandable code, which in turn reduces the cost of 

maintenance and increases the overall quality of the software 

system. Detecting coupling and cohesion is not just a technical 

task; it also requires a good understanding of the domain and the 

problem. Indeed, many studies, often rely on metrics and 

predefined thresholds to identify classes with high coupling and 

low cohesion. This approach involves calculating various metrics 

that measure the interdependencies between classes. Metrics 

alone may not always accurately capture the complexity of 

software systems, and thresholds can be subjective. Additionally, 

the choice of metrics and thresholds can significantly influence 

the results of a study. This paper introduced a new approach for 

the detection of classes that are highly coupled presenting a low 

cohesion. Our approach is based on SNA. Throw the analysis of 

CC, BC, EC and degree centrality we detect the list of classes that 

should be investigated. This reduction in the number of classes to 

be examined results in time and effort savings, ultimately 

lowering the cost of maintenance for large projects. As future 

work we intend to apply the same technique to detect design 

defects. 
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