
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.19, May 2024

10

Examining Software Coupling and Cohesion Patterns

using Social Network Analysis

Mohamed Maddeh
College of Applied Computer Science, King Saud University,

Riyadh 11451, Saudi Arabia.
Higher Institute of Finance and Taxation Sousse,

University of Sousse, Sousse 4023, Tunisia

ABSTRACT
Social network analysis (SNA) is an emerging research area that

has gained significant attention in recent years. Analyzing OO

program through SNA can provide insights into how a program

component, classes and methods interact and collaborate. In fact,

an OO program is composed of a set of classes that interact with

each other. Considering a class as a node and the interaction as a

relationship, we can take advantage from SNA capabilities to the

benefit of OO programming. Therefore, SNA is an excellent way

for detecting and quantifying coupling and cohesion in an Object

Oriented Programming (OOP) based on the class interaction, by

analyzing the connections between classes and methods. An

accurate coupling and cohesion detection helps developers to

optimize codes and improve its overall performance and

maintainability. In this paper, we represent four java open source

projects (JUnit 5.10.2, Spring 6.1.4, Apache Commons BCEL

6.8.2 and Guava 33.0) as a social network. We also, applied SNA

techniques to identify lowly cohesive classes and highly coupled

classes.

Keywords Object Oriented Programming, Coupling,

Cohesion, Social Network Analysis, Refactoring,

Maintainability.

1. INTRODUCTION
Social network analysis (SNA) is a technique for representing and
analyzing the relationships between individuals or entities in a
network. It is commonly used in fields such as sociology,
anthropology, and marketing to understand social dynamics,
collaboration patterns, and information diffusion. SNA [1] [2] can
also be applied to object-oriented software systems to gain
insights into their structure and dynamics. By viewing class
interactions as a social network, we can identify key classes and
components, detect communities and modules, and analyze
information flow and dependencies. SNA measures such as
degree centrality and betweenness centrality can be used to
identify classes that have a high number of connections or play a
critical role in information flow. Network visualization tools such
as Gephi [3] can be used to visualize the class interaction network
and identify patterns and anomalies.

This innovative approach offers a valuable alternative to
conventional methods of detecting class coupling and cohesion.
[4] [5] [6] [7], and offers new insights into the design and
maintenance of object-oriented software systems. In fact, in the
field of software engineering, various metrics are employed to
evaluate the coupling and cohesion of classes in object-oriented
systems. These metrics assist developers in identifying and
refactoring code to enhance its modularity, reusability, and
maintainability. For instance, coupling metrics include [8] [9]
[10] [11]: Coupling Between Objects (CBO), it measures the
number of other classes that a class is coupled to. Depth of
Inheritance Tree (DIT), it measures the depth of the inheritance
hierarchy in which a class resides. Number of Children (NOC) it
measures the number of subclasses that a class has. Cohesion

metrics include: Lack of Cohesion in Methods (LCOM), it
measures the number of methods in a class that do not access the
same instance variables. Coupling Between Methods (CBM), it
measures the number of pairs of methods in a class that access the
same instance variables.

The challenge lies in the multitude of metrics and their
associated thresholds, which can complicate the measurement
process [12] [13] [14] [15]. This new approach of viewing class
interactions as a social network offers a promising alternative to
traditional coupling and cohesion metrics. By leveraging SNA
techniques, we can gain a more comprehensive understanding of
the relationships between classes and identify potential areas for
improvement. It can help reduce the number of classes that need
to be studied, as the most problematic areas that can be targeted
first. This can make the process of refactoring and improving the
system more efficient and effective. Avoiding to manually inspect
every class, which can be very time-consuming for large
codebases. Only the top-ranked classes from the SNA
prioritization need to be studied in depth, reducing the overall
number of classes that require detailed analysis.

2. LITERATURE REVIEW
The concepts of coupling and cohesion have long been

recognized as fundamental pillars of high-quality, maintainable
code. As software systems grow in complexity, the balance
between these two design principles becomes increasingly critical
to ensure that code is not only efficient and effective but also easy
to understand, modify, and extend. In their study [16], the authors
conducted a systematic mapping to determine the commonly used
coupling and cohesion metrics and their practical applicability.
They found four distinct categories, evolution of coupling and
cohesion metrics, research type, contribution, and context focus.
This categorization allowed for a structured analysis of the
existing body of research. The work presented in [17] provides a
comprehensive framework to deal with all sorts of coupling. It
propose a framework that takes into account the distinction
between object level-and class level coupling. This distinction
refers to dynamic dependencies between objects on one hand and
static dependencies between implementations on the other hand.
In [18] researchers focused on improving software design quality,
reliability, and reducing complexity in component-based software
engineering. The paper proposes a component selection
framework that utilizes the Hexa-oval optimization algorithm to
select the most suitable components from a repository. This
framework aims to analyze the relationship between component
modules by measuring their coupling and cohesion. Another work
presented in [19] propose a framework for calculating hybrid
system metrics in software quality metrics, specifically focusing
on aspect-oriented and object-oriented programming. The paper
emphasizes the importance of both static and dynamic software
metrics for a comprehensive evaluation of software quality. In [5]
the paper proposes an automated approach to measure and
visualize class cohesion in object-oriented systems. Traditionally,
measuring cohesion has been a manual and time-consuming
process for software engineers and developers. The proposed

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.19, May 2024

11

approach aims to overcome these challenges by automatically
measuring cohesion, which can provide a more efficient and
interactive way to assess software quality. The approach works by
parsing the program source code into an XML file using an
existing tool and then extracting class tokens based on the
definitions of cohesion metrics. It then identifies cohesion
relationships by comparing these tokens with class features and
generates interactive visualizations of the cohesion using various
charts. Authors in [4] proposes a new source code level class
cohesion metric for Object Oriented (OO) software. The paper
addresses the limitations of existing cohesion metrics, which the
authors argue do not adequately capture the cohesiveness of
classes. The proposed metric is based on the usage of instance
variables by methods within a class. In [20] authors focus on the
use of code refactoring [21] as a strategy for improving the
internal structure of software systems without changing their
external behavior. The paper addresses the issue of software
maintenance and the degradation of software systems' internal
structures over time due to maintenance operations. The paper
proposes the use of object-oriented metrics, specifically cohesion
metrics, to assess the quality of object-oriented classes and to
guide the decision-making process for code refactoring [22] [23].
Work in [24] focuses on class cohesion as a critical factor in the
quality assurance of object-oriented software. The abstract
mentions that there are over thirty different metrics to measure
cohesion, which are based on the analysis of class members such
as attributes and methods. The study aims to utilize these metrics
to promote the quality of Java code static analysis, improve
object-oriented programming practices, and suggest more
advanced and efficient practices.

3. COUPLING AND COHESION
Coupling and cohesion are two important concepts in OOP

that describe the relationships among classes. In fact, the degree
of connectivity between classes in an object-oriented system
measures how closely one class interacts with other classes. Class
coupling includes method invocations accessing data members,
attributes and methods in other classes.

Cohesion measures how well the methods within a class are
logically grouped and organized. Cohesion insure that we create
classes with the right methods and attributes. In this paper, we
focus on functional cohesion, which means that a class
encapsulates single, well-defined functions that are highly
interconnected. They also, depend on the data members of that
class. High cohesion means that a class has a clear and specific
purpose, while low cohesion suggests that a class performs
multiple unrelated tasks. Low cohesion is synonym of bad design,
methods and/or attributes are not defined in the appropriate class.

Coupling and cohesion are inversely proportional, a low
coupling induces a high cohesion and vice versa. In an object
oriented analysis and design (OOAD), it is important to decrease
the coupling to enhance flexibility, maintainability, and
reusability and guaranty independent development. A loose
coupling reduces the scope of software modifications, making the
maintainability, and reusability easier. It is also important to
maintain a high cohesion in class design that enhances readability,
reusability, and maintainability.

4. SOCIAL NETWORK ANALYSIS FOR

OBJECT ORIENTED PROGRAM
Social Network Analysis (SNA) studies social structures and

relationships within a network of individuals, organizations, or
other entities based on the patterns of connections, interactions,
and information flow among the members of a network. SNA
focuses on understanding the structure of social networks, the
relationships between network nodes, and the influence and
information flow within the network. It can help uncover hidden
patterns, identify key actors or influencers, measure centrality and
connectivity, and explore how information, resources, and

behaviors spread through the network.

In this paper, we represent SNA as graph, where nodes
represent classes, and edges represent the associations. In fact,
classes are active entity that communicates with each other, they
access data members of other classes, and they provides data and
methods for other classes. They could be used as a data type for
other classes. As matter of fact, a UML class diagram can be
likened to a social network, where classes represent individuals
and their relationships depict connections between them. The
different is that in SNA we focus on interaction rather that the
structure of the classes. The objective of this work is to quantify
this interaction to the benefit of OOAD, especially coupling and
cohesion measurements.

In SNA we differentiate between directed and undirected
relationship. The relationship can be weighted or unweighted. For
an OOP we consider the association a directed relationship. A
class C1 can access a class C2, in this case the flow is from C1 to
C2. If the flow is from C2 to C1, it means that C1 is accessed by
C2. The relationship is also weighted to measure the number of
occurrence each class access other classes or is accessed by other
classes.

In Table 1, we present the mapping between UML class
diagram and SNA graph:

Table 1 mapping UML class diagram and SNA

UML Properties SNA Properties

Class Attributes

Methods

Nodes Number of

accessed

attributes

Number of

accessed

methods

Number of

usage as

datatype

Association Multiplicity Relationship Directed

weighted

If we consider the example presented in Figure 1, the class
diagram contains four classes. In SNA each class is a node in the
graph, the edges weight shows the number of communication
between classes as presented in Table 1. This graph is based on
the adjacency matrix in Table 2.

C1

C4

C3

C2

8 10

3

4

9

2

7

1
3

5

6

2

Fig 1. Mapping UML Class diagram to SNA graph

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.19, May 2024

12

In Table 2, we have the Adjacency matrix representing all
communications between classes. For example, the class C1
communicates with itself eight times and it sends and it access C2
eight times ,C3 five times and C4 seven times. C1 is accessed by
C2 two times, C 3 three times and C4 one time.

Table 2. Adjacency matrix

 C1 C2 C3 C4

C1 8 9 5 7

C2 2 10 0 0

C3 3 0 4 2

C4 1 0 6 3

When considering class diagram as SNA we can identify

many OOP concepts throw the measurement of nodes importance
like degree centrality, it measures the number of connections a
node has to other nodes in the network. Closeness centrality (CC)
[1], it measures the distance between a node and all other nodes
in the network. Betweenness centrality (BC) [1], it measures the
number of shortest paths between all other pairs of nodes that pass
through a given node. Eigenvector centrality (EC) algorithm
measures the influence or importance of a node based on its
connections to other influential nodes.

5. MODELLING COUPLING AND

COHESION AS SOCIAL NETWORK

INTERACTION
Modeling coupling and cohesion as social network

interactions provides an interesting perspective on how the OOP
design principles are defined. Figure 2 illustrates the methodology
for applying social network analysis (SNA) to detect coupling and
cohesion.

1.Entity and

Attribute

Identification

2.Relationship

Definition

3.Relationship

Detection

4.Network

Construction

5.Centrality

Measure

Calculation

6.Network

Visualization

7.Result

Analysis and

Interpretation
Fig 2. Methodology for applying social network analysis

Entity and Attribute Identification: Define the Java classes as

the nodes in the network. For each class, consider the number of
attributes and methods accessed by other classes as relevant
attributes.

Relationship Definition: Establish relationships by counting
the number of times one class accesses attributes and/or methods
from another class. Additionally, count the instances where one
class is used as a data type in another class. The relationships are
directed to identify class dependencies.

Relationship Detection: The Java program we developed
extracts and inspects all classes in a given Java project. This
program generates an Excel file containing the list of edges
(relationships) between classes.

Network Construction: In this paper, we use the Gephi tool to
import the Excel file generated in step 3. This tool will map the
entities (classes) as nodes and the relationships as edges, creating
the network representation.

Centrality Measure Calculation [2]: Compute various
centrality measures (degree, betweenness, closeness, eigenvector)
to identify influential or highly connected nodes (classes).

Network Visualization: The Gephi’s network visualization
tools represents the network graphically, highlighting patterns of
coupling and cohesion visually.

Result Analysis and Interpretation: We focus on the emergent
classes (highly connected or influential nodes) and analyze the

causes of coupling and cohesion defects. Based on this analysis,
we could generate a list of refactoring recommendations to
improve the OOP.

6. VALIDATION

6.1 Project characteristics
To validate our approach of modeling class interactions as a

social network, we conducted our research on four well-
established open-source Java projects: JUnit 5.10.2, Spring 6.1.4,
Apache Commons BCEL 6.8.2, and Guava 33.0. The primary
objective was to identify classes that exhibit low cohesion or high
coupling, thereby indicating potential candidate classes for
refactoring. These classes, referred to as "suspect classes," are
characterized by their lack of cohesive functionality or excessive
dependencies on other classes. Table 3 presents the key
characteristics of the selected projects. We intentionally chose
projects with diverse characteristics, ranging from small-scale to
medium-sized and large-scale projects. This diversity in project
sizes and complexities allows for a comprehensive evaluation of
our approach across various software system scales.

Table 3. Project characteristics

Project Version Classes Relationships

JUnit 5.10.2 1014 2845

Spring 6.1.4 4070 14118

BCEL 6.8.2 585 3871

Guava 33.0 946 2002

After following the procedure outlined in Figure 2, we developed

a Java program that examines the root directory of any Java

project, Figure 3. The program comprises three modules.

Fig 3. Main Interface

The first module includes the "ClassExtractor" class, which
accepts the root directory of the Java project as input and returns
the extracted class names for the project. The second module
contains the "ClassUsageCounter" class, which counts the
number of classes that access each extracted class, including
itself. As illustrated in Figure 4, it also generates a text file that
lists the accessing classes for each class, along with the
corresponding access counts.

Fig 4. Access count text file

The third module incorporates the "GenerateExcelFile" class,
which takes the text file and an empty Excel file as inputs and
generates an edges list for the Gephi tool in the Excel file, as
presented in Figure 5.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.19, May 2024

13

Fig 5.Excel edges list for the Gephi tool

6.2 Limits of identifying suspect classes based

on degree centrality
In our work, coupling and cohesion in software design are

evaluated using degree centrality from social network analysis.

Degree centrality gives the number of connections or
communication paths between classes. A class diagram can be
represented as a directed network, where in-degree centrality
measures how many classes access or use a given class. Out-
degree centrality measures the number of communication from a
class to others classes. A class with high degree centrality,
meaning it has many incoming and/or outgoing connections,
likely suffers from high coupling and low cohesion issues. High
coupling indicates that the class is heavily dependent on many
other classes, while low cohesion means that the class's
responsibilities are spread out across multiple unrelated functions.
In Figure 6, we present the classes with highest degree centrality,
the colors range from green to yellow, purple, and blue. The nodes
depicted in blue signify the highest degree centrality.

Spring

JUnit

Guava

BCEL

Fig 6. Visualization of the classes with highest degree centrality

Table 4 illustrates an example from the Spring project,
showcasing the application of the degree centrality measure. This
measure provides a ranking of the most connected classes within
the project. Notably, it identifies classes like TestBean and

IllegalStateException present a high degree, each having a degree
of 3723 and 1166 respectively. However, these classes exhibit an
unbalanced in and out degree, as for class TestBean the in-degree
is 3714 compared to its out-degree of 9 and for class

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.19, May 2024

14

IllegalStateException the in-degree is 1161 compared to its out-
degree of 5. This issue of unbalanced connectivity is prevalent

among the highest-ranking classes in the table.

Table 4. Spring project degree centrality simple

In certain scenarios, high coupling is not a design flaw but an

intentional and unavoidable consequence of the specific purpose

and requirements of particular classes or modules. This is evident

in the examples of the TestBean class from the Spring Framework

and the Attribute class for bytecode manipulation.

The TestBean class is not intended for real-world business

purposes but serves as a comprehensive utility for testing the

Spring Framework's features, such as dependency injection, type

conversion, bean lifecycle management, and container callbacks.

While high coupling is generally discouraged in production code

due to maintainability concerns, in the case of the TestBean class

within the test suite, this high coupling is deliberate and justified

by the need for thorough framework testing. Importantly, this high

coupling is isolated within the test suite and does not affect the

loose coupling and modular design principles promoted by the

Spring Framework for application code through dependency

injection and inversion of control.

Similarly, the IllegalStateException class in the Spring Java

Message Service (JMS) package appears to be a critical

component for managing and handling JMS-related exceptions.

Its high in-degree suggests that it plays a central role in the error

handling strategy of the Spring framework, providing a consistent

and flexible way to deal with JMS errors across different parts of

the application.

Additionally, we observe that the class

AutowiredAnnotationBeanPostProcessorTests has an in degree

value of null. This null value occurs because the class is

responsible for instantiating beans, registering them within the

bean factory, and conducting assertion tests to ensure the proper

functioning of the AutowiredAnnotationBeanPostProcessor class.

Consequently, the class

AutowiredAnnotationBeanPostProcessorTests actively interacts

with and relies on other classes from both the Spring Framework

and JUnit to carry out its testing responsibilities. This class uses

other classes without being accessed by any other classes.

These examples clearly demonstrate that in certain cases, high

coupling and unbalanced in/out degree is not a design defect [3]

[4] [5] but an intentional and unavoidable consequence employed

by developers to fulfill specific requirements or purposes. As

discussed in the next section, the key is to isolate and encapsulate

this high coupling within the necessary components, while

ensuring that the rest of the system adheres to loose coupling and

modular design principles for maintainability and extensibility.

6.3 Refining suspect class detection
When examining the issue of unbalanced classes, one notable

finding is that these classes exhibit a very low CC and/or BC

and/or EC values. In fact, BC is a measure of a class's position as

a bridge or intermediary between other classes in the program.

Classes with high BC play a crucial role in connecting different

program components and can represent potential bottlenecks or

critical communication points between various clusters or

components. Identifying such nodes can help identify areas of

potential coupling or lack of cohesion within the program. CC is

a measure of how close a class is to all other classes in the

diagram. Classes with high CC are considered to be central and

therefore more important than other classes.

Eigenvector centrality, on the other hand, is an algorithm that

assesses the importance or influence of classes in the class

diagram based on their communication patterns. It assigns higher

scores to classes that are linked to other significant classes. EC

helps identifying classes with a substantial impact within the class

diagram. Classes with high EC scores indicate central or

influential components, which can be indicative of strong

cohesion or coupling within those components.

Figure 7 illustrates the social network visualizations of class

interactions for the four chosen projects, utilizing the concept of

BC.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.19, May 2024

15

Spring

JUnit

Guava

BCEL

Fig 7. Visualizations of class interactions based on BC

Classes with highest BC are shown in blue, purple, and yellow.

Class in green has the lowest BC.

Table 5 provides an illustration of the spring project, where the

classes are listed in descending order of their BC. Before detecting

the suspect classes using weighted degree centrality, and assess

the class coupling and cohesion through the analysis of in and out

weighted degrees.

Table 5. Spring project BC simple

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.19, May 2024

16

To refine our selection, we apply filters that are based on BC, CC

, and EC. This strategy allows us to omit classes that were

designed purely for programming needs, directing our focus to

classes that are most pertinent to the business logic. Our analysis

is centered on the classes that are deemed most significant, as they

embody a balanced degree they also represent the business logic.

The importance of these classes is determined by their ranking in

one of the three metrics: BC, CC , and EC.

7. RESULTS AND DISCUSSION
The outcomes of the network analysis are examined to

comprehend the program's architecture and to pinpoint classes

that may be problematic. As previously mentioned, we aim to

extract classes with a high degree centrality. We then evaluate

these classes based on their BC, CC, and EC.

Fig 8. Metrics distribution for the Spring Project

For each of these metrics, we seek the optimal threshold to fine-

tune the detection process. Figure 8 illustrates the distribution of

each metric. After examining various threshold values, we select

the third quartile as an acceptable threshold for filtering out

classes with the highest degree of centrality. Consequently, for the

Spring project the thresholds for the BC, CC , and EC metrics are

set at 0.174521, 0.0000695, and 0.0188085, respectively. In table

6 we present the thresholds for each project.

Table 6. Project thresholds

Project CC threshold BC threshold EC threshold

JUnit 0.714286 0.00001925 0.03126

Spring 0.174521 0.0000695 0.0188085

BCEL 0.4772205 0.000625 0.11379

Guava 1 0.000004 0.024199

Once the thresholds for each metric have been established, and

given the average weighted degree, we can concentrate on classes

with a high degree of connectivity to identify both coupling and

cohesion. Classes with a high weighted degree might exhibit a

high degree of coupling and low cohesion. Conversely, classes

with a low weighted in degree might show signs of low cohesion.

Additionally, classes with a high out-weighted degree should be

examined for potential high coupling. In table 7 we present the

detected classes.

The detection process starts by identifying all classes with a

weighted degree centrality exceeding the Average Weighted

Degree (AWD). Subsequently, three filters are applied to this

subset of classes based on the thresholds identified previously.

These filters serve as criteria to further refine the selection of the

suspect classes. For instance, in the JUNIT project, which

encompasses 1014 classes, we observe that 220 classes are greater

than the average. When applying the CC filter, this number is

reduced to 57 classes. Similarly, the BC filter decreases it to 55

classes, while the EC filter selects 55 classes. Following the same

approach, we identified the relevant classes for the remaining

projects, and the results are presented in Table 7.

Table 7. Detected classes

Proje

ct

Numb

er of

classes

AW

D

Class

es

great

er

than

the

AWD

CC

class

es

BC

class

es

EC

class

es

JUnit 1014 19.6

9

220 57 55 55

Sprin

g

4070 33.6

6

907 227 227 227

BCE

L

585 53.6

8

122 31 31 32

Guav

a

946 12.4

0

189 65 49 48

By examining the filtered classes, we are able to analyze and

explore each suspected. By reducing the number of classes to a

manageable size, we have identified and isolated the potential

candidates for investigation. At this stage, the designer's expertise

becomes crucial. The designer can examine the final list and

pinpoint the classes that require refactoring. Table 8 displays a

sample of the classes selected for review in the Spring project,

based on the BC. For each project, we select the most connected

classes based on the CC, BC and EC.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.19, May 2024

17

Table 8. Spring project Sample of ranked classes.
Class Name In-

degre

e

Out-

degree

Deg

ree BC

ClassPathBeanDefinitionSca

nner

114 59 173 0.07

617

Component 489 6 495 0.19

9

ConfigurationClassPostProc

essor

129 63 192 0.02

3

ResolvableType 1738 262 200

0

0.32

8

AnnotationConfigApplicatio

nContext

979 37 101

6

0.18

3

InjectionMetadata 70 23 93 0.01

0

AutowiredAnnotationBeanP

ostProcessor

70 102 172 0.02

8

PersistenceAnnotationBeanP

ostProcessor

57 65 122 0.01

2

LocalContainerEntityManag

erFactoryBean

45 26 71 0.02

8

JpaTransactionManager 55 56 111 0.03

2

TypeDescriptor 1232 118 135

0

0.21

7

Given the Spring project and the extracted classes mentioned in

table 8 it is evident that classes such as Component,

ResolvableType, and AnnotationConfigApplicationContext

exhibit a significant level of coupling. Therefore, these classes

should be further investigated. For instance, if we analyze the

class Component, it provides service or data for 489 classes and

it access data or services only from 6 classes. As shown in Table

9, the Component class provides a maximum of 46 services or

data to the class MergedAnnotationsTests. Similarly, other classes

in the ranked list exhibit comparable behavior. However, the

Component class accesses itself only twice. This indicates that the

class is highly coupled but lacks cohesion. In fact in Spring

project, the Component class is used to mark a class as a managed

component. Spring will create an instance of this class and

manage its lifecycle. The Component annotation is a stereotype,

which means it is used to identify a class as a particular type of

concern. Several others classes in Spring provides other

stereotype annotations such as Service, Repository, and

Controller, each of which is used to identify different types of

beans within a Spring application. This class is intentionally

highly coupled and it don’t need a refactoring.

Table 9. Component class interaction simple

Source Target Weigh

t

MergedAnnotationsTests

Componen

t 46

AnnotationUtilsTests

Componen

t 35

TestContextAnnotationUtilsTests

Componen

t 35

AnnotationDrivenEventListenerTest

s

Componen

t 20

AnnotatedElementUtilsTests

Componen

t 15

AnnotationMetadataTests

Componen

t 14

…

Component

Componen

t 2

…

Table 10 presents a simplified view of the ResolvableType class

connections, showing that it provides services to the

ResolvableTypeTests class 443 times. Interestingly, it also serves

itself 234 times. Examining all the tables, we can deduce that this

class, with a high degree of self-service, appears to be well-

balanced and exhibits an acceptable level of coupling and

cohesion.

Class AnnotationConfigApplicationContext, presents a degree of

1016 but it accesses its own data and services in only 9 times. This

kind of classes present a high coupling and a low cohesion and

needs to be refactored, since it encapsulates too many

responsibilities.

Table 10. ResolvableType class connections simple

Source Target Weight

ResolvableTypeTests ResolvableType 443

ResolvableType ResolvableType 234

ConstructorResolver ResolvableType 52

…

Table 11 presents the optimized number of classes that a designer

should focus on. Through this analysis, the number of classes

requiring scrutiny has been considerably reduced. This reduction

enhances the investigation process, saving valuable time and

effort while improving the efficiency of assessing coupling and

cohesion within the system. We identified the most central and

influential classes in the four projects. By focusing on these key

classes, developers can quickly identify the areas that are most

critical for understanding the system's architecture and behavior.

Table 11 Suspect classes.

 JUnit Spring BCEL Guava

Metrics
CC BC EC CC BC EC CC BC EC CC BC EC

Refined classes
17 19 22 63 103 133 19 20 12 5 10 15

Initial classes
1014 4070 585 946

Max-Union
58 299 51 30

Max-Intersection
22 133 20 15

Percentage of detected class

Max-Union

0.057 0.073 0.087 0.031

Percentage of detected class

Max-Intersection

0.021 0.032 0.034 0.015

Average detection 0.039 0.0525 0.0605 0.023

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.19, May 2024

18

We apply three filters to extract the highly coupled and lowly

cohesive classes. As shown in Table 11, for each metric, we

compile a set of classes. The "Max-Union" approach signifies the

maximum number of classes detected, which happens when the

classes in each set are entirely distinct from one another.

Conversely, "Max-Intersection" provides the minimum number of

detected classes; this occurs when every set is contained within

the others.

Fig 9. Comparative number of classes

As illustrated in Figure 9, we present a comparative number of

classes. The application of SNA has consistently reduced the

number of classes across all projects, regardless of their size. On

average, the detection rate is below 0.07, significantly refining the

number of classes that require investigation. As example, for the

Guava project, we identified 16 classes across the three metrics,

resulting in a detection rate of 0.016.

8. CONCLUSION
Coupling and cohesion are two fundamental concepts that

contribute significantly to the quality and maintainability of

software systems. Achieving high cohesion and low coupling is a

key goal in OOP design. It leads to more modular, maintainable,

and understandable code, which in turn reduces the cost of

maintenance and increases the overall quality of the software

system. Detecting coupling and cohesion is not just a technical

task; it also requires a good understanding of the domain and the

problem. Indeed, many studies, often rely on metrics and

predefined thresholds to identify classes with high coupling and

low cohesion. This approach involves calculating various metrics

that measure the interdependencies between classes. Metrics

alone may not always accurately capture the complexity of

software systems, and thresholds can be subjective. Additionally,

the choice of metrics and thresholds can significantly influence

the results of a study. This paper introduced a new approach for

the detection of classes that are highly coupled presenting a low

cohesion. Our approach is based on SNA. Throw the analysis of

CC, BC, EC and degree centrality we detect the list of classes that

should be investigated. This reduction in the number of classes to

be examined results in time and effort savings, ultimately

lowering the cost of maintenance for large projects. As future

work we intend to apply the same technique to detect design

defects.

9. REFERENCES
[1] Z. Junlong and L. Yu, "Degree Centrality, Betweenness

Centrality, and Closeness Centrality in Social Network," in

2nd International Conference on Modelling, Simulation and

Applied Mathematics (MSAM2017), Bangkok, Thailand,

March 2017.

[2] U. Brandes, " A Faster Algorithm for Betweenness

Centrality," Journal of Mathematical Sociology , pp.

25(2):163-177, 2001.

[3] T. LewowskiLech and M. Madeyski, "How far are we from

reproducible research on code smell detection? A systematic

literature review.," Information and Software Technology,

vol. 144, no. 3, p. 106783, 2022.

[4] E. Fernandes, J. Oliveira, G. Vale, T. Paiva and E.

Figueiredo, "A Review-based Comparative Study of Bad

Smell Detection Tools," in 20th International Conference on

Evaluation and Assessment in Software Engineering

(EASE), Ireland, June 2006.

[5] D. Di Nucci, F. Palomba, D. Tamburri, A. Serebrenik and A.

De Lucia, "Detecting Code Smells using Machine Learning

Techniques: Are We There Yet?," in 25th IEEE International

Conference on Software Analysis, Evolution, and

Reengineering, Italy, March 2018.

[6] Z. Wei, Z. Mingyang, Y. Ling and F. Fengchun, "Social

network analysis and public policy: what’s new?," Journal of

Asian Public Policy , vol. 16, no. 2, pp. 115-145 , 2021.

[7] P. B. Stephen, E. Martin G, J. Jeffrey C and A. Filip,

Analyzing Social Networks Third Edition, SAGE

Publications Ltd;, February 26, 2024.

[8] B. Anuja and M. P. S, "Visualization and Interpretation of

Gephi and Tableau: A Comparative Study," in International

Conference on Advances in Electrical and Computer

Technologies, Coimbatore, India, February 2021.

[9] "A New Metric for Class Cohesion for Object," The

International Arab Journal of Information Technology, vol.

3, no. 17, May 2020.

[10] Y. Afrah and H. Mustafa, "An Approach to Automatically

Measure and Visualize Class Cohesion in Object-Oriented

Systems," in International Conference on Decision Aid

Sciences and Application (DASA), Sakheer, Bahrain, 2020.

[11] M. K. Bhatia, "A Survey of Static and Dynamic Metrics

Tools for Object Oriented Environment," Emerging

Research in Computing, Information, Communication and

Applications, vol. 790, pp. 521-530, 2021.

[12] M. Lanza and R. Marinescu, "Object-oriented metrics in

practice," Springer, Heidelberg, 2006.

[13] A. Amjad and M. Alshayeb, "A metrics suite for UML model

stability," Softw Syst Model, December 2016.

[14] M. Zhang, T. Hall and N. Baddoo, "Code Bad Smells: a

review of current knowledge," Journal of Software

Maintenance and Evolution: Research and Practice, vol. 23,

no. 3, p. 179–202, October 2010.

[15] B. Boczar, M. Pytka and L. Madeyski, "Which Static Code

Metrics Can Help to Predict Test Case Effectiveness? New

Metrics and Their Empirical Evaluation on Projects

Assessed for Industrial Relevance," Developments in

Information & Knowledge Management for Business

Applications, vol. 3, p. 201–215, 2022.

[16] M. Maddeh, Ayouni, Sarra, S. Alyahya and F. Hajjej,

"Decision tree-based Design Defects Detection," IEEE

Access, vol. 9, pp. 71606-71614, 2021.

[17] S. Badri and M. Moudache, "Using Metrics for Risk

Prediction in Object-Oriented," Journal of Software, vol. 17,

no. 1, pp. 1-20, 2022.

[18] K. Erni and C. Lewerentz, "Applying design metrics to

object-oriented frameworks," IEEE METRICS, p. 64–74,

1996.

[19] B. Kitchenham, Software metrics: Measurement for software

process improvement, NCC Blackwell Publishers, 1996.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.19, May 2024

19

[20] M. Mohamed, A.-O. Shaha, A. Sultan and H. S. A. Fahima,

"A comprehensive MCDM-based approach for object-

oriented metrics selection problems," Applied Sciences, vol.

13, no. 6, p. 3411, 2023.

[21] T. Saurabh and R. Santosh, "Coupling and Cohesion Metrics

for Object-Oriented Software: A Systematic Mapping

Study," in 11th Innovations in Software Engineering

Conference, India, 09 February 2018.

[22] H. Martin and M. Behzad, "Measuring coupling and

cohesion in object-oriented systems," in Int. Symposium on

Applied Corporate Computing, Monterrey, Mexico, Oct. 25-

27, 1995.

[23] I. M, K. S. A. Arvind, S. J. A. Bader and A. Alharbi, "A

Component Selection Framework of Cohesion and Coupling

Metrics," Computer Systems Science & Engineering, vol.

44, no. 1, p. 351–365, January 2022.

[24] I. G. Mazen and A. Gary, "Quality Metrics measurement for

Hybrid Systems (Aspect Oriented Programming – Object

Oriented Programming)," Sustainable Future and

Technology Development , vol. 3, 2021.

[25] B. Sarika and P. Rashmi, "Cohesion Measure for

Restructuring," in Information and Communication

Technology for Intelligent Systems, Ahmedabad, India,

october 2020.

[26] M. Misbhauddin and M. Alshayeb, "UML model

refactoring: a systematic literature review," Empirical

Software Engineering, vol. 20, no. 1, pp. 206-251, 2013.

[27] S. Freire, A. Passos, M. Mendonça, C. Sant’Anna and R. O.

Spínola, "On the Influence of UML Class Diagrams

Refactoring on Code Debt: A Family of Replicated

Empirical Studies," in Euromicro Conference on Software

Engineering and Advanced Applications, 2020.

[28] R. Malveau, W. J. Brown, H. McCormick and T. Mowbray,

AntiPatterns : Refactoring Software, Architecture and

Projects in Crisis, John Wiley & Sons, 1998.

[29] A. Dmitry, I. Maqsudjon, K. Artem, S. Anton and Z. Sergey,

"Validating New Method for Measuring Cohesion in Object-

Oriented Projects," Procedia Computer Science, vol. 192, pp.

4865-4876, 2021.

IJCATM : www.ijcaonline.org

