
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.15, April 2024

37

Evaluation of Legacy Systems Quality: A Case Study of

Self-Checkout Systems

Laud Charles Ochei
Department of Computer Science
University of Port Harcourt, Nigeria

Chigoziri Marcus
Department of Computer Science
University of Port Harcourt, Nigeria

ABSTRACT

Many organisations rely on legacy systems to function, but

their ageing infrastructure frequently presents maintenance,

security, and scalability challenges. Evaluating the technical

quality of legacy systems is critical for identifying areas for

improvement and ensuring their ongoing functionality. This

paper compares technical quality assessment strategies used in

both legacy and modern versions of grocery self-checkout

systems. We start by defining the Grocery Self-Checkout

System, outlining its features and architecture in both legacy

and modern iterations. Following that, the study looked at

different approaches to assessing technical quality, such as

code review and analysis, performance testing, security audits,

maintainability assessment, and compatibility testing. Using

these strategies and associated metrics, this studies highlighted

the technical quality differences between legacy and modern

systems, as well as discussed the challenges and potential

advancements in evaluating Grocery Self-Checkout Systems.

Furthermore, the study presents the results of our analysis,

which provide insights into the effectiveness of each

assessment strategy and recommendations for improving the

technical quality of Grocery Self-Checkout Systems.

Keywords

Comparative Analysis, Legacy Systems, Legacy architecture,

Technical Quality, Self-Checkout Systems

1. INTRODUCTION
Legacy systems are integral to the operations of many

organizations, yet their outdated nature often presents

challenges in terms of maintenance, security, and scalability.

Assessing the technical quality of legacy systems is paramount

to identify areas for improvement and ensure their continued

effectiveness in supporting critical business processes. This

study presents a comparative analysis of technical quality

assessment strategies applied to legacy and modern versions of

Grocery Self-checkout Systems.

In recent years, the proliferation of Grocery Self-checkout

Systems has revolutionized the retail industry, offering

customers a convenient and efficient way to complete their

purchases. However, as these systems evolve over time, legacy

versions may encounter issues related to outdated technologies

and architectural limitations. Therefore, it becomes imperative

to evaluate the technical quality of both legacy and modern

iterations to inform decision-making and drive improvements.

Drawing from related literature, this study builds upon existing

research on assessing the technical quality of legacy systems.

Previous studies have explored various strategies, including

code review and analysis, performance testing, security audits,

maintainability assessment, and compatibility testing.

However, there remains a need to compare the effectiveness of

these strategies when applied to both legacy and modern

versions of Grocery Self-checkout Systems.

Motivated by this problem, this study proposes a comparative

analysis framework that systematically evaluates the technical

quality of legacy and modern Grocery Self-checkout Systems.

The specific contributions of this paper are:

1. Presenting a comprehensive review of related literature on

strategies for strategies for evaluating the technical quality of

legacy systems.

2. Providing five (5) strategies and metrics for evaluating the

technical quality of legacy systems, including code review and

analysis, performance testing, security audits, maintainability

assessment, and compatibility testing.

3. Applying these strategies and metrics to both legacy and

modern versions of a Grocery Self-checkout Systems to

highlight the differences in technical quality, challenges, and

future developments in assessing the technical quality of legacy

systems.

4. Presenting the results of the analysis in the form of providing

insights into the effectiveness of each assessment strategy and

offering recommendations for enhancing the technical quality

of legacy systems.

By applying established assessment strategies and metrics to

both versions, this study aims to uncover differences in

technical quality and identify areas for improvement. Our study

not only provides insights into the effectiveness of each

assessment strategy but also offers recommendations for

enhancing the technical quality of Grocery Self-checkout

Systems to meet evolving business needs and customer

expectations.

The rest of the paper is organised as follow: Section 2 is the

background of the study, Section 3 presents a review of

literature and related concepts. Section 4 presents strategies for

assessing the quality of a legacy system. Section 5 is the

analysis of the study based on the application of the strategies

and metrics to both legacy and modern versions of a Grocery

Self-checkout Systems. Section 6 presents the findings and

discussions. Section 7 concludes the paper with future work.

2. BACKGROUND OF THE PROBLEM
Legacy systems, characterized by their long-standing presence

and reliance on outdated technologies, play a crucial role in

supporting essential business processes across various

industries. These systems often encompass a diverse range of

software applications, databases, and hardware components

developed using obsolete programming languages and

architectures [26].

The significance of assessing the technical quality of legacy

systems stems from the challenges inherent in maintaining and

evolving these systems to meet changing business

requirements. Legacy systems are prone to issues such as code

decay, security vulnerabilities, and compatibility constraints

with modern technologies. Therefore, evaluating their technical

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.15, April 2024

38

quality is essential to identify areas for improvement, mitigate

risks, and ensure their continued effectiveness in supporting

organizational objectives.

The assessment of technical quality encompasses various

dimensions, including code maintainability, performance

efficiency, security robustness, and compatibility with modern

platforms. By systematically evaluating these aspects,

organizations can gain insights into the health and resilience of

their legacy systems, enabling informed decision-making and

resource allocation [17].

In the context of this study, the focus is on Grocery Self-

checkout Systems, which have become prevalent in retail

environments. These systems allow customers to scan, bag, and

pay for their purchases independently, enhancing convenience

and reducing checkout times. However, as Grocery Self-

checkout Systems evolve, legacy versions may face challenges

related to outdated technologies and architectural limitations,

necessitating a thorough assessment of their technical quality.

3. REVIEW OF LITERATURE AND

RELATED CONCEPT

3.1 Overview of Related Concepts
This section presents an overview of related concepts.

3.1.1 Definition and Classification of Legacy

Systems
Legacy systems represent a fundamental component of the

technological landscape in many organizations, encapsulating

software applications, databases, and infrastructure that have

endured over time. The definition and classification of legacy

systems encompass a broad spectrum of technologies, ranging

from antiquated mainframe systems to more recent but

outdated software platforms [26].

Legacy systems are commonly defined as software systems or

technologies that have been in operation for an extended

period, often surpassing their intended lifespan or falling out of

mainstream support [12]. These systems are characterized by

their reliance on outdated technologies, programming

languages, and architectural patterns that may no longer align

with contemporary standards and practices.

Legacy systems can be classified based on various criteria,

including their technology stack, age, and degree of

obsolescence. For instance, mainframe systems, which

emerged in the mid-20th century, are often considered prime

examples of legacy technology due to their longevity and

historical significance [15]. Similarly, software applications

built using outdated programming languages such as COBOL

or FORTRAN may be classified as legacy systems, regardless

of their age.

3.1.2 Factors Contributing to the Prevalence of

Legacy Systems
Several factors contribute to the prevalence of legacy systems

in contemporary organizations. One significant factor is the

long lifespan of enterprise software applications, which often

outlasts the initial expectations of developers and stakeholders

[17]. Additionally, technological inertia, organizational

resistance to change, and the high cost and risk associated with

system modernization efforts can contribute to the perpetuation

of legacy systems [26].

Furthermore, mergers, acquisitions, and organizational

restructuring can result in the consolidation of disparate

systems and technologies, leading to the proliferation of legacy

environments [26]. In some cases, regulatory compliance

requirements or contractual obligations may also prevent

organizations from abandoning legacy systems, further

perpetuating their existence [8].

3.1.3 Challenges and Risks Associated with

Legacy Systems

Legacy systems pose numerous challenges and risks to

organizations, stemming from their outdated technologies,

architectural complexity, and limited documentation. One

primary challenge is the maintenance and support of legacy

systems, which often require specialized skills and knowledge

that may be scarce or difficult to acquire [9].

Security vulnerabilities represent another significant risk

associated with legacy systems, as outdated technologies may

lack modern security features and defenses against cyber

threats [7]. Additionally, legacy systems may exhibit poor

performance and scalability characteristics, limiting their

ability to adapt to changing business requirements and

technological advancements [1].

Moreover, the lack of interoperability and integration with

modern systems can hinder organizational agility and

innovation, impeding efforts to leverage emerging technologies

and stay competitive in dynamic markets [17]. Overall, the

challenges and risks associated with legacy systems underscore

the importance of assessing their technical quality and

formulating strategies for modernization or migration where

necessary.

3.2 Case Study: Grocery Self-Checkout

System
The section provides an in-depth overview of the Grocery Self-

Checkout System, detailing its functionality, key features, and

architectural design.

3.2.1 System Overview
A grocery self-checkout system is a technology-driven solution

deployed in retail stores to enable customers to independently

scan, bag, and pay for their purchases without the assistance of

a cashier [23]. These systems typically consist of a combination

of hardware and software components, including barcode

scanners, touchscreen displays, weight scales, payment

terminals, and associated software applications.

The process begins with customers scanning the barcodes of

items they wish to purchase using either integrated barcode

scanners or handheld devices. The system then verifies the

scanned items against a database of product information to

ensure accuracy. Once all items have been scanned, customers

proceed to the payment stage, where they can choose from

various payment options such as credit/debit cards, mobile

wallets, or cash. After completing the payment process,

customers bag their purchased items and receive a receipt as

proof of purchase.

Grocery self-checkout systems are designed to offer several

benefits, including increased convenience for customers,

reduced checkout wait times, and improved operational

efficiency for retailers [25]. By allowing customers to complete

transactions independently, these systems help expedite the

checkout process, leading to enhanced customer satisfaction

and loyalty.

3.2.2 Features

The modern Grocery Self-Checkout System offers a plethora

of features aimed at enhancing the overall shopping experience

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.15, April 2024

39

for customers and optimizing operational efficiency for

retailers. Some prominent features include:

Barcode Scanning: Customers can use integrated barcode

scanners or handheld devices to scan the barcodes of items they

wish to purchase. This feature enables quick and accurate

identification of products, reducing the time spent at the

checkout counter [22].

Payment Processing: The system supports various payment

methods, including credit/debit cards, mobile wallets, and

contactless payments. Integration with secure payment

gateways ensures the safe and efficient processing of

transactions, enhancing customer trust and satisfaction [21].

Bagging Area: A designated bagging area allows customers to

conveniently bag their scanned items after completing the

checkout process. Weight sensors and automated alerts ensure

compliance with bagging requirements and minimize the risk

of theft or errors [25].

User Interface: The user interface of the Grocery Self-Checkout

System is intuitive and user-friendly, guiding customers

through each step of the checkout process. Clear instructions,

visual prompts, and touchscreen capabilities enhance

accessibility and usability for customers of all ages and

technical proficiencies [20].

3.2.3 Design and Architecture
The design and architecture of the Grocery Self-Checkout

System play a crucial role in its functionality, reliability, and

scalability. A well-designed system architecture enables

seamless integration of hardware and software components,

ensures data security and integrity, and facilitates future

enhancements and updates. Figure 1 is an automated checkout

system that combines hardware and software components. The

hardware includes two RFID readers, a ceiling-mounted system

for tracking items, and a gate-mounted system to detect items

leaving the store [23]. Some key aspects of the design and

architecture of a grocery include:

Modular Design: The system employs a modular design

approach, with distinct components responsible for specific

functions such as barcode scanning, payment processing, and

user interface management. This modular architecture

enhances flexibility, scalability, and maintainability, allowing

for easier upgrades and customization [1].

Client-Server Model: The Grocery Self-Checkout System

follows a client-server model, where the client terminals

interact with a centralized server to process transactions,

retrieve product information, and manage user data. This

architecture enables efficient communication, data

synchronization, and centralized control, ensuring consistent

performance across multiple checkout terminals [19].

Data Management: The system incorporates robust data

management mechanisms to store and retrieve transactional

data, product information, and customer records securely.

Relational databases, distributed file systems, and encryption

techniques are employed to ensure data integrity,

confidentiality, and availability, mitigating the risk of data

breaches and unauthorized access [16].

Fault Tolerance: To enhance reliability and fault tolerance, the

system implements redundancy measures such as backup

servers, redundant power supplies, and fault-tolerant

communication protocols. In the event of hardware failures or

network disruptions, failover mechanisms automatically

redirect traffic to backup systems, minimizing downtime and

ensuring uninterrupted service [13].

3.3 Review of Related Literature on

Strategies for Assessing Legacy Systems
This section reviews the existing literature on strategies for

assessing the quality of legacy systems and discuss key findings

and insights.

3.3.1 Classification of Approaches for Assessing

the Technical Quality of Legacy Systems

Numerous studies have investigated various approaches

and techniques for evaluating the technical quality of legacy

systems. These approaches encompass a wide range of

assessment strategies, including code analysis, performance

testing, security audits, maintainability assessments, and

compatibility testing. Researchers have explored both manual

and automated methods for assessing different aspects of

legacy systems to uncover issues and improve overall quality

[10; 1; 11].

3.3.2 Context-Aware Approaches

Context-aware assessment approaches consider the unique

characteristics and constraints of legacy systems, such as

outdated technologies, legacy dependencies, and evolving

business requirements [9]. These approaches aim to tailor

assessment strategies to specific contexts, enabling more

accurate and effective evaluation of technical quality. By

considering the context in which legacy systems operate,

organizations can identify relevant metrics and prioritize

improvement efforts based on their specific needs and

constraints [10; 12].

3.3.3 Hybrid Assessment Models

Hybrid assessment models combine automated tools with

human expertise to leverage the strengths of both approaches

[3]. Automated tools can efficiently analyze large codebases

and identify common issues, while human experts provide

domain knowledge and context-specific insights. By

integrating automated analysis with human review and

interpretation, organizations can achieve more comprehensive

and accurate assessments of legacy systems, leading to better-

informed decision-making and resource allocation [6; 14].

3.3.4 Automated tools

The integration of automated tools have been proposed to

improve the effectiveness of assessments. For example, the

automated tools streamline the detection of issues, enhancing

the assessment process (Joorabchi et al., 2011).

4. STRATEGIES FOR ASSESSING THE

QUALITY OF A LEGACY SYSTEM
This section discusses the different strategies for assessing the

technical quality of legacy systems.

4.1.1 Code Review and Analysis

Conducting a thorough code review and analysis is essential to

uncover potential issues within the legacy system's source

code. This strategy involves examining the codebase for

security vulnerabilities, code inefficiencies, and design flaws.

Metrics for code review and analysis include lines of code, code

complexity (e.g., cyclomatic complexity), code duplication,

code coverage, and the number of identified code issues (e.g.,

code smells, potential memory leaks) [2].

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.15, April 2024

40

4.1.2 Performance Testing

Performance testing evaluates the legacy system's

responsiveness, scalability, and resource usage under various

simulated workloads. This strategy helps identify performance

bottlenecks and ensures the system meets expected

performance requirements. Metrics for performance testing

include response time, throughput, CPU and memory

utilization, and error rates during load testing and stress testing

[6].

4.1.3 Security Audit

Legacy systems are prone to security risks due to outdated

security protocols and a lack of regular updates. A security

audit helps identify and address potential vulnerabilities,

ensuring the system's integrity and protecting against security

threats. Metrics for security audits include the number and

severity of identified vulnerabilities, time-to-fix vulnerabilities,

and implementation of recommended security measures [7].

4.1.4 Maintainability Assessment

Assessing the maintainability of a legacy system determines its

ability to accommodate future changes or enhancements. This

strategy involves evaluating the codebase, architecture, and

documentation to ensure that the system can be easily modified

or extended. Metrics for maintainability assessment include

cyclomatic complexity, code churn (rate of code changes), code

readability (e.g., maintainability index), and documentation

completeness [11].

4.1.5 Compatibility Testing

Compatibility testing ensures that the legacy system functions

correctly across various hardware, operating systems, and

software configurations. This strategy verifies the system's

compatibility with modern environments, minimizing the risk

of compatibility issues. Metrics for compatibility testing

include the number of compatibility issues found and resolved

during testing [5].

Table 1 provides a comparison of different assessment

strategies, their respective metrics, tools/resources used,

significance, challenges, and future developments in the

evaluation of technical quality in legacy systems, particularly

focusing on Grocery Self-Checkout Systems.

5. ANALYSIS OF THE STRATEGIES

FOR ASSESSING TECHNICAL

QUALITY
The Grocery Self-Checkout System revolutionizes retail

experiences by enabling customers to scan and pay for their

items independently. As these systems evolve, the technical

quality assessment becomes crucial to ensure their efficiency,

security, and reliability. This paper compares the technical

quality assessment strategies between legacy and modern

versions of Grocery Self-checkout Systems.

5.1 Grocery Self-Checkout System: Legacy

versus Modern Versions
The Grocery Self-Checkout System allows customers to scan,

bag, and pay for their purchases without the assistance of a

cashier. It typically includes features such as barcode scanning,

payment processing, bagging area, and user interface for

interaction.

5.1.1 Legacy Version Grocery Self-Checkout

System
The legacy version of the Grocery Self-checkout System is

characterized by its older technology stack and architecture. It

may have limited functionalities and lack integration with

modern payment methods or loyalty programs. The

architecture is monolithic, with a centralized processing unit

handling all transactions [24].

5.1.2 Modern Version Grocery Self-Checkout

System
In contrast, the modern version of the Grocery Self-checkout

System incorporates advanced technologies such as RFID

scanning, mobile payment options, and AI-driven assistance. It

features a modular architecture, allowing for easier scalability

and integration with other systems. The user interface is

intuitive and customizable, enhancing the overall user

experience [13].

5.2 Application of Strategies for Assessing

the Technical Quality of Legacy Systems to

Grocery Self-checkout Systems
We now explore strategies for assessing technical quality and

how they apply to both legacy and modern versions of Grocery

Self-checkout Systems.

5.2.1 Code Review and Analysis
In both versions, code review and analysis identify security

vulnerabilities and design flaws. Metrics include lines of code,

code complexity, and code duplication. Legacy systems may

exhibit higher code complexity and more code duplication due

to outdated coding practices [2].

5.2.2 Performance Testing
Performance testing evaluates responsiveness, scalability, and

resource usage. While the legacy system may struggle with

high resource utilization and slower response times, the modern

system showcases optimized performance and scalability [5].

5.2.3 Security Audit
Security audits identify and address vulnerabilities. Both

versions may face security risks, but the legacy system is more

susceptible due to outdated security protocols. Metrics for

security audit include the number and severity of

vulnerabilities, with the legacy system likely having a higher

count [7].

5.2.4 Maintainability Assessment
Maintainability assessment determines the system's ability to

accommodate changes. Legacy systems may have lower

maintainability due to outdated documentation and complex

codebase. Metrics include cyclomatic complexity and code

readability, with the modern system typically scoring higher

[11].

5.2.5 Compatibility Testing
Compatibility testing ensures functionality across various

hardware and software configurations. The legacy system may

encounter compatibility issues with modern devices and

payment methods, leading to higher testing efforts and potential

disruptions [5].

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.15, April 2024

41

6. FINDINGS AND DISCUSSIONS
The study has revealed important findings regarding the

strategies for assessing legacy systems.

6.1 Keys Findings from Literature Review
Common themes emerge from the literature on strategies for

assessing the quality of legacy systems. One key finding is the

importance of considering the unique context and

characteristics of legacy systems when designing assessment

approaches. Context-aware strategies can yield more

meaningful results and guide decision-making based on the

specific needs and constraints of each organization [9].

Additionally, the literature highlights the value of combining

automated analysis with human expertise to achieve more

accurate and comprehensive assessments. Hybrid assessment

models leverage the strengths of both approaches and mitigate

the limitations of each, resulting in more effective evaluations

of technical quality [12, 3].

Case studies offer valuable insights into the practical

challenges of legacy system assessments, enabling

organizations to understand the benefits and pitfalls of various

strategies. These real-world experiences help in making

informed decisions about assessment efforts. Several case

studies have demonstrated effective assessment strategies in

real-world scenarios, providing valuable insights and practical

guidance [17, 21]. By analyzing the experiences of

organizations that have conducted legacy system assessments,

researchers can derive best practices and lessons learned for

future assessments.

6.2 Comparative Analysis of legacy and

modern Grocery Self-checkout Systems
The assessment of technical quality reveals significant

differences between legacy and modern Grocery Self-checkout

Systems. Legacy systems often exhibit lower performance,

higher security risks, and lower maintainability compared to

modern systems. However, legacy systems may have already

undergone extensive testing and validation, leading to a more

stable and predictable behavior in certain scenarios [27].

Table 2 provides a comparison of the technical quality

differences between legacy and modern versions of grocery

self-checkout systems based on different assessment strategies

and associated metrics. It highlights the improvements made in

modern systems compared to legacy systems in terms of code

quality, performance, security, maintainability, and

compatibility testing.

6.3 Enhancing the assessment of the

Technical Quality of Legacy systems
The review of related literature revealed three main issues for

consideration in order to enhance the assessment of the

technical quality of legacy systems - adoption of a risk basked

approach, collaboration between technical experts, and the use

of automated tools.

6.3.1 Risk-based approach
Adopting a risk-based approach is a key strategy for prioritising

critical functionalities and high-risk areas during assessments

[27]. Organisations can maximise the effectiveness of their

assessments by focusing attention and resources on areas with

the greatest potential impact on system functionality, security,

and performance. This approach enables a more targeted

allocation of resources, ensuring that assessment activities

address the most pressing issues first.

6.3.2 Collaboration between technical experts
Collaboration between technical experts and business

stakeholders is crucial for properly evaluating legacy systems

[29]. Technical experts bring knowledge of system

architecture, code analysis, and performance evaluation,

whereas business stakeholders provide insights into system

requirements, user needs, and organisational objectives. By

encouraging open communication and collaboration between

these two groups, organisations can gain a comprehensive

understanding of the system's technical quality and alignment

with business goals. This collaboration also encourages key

stakeholders' buy-in, ensuring that assessment results are

actionable and relevant to organisational priorities.

6.3.3 Automated tools
Using automated tools improves assessment efficiency and

effectiveness [14]. These tools help to detect issues like code

smells, security vulnerabilities, and performance bottlenecks

more efficiently than manual methods, saving time and

resources. By automating repetitive tasks and providing

actionable insights, these tools allow assessment teams to

concentrate on higher-value activities like analysis and

decision-making. Furthermore, automated tools allow

organisations to conduct assessments more frequently and

consistently, ensuring that technical quality is a top priority

throughout the system's lifecycle.

Fig 1: Architecture of the automated checkout [10].

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.15, April 2024

42

Table 1. Comparison of different assessment strategies in the evaluation of technical quality in legacy systems.

Assessment

Strategy

Code Review and

Analysis

Performance

Testing

Security Audits Maintainability

Assessment

Compatibility

Testing

Description Identifies

potential issues

within the source

code, such as

security

vulnerabilities,

inefficiencies, and

design flaws.

Evaluates system

responsiveness,

scalability, and

resource usage

under various

workloads.

Identifies and

addresses security

vulnerabilities to

mitigate risks.

Evaluates the

system's ability to

accommodate future

changes or

enhancements.

Ensures the system

functions correctly

across various

hardware and

software

configurations.

Metrics - Lines of code -

Code complexity

(e.g., cyclomatic

complexity) -

Code duplication

- Response time -

Throughput - CPU

and memory

utilization - Error

rates during load and

stress testing

- Number and

severity of

identified

vulnerabilities -

Time-to-fix

vulnerabilities

- Cyclomatic

complexity - Code

churn - Code

readability -

Documentation

completeness

- Number of

compatibility issues

found and resolved

during testing

Tools/Resourc

es

- Static code

analysis tools

(e.g., SonarQube,

Checkmarx) -

Code review

processes

- Load testing tools

(e.g., Apache

JMeter,

LoadRunner) -

Stress testing tools

(e.g., Gatling,

Apache Bench)

- Vulnerability

scanning tools

(e.g., Nessus,

OpenVAS)

- Maintainability

metrics tools (e.g.,

Understand, Lizard)

- Documentation

review tools (e.g.,

Doxygen, Javadoc)

- Compatibility

testing frameworks

(e.g., Selenium,

Appium)

Importance/Si

gnificance

Vital for

identifying

potential security

vulnerabilities and

optimizing code

efficiency.

Crucial for ensuring

the system meets

expected

performance

requirements and

can handle user

demand.

Essential for

protecting

sensitive data and

ensuring

compliance with

security standards.

Critical for

determining the

system's long-term

sustainability and

ease of future

maintenance.

Necessary to ensure

the system can

seamlessly integrate

with various

hardware and

software

environments.

Challenges - Resource-

intensive process -

Relies heavily on

human expertise

and time

- Complexity of

simulating real-

world workloads -

Ensuring accurate

and reproducible

results

- Keeping pace

with evolving

security threats -

Balancing security

measures with

system

performance

- Subjectivity in

evaluating code

readability and

documentation

completeness.

- Identifying and

addressing

compatibility issues

across different

platforms and

configurations.

Future

Developments

Integration of AI

and machine

learning

algorithms to

automate code

review processes.

Adoption of cloud-

based testing

solutions for

scalability and

flexibility.

Implementation of

continuous

security testing

practices.

Incorporation of

automated code

documentation tools

and metrics.

Enhanced

automation and

tooling for more

comprehensive

compatibility

testing.

Table 2. Comparison of the technical quality differences between legacy and modern versions of grocery self-checkout

systems.

Assessment Strategy Legacy Systems Modern Systems

Code Review and Analysis Relies on manual code reviews and basic

analysis tools.

Utilizes automated code analysis tools and

incorporates continuous integration practices.

Metrics - Lines of code - Code complexity (e.g.,

cyclomatic complexity) - Code duplication

- Lines of code - Code complexity (e.g.,

cyclomatic complexity) - Code duplication

Performance Testing Limited performance testing, often manually

conducted.

Conducts comprehensive load testing and utilizes

cloud-based solutions for scalability.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.15, April 2024

43

Metrics - Response time - Throughput - CPU and

memory utilization - Error rates during load

testing

- Response time - Throughput - CPU and memory

utilization - Error rates during load testing

Security Audits Infrequent security audits, reactive approach to

security.

Implements continuous security testing practices

and follows industry-standard security protocols.

Metrics - Number and severity of identified

vulnerabilities - Time-to-fix vulnerabilities

- Number and severity of identified vulnerabilities

- Time-to-fix vulnerabilities

Maintainability Assessment Limited focus on maintainability, often lacks

documentation.

Emphasizes code maintainability, readability, and

comprehensive documentation.

Metrics - Cyclomatic complexity - Code churn - Code

readability - Documentation completeness

- Cyclomatic complexity - Code churn - Code

readability - Documentation completeness

Compatibility Testing Basic compatibility testing, may not cover all

platforms.

Conducts thorough compatibility testing across

various hardware and software configurations.

Metrics - Number of compatibility issues found and

resolved during testing

- Number of compatibility issues found and

resolved during testing

6.4 Challenges and Future development

Despite the progress made in assessing the quality of legacy

systems, several challenges remain. Legacy systems are often

complex and tightly coupled, making it difficult to isolate and

address individual issues. Additionally, limited documentation,

outdated technologies, and the risk of disrupting existing

functionalities can hinder assessment efforts, requiring

organizations to invest time and resources in understanding

legacy code and architecture [12, 2].

Future research should focus on developing advanced

assessment techniques and tools tailored to the unique

characteristics of legacy systems [10; 11]. This includes the

development of automated analysis tools capable of handling

legacy codebases and identifying complex issues such as

architectural flaws and design anomalies, the integration of AI-

driven analysis tools, automated testing frameworks, and

continuous monitoring for both legacy and modern systems

[29]. Additionally, research should explore innovative

approaches for integrating assessment results into broader

decision-making processes, such as modernization and

migration strategies [6, 14].

7. CONCLUSION AND FUTURE WORK
Assessing the technical quality of legacy systems is imperative

for organizations to maintain their functionality, security, and

relevance in today's rapidly evolving technological landscape.

Employing strategies such as code review, performance testing,

security audits, maintainability assessments, and compatibility

testing aids in identifying areas for improvement and mitigating

risks. Collaboration and the integration of automated tools

further enhance the effectiveness of legacy system assessments,

ensuring the continued success of organizations reliant on

legacy systems.

The comparative analysis highlights the importance of

assessing technical quality in both legacy and modern Grocery

Self-checkout Systems. While legacy systems present unique

challenges, modern systems offer advanced features and

improved performance. By employing strategies for technical

quality assessment, organizations can ensure the reliability and

efficiency of their Grocery Self-checkout Systems in the

rapidly evolving retail landscape.

8. REFERENCES
[1] Bass, L., Clements, P., & Kazman, R. (2003). Software

Architecture in Practice. Addison-Wesley Professional.

[2] Basili, V. R., & Weiss, D. M. (1984). A Methodology for

Collecting Valid Software Engineering Data. IEEE

Transactions on Software Engineering, 10(6), 728-738.

[3] Basili, V. R., Caldiera, G., & Rombach, H. D. (1996).

Goal Question Metric Paradigm. Encyclopedia of

Software Engineering, 1, 528-532.

[4] Berntsson Svensson, R., Gorschek, T., & Höst, M. (2011).

Stages and Levels of Software Process Improvement: A

Systematic Literature Review. Software Quality Journal,

19(4), 899-932.

[5] Binder, R. V. (1999). Testing Object-Oriented Systems:

Models, Patterns, and Tools. Addison-Wesley

Professional.

[6] Di Penta, M., Antoniol, G., & Merlo, E. (2007). A Survey

on the Role of Code Smells in Software Refactoring.

Journal of Software Maintenance and Evolution: Research

and Practice, 19(4), 291-314.

[7] Fichter, S., Martens, J., & Oktaba, H. (2015). Risk-Based

Security Testing of Legacy Software. Proceedings of the

2015 International Symposium on Software Testing and

Analysis, 215-225.

[8] Gagliardi, J. (2018). High Availability and Disaster

Recovery: Concepts, Design, Implementation. CRC Press.

[9] Graaf, B., & Brinkkemper, S. (2008). Software quality

improvement through action research: The enablers'

perspective. Journal of Systems and Software, 81(11),

1902-1913.

[10] Hauser, M., Günther, S. A., Flath, C. M., & Thiesse, F.

(2019). Towards digital transformation in fashion

retailing: A design-oriented IS research study of

automated checkout systems. Business & Information

Systems Engineering, 61, 51-66.

[11] Hassan, A. E. (2009). Predicting Faults Using the

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.15, April 2024

44

Complexity of Code Changes. Proceedings of the

International Conference on Software Engineering, 78-88.

[12] Hassan, A. E., & Holt, R. C. (2005). The top ten list:

dynamic fault prediction. Proceedings of the 21st IEEE

international conference on software maintenance, 263-

272.

[13] Jones, M., Smith, J., & Johnson, K. (2018). The Evolution

of Grocery Self-Checkout Systems: A Comprehensive

Review. Journal of Retail Technology, 14(3), 112-129.

[14] Joorabchi, A. S., Mesbah, A., & Krinke, J. (2011).

Automated Analysis of Web Application Security.

Proceedings of the 33rd International Conference on

Software Engineering, 611-620.

[15] Kontogiannis, K., Spanoudakis, G., & Finkelstein, A.

(2000). Software process assessment and improvement:

The Bootstrap Approach. ACM Transactions on Software

Engineering and Methodology (TOSEM), 9(4), 383-433.

[16] Krug, S. (2014). Don't Make Me Think, Revisited: A

Common Sense Approach to Web Usability. New Riders.

[17] Kumar, R., Kulhade, S., & Zaman, M. (2013). Software

quality assessment using architectural metrics: a case

study. Procedia Technology, 10, 124-129.

[18] Lehman, M. M. (1996). Laws of Software Evolution

Revisited. Proceedings of the International Conference on

Software Maintenance, 108-119.

[19] Lim, S. L., & Vitharana, P. (2012). Comparison of

automated software testing tools: A web application case.

Journal of Systems and Software, 85(3), 640-651.

[20] Liu, Z., Ma, Q., & Hu, H. (2018). Design of Payment

System in Mobile E-commerce Based on Microservices

Architecture. Journal of Physics: Conference Series,

1060(1), 012063.

[21] Lutz, R. R., Ammann, P., & Jeffries, R. (2015). A study of

software testing practices in agile and non-agile settings.

Empirical Software Engineering, 20(3), 770-817.

[22] Ramakrishnan, R., & Gehrke, J. (2000). Database

Management Systems. McGraw-Hill.

[23] Rozanski, N., & Woods, E. (2012). Software Systems

Architecture: Working with Stakeholders Using

Viewpoints and Perspectives. Addison-Wesley

Professional.

[24] Smith, J. (2010). The Role of Legacy Systems in Modern

Retail Environments. International Journal of Retail

Management, 24(2), 78-91.

[25] Smith, J., Johnson, K., & Brown, M. (2010). Self-

Checkout Systems: Design, Implementation, and

Management. Springer Science & Business Media.

[26] Sommerville, I. (2019). Software Engineering. Pearson.

[27] Tan, J., & Balci, O. (2016). A Systematic Literature

Review of Software System Risk Assessment Models.

Information and Software Technology, 77, 106-117.

[28] Tanenbaum, A. S., & Van Steen, M. (2014). Distributed

Systems: Principles and Paradigms. Pearson.

[29] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C.,

Regnell, B., & Wesslén, A. (2012). Experimentation in

Software Engineering. Springer Science & Business

Media.

[30] Yu, Y., Zheng, C., & Xu, J. (2015). A Study on Barcode

Recognition Algorithm Based on Digital Image

Processing. Procedia Computer Science, 61, 157-161.

IJCATM : www.ijcaonline.org

