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ABSTRACT 

Breast cancer ranks as the most prevalent form of cancer among 

women worldwide, underscoring the importance of early 

detection for enhancing treatment success rates. The ability to 

accurately differentiate between malignant (aggressive) and 

benign breast tumors is crucial for determining appropriate 

treatment strategies. This research introduces a novel 

methodology leveraging Transformer models for the task of 

breast cancer image classification. Utilizing a Vision 

Transformer (ViT) pre-trained across a broad array of domains, 

this approach incorporates an ensemble of densely connected 

network layers specifically refined for a dataset dedicated to 

breast cancer imagery. The performance of this innovative 

model was rigorously evaluated against a benchmark dataset, 

demonstrating superior classification capabilities with 

remarkable accuracy levels—97.5% in binary categorizations 

and 94% in multi-class scenarios. The findings from this study 

underscore the potential of employing advanced Transformer 

models in the precise classification of breast tumors, thereby 

contributing to the advancement of diagnostic techniques in 

oncology.   

General Terms 

Application of Computer science in Modeling, Image 

Classification and Deep Learning. 

Keywords 

Multi-class Classification, Binary Classification, Biomedical 

Image Processing, Breast Cancer, Benign and Malignant. 

1. INTRODUCTION 
Breast cancer is currently ranked as the second most common 

cancer worldwide and continues to be the foremost reason for 

cancer-induced deaths among women. The importance of early 

discovery and precise categorization of breast cancer cannot be 

overstated, as these are critical factors in providing successful 

treatment and improving the likelihood of positive outcomes 

for patients. 

In recent years, considerable progress has been made in the area 

of breast cancer classification through the implementation of 

machine learning (ML) and deep learning (DL) technologies. 

These strategies bring together a diversity of techniques 

ranging from established ML algorithms such as Support 

Vector Machines (SVMs), Random Forests (RFs), and 

Artificial Neural Networks (ANNs), to more complex DL 

models like Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs) [1]-[3]. 

The adoption of ML and DL methodologies in the realm of 

breast cancer evaluation has been transformative, allowing 

those in the field to derive important conclusions from intricate 

data. By wielding sophisticated algorithms, these techniques 

are adept at scrutinizing a multitude of characteristics and 

configurations within breast cancer imagery or patient records. 

This leads to a more precise identification of the nature of 

tumors as either malignant or benign. As a result of integrating 

ML and DL processes, there has been an uptick in the accuracy 

of diagnoses, the personalization of treatment plans, and a 

decrease in unnecessary medical procedures [4]-[7]. 

In their research, Zhang et al. [8] introduced an innovative 

CNN-RNN hybrid model tailored for breast cancer type 

determination. This model harnesses the combined capabilities 

of CNNs for image-based feature extraction and RNNs for 

sequential data analysis. Upon evaluation with a collection of 

breast pathology images, this hybrid model demonstrated 

superior performance over other leading breast cancer 

classification models. Similarly, Wang et al. [9] designed a 

deep learning model utilizing a multi-scale CNN architecture 

specifically for breast cancer classification. Their model, when 

assessed using a set of mammogram images, showed enhanced 

effectiveness in comparison to other advanced deep learning 

models as well as conventional machine learning techniques. 

Beyond the realm of deep learning, traditional machine 

learning techniques have maintained their relevance in 

categorizing types of breast cancer. Liu et al. [10] put forward 

a model using the random forest approach, applying it to breast 

cancer gene expression data to sort cancer types. Meanwhile, 

Chen et al. [11] developed a model that relies on a support 

vector machine algorithm, targeting breast cancer detection 

through diffusion-weighted MRIs. This SVM-based model was 

notably accurate, with an 85.5% success rate in differentiating 

between malignant and benign breast tumours. 

The advent of transformer-based models has shown notable 

promise in breast cancer classification. Originally developed 

for use in natural language processing, transformers have 

expanded their reach to include areas such as computer vision 

and the analysis of medical images. These models are 

particularly adept at identifying dependencies over large 

distances and comprehending the contextual nuances within 

data, attributes that are particularly beneficial for the complex 

process of medical image examination and feature extraction. 
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Fig 1: Overview of the Proposed Methodology 

Transformers utilize self-attention mechanisms to effectively 

map out the interplay among different areas of interest in an 

image. This capacity allows for a more precise and dependable 

classification of breast cancer. The field has seen increasing 

exploration into the application of these transformer-based 

structures, notably Vision Transformers (ViTs), for tasks 

related to breast cancer categorization. Evidence from these 

studies points to the enhanced capabilities of transformers to 

refine the processes of medical image analysis, which could 

lead to better diagnostic and treatment strategies. 

In particular, Xie et al. [12] delved into the deployment of a 

ViT-based model for the diagnosis of breast cancer using 

mammography. Their findings highlighted the ViT model's 

proficiency in grasping the overall context of an image and 

accurately modeling interactions over long ranges, culminating 

in bolstered efficiency in the detection and categorization of 

breast cancer. 

In their work, Li et al. [13] examined how combining Vision 

Transformers (ViTs) with various clinical data, such as 

histopathological images and patients' clinical histories, could 

be beneficial. They utilized the distinctive attention mechanism 

within transformers to selectively focus on pertinent features 

from both visual and textual information, thereby allowing for 

a more nuanced and integrated evaluation. Their findings 

pointed towards the effectiveness of ViTs in handling multiple 

types of data to improve the accuracy of breast cancer 

classification and prognostication efforts. 

Additionally, Zhang et al. [14] investigated the application of 

transformers for the segmentation of breast tumors in MRI 

scans. Their development of a transformer-based model that 

precisely traced the contours of tumors aids significantly in 

planning and evaluating treatment options. The study 

showcased the model's proficiency in understanding spatial and 

contextual data to achieve accurate tumor segmentation. 

Collectively, recent research highlights the promise of 

transformer-based models, especially Vision Transformers 

(ViTs), in tasks such as breast cancer classification and 

segmentation. These advanced models are recognized for their 

ability to grasp overarching context and to process information 

over extended sequences, as well as their proficiency in 

handling data from multiple modes. This is instrumental in 

offering deeper insights for the improvement of diagnostic 

precision and the formulation of treatment plans in breast 

cancer care. 

Overall, the literature points to a favourable outlook for both 

classic machine learning algorithms and deep learning 

techniques, with a special nod towards deep learning models, 

in the realm of breast cancer classification. That said, a gap 

persists that calls for in-depth comparative studies across varied  

types of breast cancer datasets — including pathology slides, 

mammographic images, and genetic expression patterns.  

Conducting such research is crucial for ascertaining the most 

effective classification methods for particular contexts within 

breast cancer diagnostics and treatment, propelling the industry 

forward and optimizing patient outcomes. 

The core contribution of this study is the application of 

transformer technology to enhance the accuracy of breast 

cancer categorization. By retraining a model devoted to breast 

cancer data, this research harnesses the power of the Pretrained 

Vision Transformer (ViT). The ViT, inherently a deep learning 

model crafted for image recognition tasks, is a pivotal element 

in our investigation. Originating from a transformer structure 

designed for analyzing text-based information, the ViT has 

been adapted expertly to handle visual data. It approaches 

image analysis by segmenting images into consistently-sized 

patches which are then linearly embedded and interpreted by 

the transformer's mechanisms. In the context of breast cancer 

classification, our approach is to fine-tune a pretrained ViT 

model with a specialized dataset of breast cancer visual data. 

During this fine-tuning phase, the model is trained to identify 

and learn distinctive visual patterns that signify either the 

presence or the absence of cancerous conditions. Consequently, 

it acquires the capability to systematically categorize images 

into distinct classifications, such as 'benign', 'malignant', or 

'normal', based on the visual information it has learned to 

process.  

2. PROPOSED METHOD 
This paper focuses on refining a ViT Transformer model for 

the task of breast cancer classification, as illustrated in Figure 

1. The fine-tuning procedure encompasses multiple phases. 

The initial phase involves data preprocessing, converting raw 

images into a numerical format compatible with the ViT 

architecture. During this phase, standardization practices such 

as normalization are applied, adjusting the pixel intensities of 

the images to conform to a specific scale. 

Let 𝑿 be the input data, and 𝒙𝑖 be the i-th data point in 𝑿. The 

normalization process can be represented mathematically as: 

𝒙𝑖  =  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑿𝑖) (1) 

Let 𝑴 be the ViT model architecture, which takes as input the 

normalized image data 𝒙𝑖. The ViT model can be 

mathematically represented as: 

𝒉𝑖  =  𝑴(𝒙𝑖) (2) 

where 𝒉𝑖 is the output of the ViT model for the i-th input data 

point. 
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To fine-tune the ViT model for breast cancer classification, 

training is conducted using a labeled dataset of breast cancer 

images. Let 𝒀 represent the target labels for the classification 

task, where 𝒚𝑖 denotes the label for the i-th data point in 𝑿. The 

dissimilarity between the predicted output of the ViT model 

and the true target label is quantified using binary cross-entropy 

as the chosen loss function. Mathematically, the loss function 

is represented as follows: 

𝐿 = − (1/𝑵) ∗ 𝑠𝑢𝑚(𝒚𝑖 ∗ log (𝒑𝑖) + ⋯ 

                                            (1 − 𝒚𝑖) ∗ 𝑙𝑜𝑔(1 − 𝒑𝑖)) 
(3) 

where 𝑵 is the total number of data points, 𝒑𝑖 is the predicted 

probability of the positive class for the i-th data point, and log 

is the natural logarithm function. 

The optimization process involves minimizing the loss function 

with respect to the model parameters using an optimizer such 

as stochastic gradient descent (SGD). The optimization process 

can be mathematically represented as: 

𝒕𝒉𝒆𝒕𝒂 =  𝑎𝑟𝑔𝑚𝑖𝑛_𝑡ℎ𝑒𝑡𝑎 𝐿(𝒕𝒉𝒆𝒕𝒂) (4) 

where 𝒕𝒉𝒆𝒕𝒂 represents the model parameters, and 

𝑎𝑟𝑔𝑚𝑖𝑛_𝑡ℎ𝑒𝑡𝑎 represents the values of the model parameters 

that minimize the loss function. 

Once the model is trained, we use it to predict the class labels 

for new, unseen data points. Let 𝒙𝑡𝑒𝑠𝑡 be the test dataset, and 

𝒙𝑗  be the j-th data point in 𝒙𝑡𝑒𝑠𝑡. The predicted probability of 

the positive class for the j-th data point can be obtained using 

the trained model as follows: 

𝒑𝑗  =  𝑀(𝒙𝑗) (5) 

where 𝒑𝑗 is the predicted probability of the positive class for 

the j-th data point. 

3. EXPERIMENTAL RESULTS 
The performance assessment of the model utilized the 

BreakHis breast cancer dataset [16], widely recognized in the 

field. This dataset comprises 9,109 microscopic images of 

breast tumor tissue from 82 patients, captured at various 

magnification levels (40X, 100X, 200X, and 400X). It includes 

2,480 benign samples and 5,429 malignant samples, all with 

dimensions of 700x460 pixels in a 3-channel RGB format and 

8-bit depth per channel in PNG format. The benign class 

encompasses Adenosis (A), Fibroadenoma (F), Tubular 

Adenoma (TA), and Phyllodes Tumor (PT), while the 

malignant class includes Ductal Carcinoma (DC), Lobular 

Carcinoma (LC), Mucinous Carcinoma (MC), and Papillary 

Carcinoma (PC). Statistical information related to this dataset 

is provided in Table 1. For visual representation, Figures 2 and 

3 display slides of a benign and a malignant breast tumor from 

the same patient, captured at different magnification levels. 

When evaluating performance, common metrics include 

classification accuracy (Acc), recall (sensitivity), and precision 

(positive predictivity). Accuracy offers a comprehensive 

measure of the system's performance across all classes. Insights 

into the system's overall effectiveness are obtained by 

analyzing these metrics. They are defined based on true 

positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) as follows: 

Table I. Utilized Breast Cancer Dataset 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

Classes Subclasses 
Magnification factors 

Total 
40x 100x 200x 400x 

Benign 

A 114 113 111 106 444 

F 253 260 264 237 1014 

TA 109 121 108 115 453 

PT 149 150 140 130 569 

Malignant 

DC 864 903 896 788 3451 

LC 156 170 163 137 626 

MC 205 222 196 169 792 

PC 145 142 135 138 560 

Total 1995 2081 2013 1820 7909 

Fig 2: Benign breast tissue samples from the same 

patient were collected at different levels of 

magnification: (a) 40X, (b) 100X, (c) 200X, and (d) 

400X. 

Fig 3: Malignant breast tissue samples from the same 

patient were collected at different levels of 

magnification: (a) 40X, (b) 100X, (c) 200X, and (d) 

400X. 
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𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 

 The dataset was partitioned into three distinct subsets to 

support the model's training, validation, and testing phases. The 

training set constituted 80% of the data, with the remaining 

20% equally divided between validation and test sets, 

allocating 10% to each. Consequently, the training set included 

6,327 samples, whereas both the validation and test sets 

contained 791 samples each. To ensure result reliability, the 

experiment was replicated five times, each time training, 

validating, and testing the model on distinct subsets. The 

repetition of the experiment enabled the calculation of average 

classification accuracy over these iterations, offering a 

thorough assessment of the model's efficacy. This methodical 

approach, involving multiple experimental runs and average 

accuracy computation, facilitated the attainment of more 

dependable and statistically robust outcomes. 

Table II. Comparative Analysis of Various Learning 

Models and the Proposed Method on the BreakHis 

Dataset. 

 

The proposed model's effectiveness is supported by the results 

presented in Table II, which offer a comparative analysis of its 

performance when compared to other deep learning 

architectures. By examining the confusion matrix shown in 

Figure 4(a), it becomes clear that the model excels in 

effectively distinguishing between the two classes. Notably, the 

obtained results demonstrate impressive classification 

accuracies of 95.7% for the benign class and 98.3% for the 

malignant class. These high accuracies highlight the model's 

proficiency in correctly classifying the different types of breast 

cancer. 

Additionally, the model exhibits an impressive precision score 

of 0.957, indicating its ability to accurately predict malignant 

tumors approximately 95.7% of the time. This precision metric 

is highly valuable, especially in the field of medical diagnoses, 

where precise positive predictions are essential to avoid 

unnecessary treatments and minimize the occurrence of false 

positives. Ensuring precise predictions is crucial in minimizing 

the risk of false alarms and providing patients with the most 

accurate and appropriate medical advice and interventions. 

The model demonstrates an impressive recall of 0.988, 

reflecting its capability to effectively identify 98.8% of the 

actual malignant tumor samples. In the context of medical 

diagnoses, where the consequences of false negatives can be 

severe, the recall metric holds significant importance. Ensuring 

high recall helps to minimize the risk of missing positive cases 

and ensures that patients receive timely and accurate diagnoses 

for appropriate medical interventions. 

 

 

(a) 

 

(b) 

Fig 4: Confusion Matrices for the Proposed Model. (a) 

Binary classification. (b) Multi-class classification 

Furthermore, the F1 score,  which takes into account both 

precision and recall, is notably high at 0.972. This high F1 score 

indicates a favourable balance between precision and recall, 

which is essential for assessing the effectiveness of a 

classification model. A high F1 score demonstrates that the 

model performs well in accurately identifying positive cases 

(precision) while also minimizing the risk of missing positive 

instances (recall). 

Given the provided confusion matrix, it is clear that the 

classification model exhibits proficient performance in 

distinguishing between benign and malignant tumors. 

However, it is crucial to consider the specific problem being 

investigated, as well as the potential consequences of different 

error types. In the context of medical diagnoses, false negatives 

can have severe repercussions, underscoring the importance of 

optimizing the recall metric. It is essential to prioritize recall to 

minimize the risk of missing positive cases, which is 

particularly critical in medical settings where the timely 

detection of malignant tumors is crucial for effective treatment 

and patient outcomes. As such, understanding the specific 

problem domain and the implications of different types of 

errors is vital for evaluating and improving the performance of 

a classification model. 

Classification Type Methods Accuracy 

Binary 

DensNet201[4] 95.6% 

VGG16 [5] 92.5% 

VGG19 [5] 93.8% 

MobileNet [6] 73.1% 

ResNet-50 [7] 80% 

Proposed  97.5% 

Multi-Class 

AlexNet [17] 79.85% 

CSDCNN [18] 93.25% 

Proposed 94% 
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Therefore, it is of utmost importance to conduct a thorough 

evaluation of the performance of a classification model by 

considering the contextual factors and potential consequences 

associated with different types of errors. This comprehensive 

assessment ensures a deeper and more nuanced understanding 

of the model's effectiveness and greatly assists in making well-

informed decisions in real-world applications. By taking into 

account the specific circumstances and potential implications 

of the model's performance, we can better assess its suitability 

and usefulness in practical scenarios. 

Upon analyzing the confusion matrix in Figure 4(b), it becomes 

evident that the model exhibits a noteworthy level of accuracy 

when it comes to classifying cases of benign breast cancer. 

Specifically, it demonstrates a high degree of precision in 

predicting adenosis and fibroadenoma, with a remarkable 

success rate of 70 and 159 samples respectively. What is 

particularly noteworthy is that the model does not misclassify 

any samples for these benign classifications, which suggests its 

ability to accurately differentiate them from other forms of 

breast cancer. These findings provide strong evidence 

indicating that the model possesses a robust ability to 

distinguish cases of benign breast cancer within the BreakHis 

dataset. 

However, the model encounters challenges in classifying 

phyllodes tumors. Although it correctly identifies 50 cases as 

true positives, indicating its ability to recognize phyllodes 

tumours, there are instances where it misclassifies samples as 

other types of cancer and incorrectly predicts other classes as 

phyllodes tumours. This suggests that the model may have 

difficulty accurately distinguishing phyllodes tumours from 

other forms of breast cancer. Further investigation is needed to 

understand and potentially refine the model's performance in 

accurately classifying phyllodes tumours. 

Turning our attention to malignant breast cancer cases, the 

model showcases strong performance in classifying tubular 

adenoma. It achieves an impressive true positive count of 79, 

highlighting its proficiency in accurately identifying this 

specific type of malignant breast cancer. Furthermore, the 

occurrence of only one false positive indicates a high level of 

specificity in the classification of tubular adenoma. 

The model's remarkable performance in classifying ductal 

carcinoma is evident from its true positive count of 479, 

indicating its exceptional ability to correctly identify a 

substantial number of cases. However, the presence of a few 

misclassification errors, where samples from other classes are 

incorrectly predicted as ductal carcinoma, suggests a potential 

limitation in the model's ability to discriminate ductal 

carcinoma from other breast cancer subtypes. This highlights 

the need for further refinement and improvement in the model's 

discriminatory capabilities, particularly for ductal carcinoma, 

within the BreakHis dataset. 

When it comes to lobular carcinoma, the model shows great 

accuracy in predicting this specific form of malignant breast 

cancer, with a true positive count of 77. However, there are 

cases where samples from different classes are incorrectly 

classified as lobular carcinoma, indicating the presence of 

misclassification errors. This emphasizes the need to improve 

the model's precision in distinguishing lobular carcinoma from 

other types of breast cancer within the BreakHis dataset. 

The model's proficiency in classifying mucinous carcinoma is 

evident from its true positive count of 117, demonstrating its 

capability to correctly identify a significant number of cases. 

However, the presence of three false positives indicates a 

potential limitation in the model's ability to accurately 

distinguish mucinous carcinoma from other breast cancer 

subtypes. This highlights the need for further refinement and 

improvement in the model's specificity and accuracy, 

particularly for mucinous carcinoma. 

The model's performance in classifying papillary carcinoma is 

noteworthy, with a true positive count of 87, indicating its 

ability to correctly identify a substantial number of papillary 

carcinoma cases. However, the presence of four false positives 

suggests a potential limitation in the model's ability to 

distinguish papillary carcinoma from other breast cancer 

subtypes. This highlights the need for further refinement and 

improvement in the model's precision and discrimination 

capabilities, particularly for papillary carcinoma, within the 

BreakHis dataset. 

In summary, the provided confusion matrix offers crucial 

insights into the model's classification performance for 

different types of breast cancer in the BreakHis dataset. It 

demonstrates the model's strengths in accurately predicting 

benign cases, while also highlighting areas that require further 

investigation and potential refinement, particularly in 

distinguishing certain malignant types from other classes. 

These findings contribute to the advancement of research in 

breast cancer detection and provide valuable guidance for 

optimizing the model's diagnostic capabilities in the BreakHis 

dataset. 

4. CONCLUSIONS 
This research introduces a novel deep learning approach 

utilizing transformers for breast cancer image classification, 

with a methodology that encompasses feature extraction and 

classification stages. Extensive experimentation on a 

benchmark dataset has validated the efficacy and established 

the superiority of this approach. By integrating transformers, 

this work sets a new benchmark in the field and signals an 

innovative direction for future studies. Further developments 

could include refining transformer architectures, enhancing 

explainability for clinical use, and expanding dataset diversity. 

Such advances have the potential to significantly contribute to 

the precision of breast cancer diagnostics and prognostics, 

ultimately improving patient outcomes. 
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