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ABSTRACT 

Electric utilities are increasingly concerned about the 

disruptive effects of uncoordinated plug-in electric vehicle 

(PEV) charging on smart grids (SGs), especially during peak 

load periods. This paper presents the implementation of an 

online coordinated charging genetic algorithm (OL-CC-GA) 

for PEVs within SGs, capable of accommodating delayed 

charging scenarios (e.g., partial-overnight or full-overnight) to 

alleviate distribution transformer loading. The proposed 

algorithm aims to minimize total costs associated with energy 

generation and grid losses, while simultaneously maximizing 

the number of PEVs charged within each time interval (e.g., 

Δt=5min), accounting for distribution transformer loading and 

voltage regulation limits. Detailed simulations are conducted 

on a 19-node test feeder populated with PEVs using the OL-

CC-GA method, and results are compared against 

uncoordinated and delayed charging strategies. The findings 

demonstrate the efficacy of the proposed OL-CC-GA approach 

in mitigating adverse impacts on SGs, enhancing grid stability, 

and optimizing PEV charging operations in a cost-effective 

manner. This research contributes to the ongoing discourse on 

sustainable transportation integration into smart grid 

frameworks, offering valuable insights for utilities and 

policymakers seeking to address the challenges posed by PEV 

adoption while maximizing grid efficiency and reliability.  

General Terms 

Plug-in Electric Vehicle Charging Optimization Algorithm 

Keywords 

Plug-in electric vehicles, online PEV coordination, Genetic 

Algorithm, and smart grid. 

1. INTRODUCTION 
In light of recent advancements in smart grid (SG) technologies 

and heightened environmental consciousness, there has been a 

notable surge in both public and electric utility engagement 

with plug-in electric vehicles (PEVs). The intersection of these 

developments underscores the significance of addressing the 

potential challenges posed by uncoordinated PEV charging, 

particularly at high penetration levels. Extensive research has 

elucidated the adverse effects of unmanaged PEV charging on 

grid operations, including increased losses and compromised 

voltage profiles [1-4]. Given the interconnected nature of 

modern energy systems, understanding and mitigating these 

impacts are paramount for ensuring the reliability and 

sustainability of electric grids. Consequently, there is a pressing 

need for coordinated strategies and innovative solutions to 

optimize PEV integration within the grid infrastructure. By 

effectively managing PEV charging patterns and leveraging SG 

capabilities, stakeholders can not only alleviate grid stress but 

also unlock the full potential of electric vehicles as a means to 

foster a more resilient and environmentally conscious energy 

ecosystem. The primary consequence of uncoordinated plug-in 

electric vehicle (PEV) charging lies in the introduction of time-

variant loads, exacerbating strains on generation units, as well 

as transmission and distribution systems [5-8]. This 

phenomenon can lead to undesirable voltage fluctuations and 

diminished power quality [2]. As such, it underscores the 

imperative for coordinated charging strategies to mitigate these 

challenges, ensuring the integrity and stability of the overall 

power grid infrastructure. Efforts in this domain warrant 

meticulous attention, offering avenues for advancing 

sustainable and resilient energy systems amidst the 

proliferation of electric vehicle adoption.  

To address the adverse effects of random Plug-in Electric 

Vehicle (PEV) charging on power grid operations, the 

development of efficient charging coordination algorithms is 

paramount (reference [9]). Certain existing PEV charging 

algorithms are categorized as "offline," relying on predictive 

data concerning future vehicle statuses, such as plug-in times 

and battery State of Charges (SOCs), to formulate charging 

schedules. These algorithms assume foreknowledge or 

estimation of a PEV's arrival time and charging demand prior 

to its arrival. For instance, Ma et al. (reference [10]) propose a 

model wherein all PEVs negotiate their charging schedules 

with the charging station one day in advance. However, this 

coordination method may not always be feasible due to reliance 

on the accuracy and availability of predicted PEV information. 

Moreover, in numerous real-world scenarios, the PEV charging 

profile becomes discernible only upon the vehicle's arrival at 

the charging station or connection to the charging 

infrastructure. 

Recent research has delved into the realm of online Plug-in 

Electric Vehicle (PEV) charging, as evidenced by a number of 

studies [11-13]. Gerding et al. [12] introduced an online auction 

protocol wherein vehicle owners employ agents to engage in 

bidding for charging opportunities. Meanwhile, Masoum et al. 

[13] investigated the coordinated charging of PEVs within 

residential distribution systems, aiming to mitigate power 

losses. T.Wang et al. [14] focused on scheduling PEV charging 

and discharging within a confined geographic area, presenting 

an online charging algorithm predicated on the assumption of 

no future PEV arrivals once a charging schedule is established. 

Additionally, references [15] detail the deployment of online 

PEV coordination algorithms to achieve peak load shaving and 

cost minimization, respectively. Numerous scholars have also 

advanced probabilistic models and charging coordination 

strategies, accounting for day-ahead or real-time markets [16-

18]. These endeavors collectively contribute to the burgeoning 

field of online PEV charging research, offering insights into the 

development of efficient and sustainable charging 

infrastructure for electric vehicles. 

This paper seeks to contribute by devising an online charging 

algorithm that orchestrates PEV charging based on information 

gleaned from already plugged-in vehicles. By focusing on real-

time data and adapting to dynamic conditions as they unfold, 

this approach aims to enhance the responsiveness and 
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adaptability of charging operations, thereby improving grid 

stability and efficiency. Through a thorough examination of the 

challenges and opportunities inherent in online charging 

coordination, we aim to provide insights into the development 

of effective strategies for managing PEV charging within the 

context of contemporary power grid dynamics. 

This paper introduces an innovative heuristic-based online 

coordinated charging genetic algorithm (OL-CC-GA) designed 

specifically for the charging of plug-in electric vehicle (PEV) 

batteries within a smart grid framework. The primary objective 

of OL-CC-GA is to minimize the costs associated with energy 

generation and grid losses while simultaneously maximizing 

the number of charged PEVs, regulating node voltages, and 

reducing distribution transformer loading. Additionally, OL-

CC-GA accounts for variations in distribution transformer 

loading due to both online and delayed charging scenarios, 

including full-overnight and partial-overnight charging 

schemes. Through extensive simulations conducted on a 19-

node test feeder populated with PEVs, OL-CC-GA is evaluated 

against uncoordinated and delayed charging strategies. The 

results demonstrate the efficacy of the proposed method in 

optimizing charging operations within the smart grid context, 

thus laying a foundation for its potential application in 

facilitating the large-scale penetration of PEVs into existing 

electrical grids [21].  

2. PROBLEM FORMULATION 
The coordination of plug-in electric vehicle (PEV) charging 

through online mechanisms presents a significant real-time 

optimization challenge, necessitating the development of a 

comprehensive objective function coupled with rapid 

optimization methodologies to efficiently attain optimal 

solutions. Central to this endeavor, this paper establishes a 

nonlinear objective function, as denoted by Eq. 1, tailored 

specifically for the PEV coordination predicament. This 

function aims to maximize the number of actively charging 

vehicles (NPEV-ON) within each discrete time slot , 

concurrently minimizing expenses linked to energy generation 

(Fcost-gen) and grid losses (Fcost-loss(t)). Such formulation 

encapsulates the intricate interplay between maximizing 

charging efficiency and minimizing operational costs and 

system losses, constituting a pivotal step toward effectively 

managing the integration of PEVs into existing power grids. 
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In the formulation presented by Eq. 1,  min5t = represents 

the time interval, where KE=50$/MWh stands for the cost per 

megawatt-hour (MWh) of energy storage, with Kt,G  denoting 

the costs per MWh associated with losses and generation, as 

depicted in Fig. 1 [13]. Parameters k and n represent the node 

number and total number of nodes, respectively, while Rk,k+1  

and yk,k+1  signify the resistance and reactance of the line 

segment between nodes k and k+1. Additionally, Vmin and 

Vmax represent the lower and upper voltage limits, 

respectively, whereas Dmax(t) denotes the maximum demand 

level occurring without plug-in electric vehicles (PEVs) 

throughout the day. Within the context of this paper, Dmax(t) 

is defined as the maximum load, specifically the maximum 

distribution transformer loading, for the selected demand load 

control (DLC), while DL signifies the daily load at the mth time 

slot. The methodology employed herein utilizes the backward-

forward sweep technique to compute load flows and bus 

voltages [19]. 
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 Fig. 1. Daily residential load curve (DLC) and short term 

market energy price (MEP) [13]. 

3. PROPOSED ONLINECOORDINATED 

CHARGING GENETIC ALGORITHM 

(OL-CC-GA) FOR PEVS 
Genetic algorithms (GAs) leverage the principles of natural 

evolution, drawing upon population genetics to ascertain high-

quality solutions approaching optimality [20-24]. These 

algorithms encode variables as binary strings, mirroring the 

genetic makeup of chromosomes in biological systems. Within 

this framework, chromosomes manifest as sets of genes, 

forming a population of candidate solutions. Each chromosome 

represents a string of binary codes, potentially containing 

substrings delineating distinct characteristics. The efficacy of 

these strings is gauged through a fitness function, typically 

derived from an objective function. Across successive 

generations, facilitated by an iterative process, GAs engender a 

fresh cohort of strings exhibiting enhanced performance, 

achieved through the application of reproduction, crossover, 

and mutation operators intrinsic to the GA methodology. 

3.1 Population and Chromosomes 
This study presents a chromosomal representation wherein 

each chromosome encapsulates the charging status of Plug-in 

Electric Vehicles (PEVs), with a binary notation wherein the 

presence of a digit "1" signifies an ongoing charging process, 

while "0" denotes either the absence of charging or its 

completion. The schematic depiction of the Genetic Algorithm 

(GA) chromosome is illustrated in Fig. 2, delineating the 

proposed structural framework for encoding PEV charging 

statuses within the genetic algorithm paradigm. 

3.2 Fitness Function  
The application of the inverse algebraic product, as delineated 

in Eq. 3, represents a pivotal step in integrating the proposed 
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penalty functions governing voltage (Eq. 4) and demand (Eq. 

6) within the optimization framework. Employing this 

approach, the fitness function is derived, amalgamating the 

PEV coordination objective function (Eq. 1) with pertinent 

constraints (Eq. 2). This strategic amalgamation serves as a 

foundational mechanism for optimizing the coordination of 

plug-in electric vehicles (PEVs) within power systems, 

ensuring the concurrent fulfillment of objectives and adherence 

to system constraints. 
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where FF(t), FV(t) and FD(t) are the objective function, bus 

voltage penalty function and demand (distribution transformer 

loading) penalty function at time t, respectively; αV1, αV2 and 

αD are the coefficients used to adjust the slopes of the penalty 

functions. Illustrations of the voltage and demand penalty 

functions are depicted in Figures 3(a) and 3(b), elucidating their 

characteristic profiles and enabling a comprehensive 

understanding of their impact within the studied framework. 

 
Fig. 2.  The proposed GA structure of chromosome. 

              
(a)                                     (b) 

Fig 3. Penalty functions to compute fitness (a)
VF , (b)

TF . 

3.3 Binary Genetic Algorithm Operators 
Genetic operators play a pivotal role in evolutionary 

algorithms, encompassing reproduction, crossover, and 

mutation operators. These operators serve as stochastic 

transition rules that iteratively transform chromosomes within 

a population across successive generations, facilitating the 

generation of a new and improved population from its 

predecessor. The process of reproduction entails the selection 

of two parent strings from the population utilizing a "roulette-

wheel" mechanism, predicated upon their respective fitness 

values. This mechanism ensures that the probability of a string 

being chosen is directly proportional to its fitness relative to the 

population, thereby favoring strings with higher fitness values 

for offspring production. Conversely, crossover operates by 

identifying a random position within the string, denoted as the 

crossover point, and exchanging the characters to the right of 

this point with those of a similarly partitioned string. 

Specifically, this paper adopts a methodology wherein 

characters to the right of the crossover point undergo swapping. 

Mutation, on the other hand, introduces random modifications 

to individual string positions, effectuated by altering "0" to "1" 

or vice versa, with a nominal probability. This stochastic 

perturbation prevents the complete loss of genetic material 

during reproduction and crossover, thereby ensuring that the 

probability of exploring any region within the problem space 

remains nonzero. Collectively, these genetic operators 

synergistically contribute to the evolutionary process, fostering 

the exploration and exploitation of diverse solution spaces to 

ultimately converge towards optimal or near-optimal solutions. 

3.4 Applied Genetic Algorithm for Every 

Time Slot 
The proposed online coordinated charging genetic algorithm 

(OL-CC-GA) tailored for Plug-in Electric Vehicles (PEVs) 

integration into Smart Grids (SG) presents a comprehensive 

methodology delineated into eight meticulous steps. 

Commencing with Step 1, the process entails the acquisition of 

power system parameters and optimization data, coupled with 

the retrieval of smart meter data to ascertain the timing and 

location of new PEV connections. Step 2 involves the 

establishment of parameters such as NCh_max and Nit_max, 

alongside the initialization of counters and variable values 

utilizing a random generator for the initialization of position 

and velocity vectors (e.g., NCh= Nit=1). Moving to Step 3, 

dubbed the Fitness Process, the algorithm undergoes a 

meticulous evaluation. Step 3A entails the execution of power 

flow analysis for each chromosome set, thereby computing the 

objective function as prescribed by Equation 1. Subsequently, 

Step 3B engenders the computation of proposed penalty 

functions as delineated by Equation 3. The iteration continues 

until the threshold condition Nch≤Nch-max is satisfied, thus 

prompting a return to Step 3A. Transitioning to Step 4, the 

Reproduction Process, entails a series of sub-steps aimed at 

optimizing the genetic diversity of the population. Specifically, 

Step 4A defines the total fitness as the product of all fitness 

values across chromosomes, followed by Step 4B where a 

tournament selection process is executed to determine a new 

combination of chromosomes. Step 5, denoted as the Crossover 

Process, involves the mating of two parent chromosomes to 

generate offspring, contingent upon a random number (R1) 

surpassing a defined crossover value. Should R1 fail to meet 

this criterion, the chromosome undergoes transfer sans 

crossover. The iterative nature of the process necessitates the 

repetition of these steps for all chromosomes (Step 5D). 

Finally, Step 6, the Mutation Process, involves the stochastic 

alteration of a single chromosome guided by a random number 

(R2). This comprehensive framework amalgamates genetic 

algorithms with smart grid technologies to optimize PEV 

charging strategies within the grid ecosystem.  

In the process of genetic algorithm optimization, Step 6B 

involves assessing whether the fitness ratio (R2) of a 

chromosome falls below specified mutation thresholds. Should 

R2 be inferior to these mutation values, the mutation process is 

initiated, leading to genetic modification. Conversely, in Step 

6C, should R2 exceed the mutation thresholds, the chromosome 
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remains unaltered. This selection process is reiterated for all 

chromosomes in Step 6D, ensuring comprehensive evaluation. 

Following these iterations, Step 7 involves the pivotal task of 

updating the population. Here, the previous population is 

replaced by the refined population derived from Steps 2 to 6. It 

is imperative to scrutinize all chromosomes meticulously; any 

chromosome demonstrating optimal fitness, characterized by 

FL=1, FG=1, FV=1, FD=1 and FF>Fmax, necessitates special 

attention. If such a chromosome is identified, Fmax is adjusted 

accordingly, and the chromosome is preserved. Subsequently, 

Nit, denoting the iteration count, is incremented Nit=Nit+1. 

Finally, Step 8 serves as the decision point for halting 

iterations. Upon reaching the maximum allowable number of 

iterations, the process advances to the activation of plug-in 

electric vehicle (PEV) charging activities, marking the 

transition to the subsequent time slot. 

4. ONLINE AND DELAYED (PARTIAL-

OVERNIGHT AND FULL- OVERNIGHT) 

PEV CHARGING USING OL-CC-GA 
The proposed OL-CC-GA framework outlined in Section III is 

subject to modification to accommodate both online and 

delayed Plug-in Electric Vehicle (PEV) coordination strategies. 

In the online coordination approach, vehicles are promptly 

charged upon random plugging-in, maximizing customer 

satisfaction albeit at potentially higher energy prices. 

Conversely, the delayed full-overnight coordination strategy 

involves deferring vehicle charging to early morning hours to 

mitigate costs, albeit with potential repercussions on customer 

satisfaction, as some PEVs may not achieve full charge 

overnight, impacting subsequent trips. An alternative approach 

is the delayed partial-overnight coordination, wherein priority 

PEVs undergo expedited charging upon plugging-in, while 

others are deferred for overnight charging. This strategy allows 

for the prioritization of high-priority vehicles while optimizing 

overall charging efficiency. Each strategy presents distinct 

trade-offs in terms of customer satisfaction, energy cost 

management, and charging efficiency, underscoring the 

necessity of tailored approaches to meet diverse stakeholder 

needs and optimize system performance in the context of Plug-

in Electric Vehicle integration within the power grid. 

In order to operationalize the aforementioned trio of charging 

strategies, pertinent data pertaining to the stochastic arrival of 

Plug-in Electric Vehicles (PEVs), encompassing temporal and 

spatial dimensions such as plug-in instances and respective 

locations, are systematically collated and archived within the 

PEV-Queue Table. Subsequent to the compilation of this 

information, the initiation and culmination of PEV charging 

endeavors are orchestrated to coincide with pre-established off-

peak load intervals. This temporal alignment not only serves to 

optimize energy utilization but also mitigates undue strain on 

the electrical grid during periods of heightened demand. 

Moreover, the determination of the maximal permissible 

demand level is predicated upon a dynamic assessment of the 

aggregate count of PEVs present within the PEV-Queue Table 

at any given juncture. By harmonizing charging operations 

with periods of diminished electrical consumption and 

judiciously modulating demand thresholds in accordance with 

the prevailing PEV population dynamics, this approach 

endeavors to foster the efficacious integration of PEVs within 

the broader energy infrastructure. 

In facilitating the accommodation of postponed Plug-in 

Electric Vehicle (PEV) charging processes, an adaptation is 

made to the value of Dmax(t) as delineated in Equation 2B. 

Specifically, in instances of delayed full-overnight charging, 

Dmax(t) assumes a static value, thereby rendering it a constant 

parameter ascertainable through iterative computation; denoted 

as Dovrnight =31.1kW. Conversely, in scenarios of delayed 

partial-overnight charging, the determination of Dmax(t)  entails 

recourse to a series of linear equations for computation: 
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assuming that the peak load recorded for this test system is 

43.73 kW. 

5. SIMULATION RESULTS AND 

DISCUSSIONS 
The utilization of the 19-bus 415V distribution test system 

depicted in Figure 4, populated with Plug-in Electric Vehicles 

(PEVs), serves as a foundational framework for assessing the 

efficacy and precision of the proposed Genetic Algorithm (GA) 

methodologies. Pertinent system data encompassing line 

specifications and parameters pertaining to residential loads are 

readily accessible through reference [13]. Through meticulous 

simulation endeavors, the 19-node test feeder delineated in 

Figure 4 undergoes examination across uncoordinated as well 

as coordinated PEV charging scenarios. The resultant insights 

gleaned from these simulations, encapsulated within a temporal 

interval of t=5min, are methodically articulated and presented 

across Figures 5 to 6, in conjunction with the elucidative tabular 

data encapsulated within Table I.  

 
Fig. 4. The 19 node residential feeders with PEVs [13]. 

5.1 Uncoordinated PEV Charging 
This study examines uncoordinated Plug-in Electric Vehicle 

(PEV) charging, simulating scenarios with random PEV load 

distribution. Results (Figs. 5(a-c), Table I rows 4-5) reveal 

heightened power demand, generation, voltage fluctuations, 

and losses during peak hours, impacting optimal generation 

dispatching. The Smart Grid (SG) faces overloading, voltage 

regulation, and efficiency challenges. With 100% PEV 

penetration, maximum power consumption, system losses, and 

costs surge by around 89%, 247%, and 110%, respectively, 

compared to nominal operation. 
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(a) 

 
(b) 

 
(c) 

Fig. 5.  Simulation results for Cases A-B with 0% and 

100% PEV penetrations; (a)  system power consumption, 

(b) generation cost, (c) total system losses. 

 

(a) 

 
(b) 

 
(c) 

Fig. 6.  Simulation results for Cases C-D with 0% and 

100% PEV penetrations; (a)  system power consumption, 

(b) generation cost, (c) total system losses. 

 

5.2 Coordinated OL-CC-GA Charging  
The study proposes an online PEV coordination strategy using 

Genetic Algorithm (GA) to assess uncoordinated charging. 

Results (Fig. 5, Table I) show significant improvements over 

Case A. GA reduces transformer overloading (Fig. 5(a)), 

maximum generation cost (from $5.68 to $2.68, Fig. 5(b)), 

system losses (from 3.27 kW to 1.12 kW), and total cost (from 

$46.31/day to $42.44/day). These findings highlight the 

efficacy of the strategy in enhancing system efficiency and 

economic viability. 

5.3 Coordinated Charging: Delayed Partial-

Overnight 
The revised OL-CC-GA model accommodates delayed partial-

overnight PEV charging via Equation 7, as depicted in Figure 

6 and Table I (rows 8-9). Compared to uncoordinated and 

online strategies, partial-overnight PEV charging notably 

reduces total system losses (Case B), while voltage fluctuations 

stay within the 10% limit, and system power consumptions 

remain below peak demand levels. 

5.4 Coordinated Full-Overnight Charging  
In this study, it is presumed that all Plug-in Electric Vehicles 

(PEVs) will be queued for charging, and an aggregator will 

manage the charging process overnight to ensure full charge 
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attainment by 8:00 am. To adapt the OL-CC-GA algorithm for 

comprehensive overnight PEV charging, a constant parameter 

Dmax(t) is utilized, with a determined value through iterative 

analysis (Dovrnight =31.1 kW). The efficacy of full-overnight 

PEV charging surpasses that of Cases A-C, showcasing notable 

reductions in total system losses while maintaining voltage 

fluctuations within the permissible 10% threshold. 

Table I: Impact of uncoordinated, online coordinated 

(OL-CC-GA) and delayed coordinated PEV charging on 

the test feeder of Fig. 4. 
*) Average voltage deviation over 24 hours (Eq. 2). 
**) Increase in transformer current compared with the nominal case. 

6. CONCLUSION 
The study introduces an online coordinated charging genetic 

algorithm (OL-CC-GA) tailored for Plug-in Electric Vehicles 

(PEVs) within Smart Grids (SGs), facilitating both immediate 

and delayed charging modalities to mitigate distribution 

transformer loading. Simulations on a 19-node test feeder 

delineate the efficacy of the OL-CC-GA vis-à-vis 

uncoordinated, online, delayed partial-overnight, and delayed 

full-overnight PEV charging strategies. Notably, the OL-CC-

GA orchestrates PEV charging dynamically by leveraging real-

time smart meter data to minimize costs. By integrating expert 

insights, it optimally adjusts distribution transformer loading 

levels (as encapsulated by Dmax(t) in Eq. 2B) and defers PEV 

charging, redistributing peak power demand to early morning 

hours for enhanced cost reduction compared to online 

coordination alone. Analysis reveals that while OL-CC-GA 

incurs the highest total system cost among cases B, C, and D, 

it ensures all PEVs are charged by 6:00 am. Interestingly, case 

B exhibits the highest losses within coordinated scenarios, 

whereas case D demonstrates the lowest generation cost 

relative to other cases. In the context of delayed partial-

overnight PEV charging coordination, the generation cost 

surpasses that of case D yet remains lower than case B. These 

findings underscore the nuanced trade-offs inherent in 

coordinating PEV charging strategies within SGs to optimize 

cost-efficiency and grid performance.  
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