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ABSTRACT

The dangers of cyberattacks have impacted many businesses
and individuals by causing damage to computer systems and
networks through malware infiltration, disruption of business
activities, and stealing of credentials from users. More often,
antiviruses and firewalls have been the first line of defense in
the past decades. However, they have proven to be unreliable
in recent years due to the evolution of cyber threats, threat
landscape in general and zero-day attacks which are new threats
developed by hackers, and so, are not known to traditional
security defenses. This paper developed a packet scripting
model to analyze packets and detect attacks in real-time. The
model incorporates the functionalities of TCPdump for packet
analysis and Snort which utilizes custom rules to detect attacks
in real-time. Practical implementation was achieved through a
controlled virtual sandbox environment consisting of virtual
machines in a hypervisor, mimicking real-world scenarios for
accurate evaluation. Finally, the model's performance was
assessed using the real time captured packets to test how well
it responds to network traffics. Furthermore, the custom rules
were evaluated using an existing bench mark data set to
determine how well the rules perform. Results show detection
accuracy among others of above 90% for both model dataset
and existing dataset.

Keywords
Packet scripting model, real-time detection, cyberattacks,
Snort.

1. INTRODUCTION

The influx of cyberattacks globally has affected many
businesses, companies, and organizations both private and
government. This is due to the ever-changing techniques
employed by threat actors. Most organizations often rely on
traditional security measures like firewalls and antiviruses but
have always been evaded by hackers making them insufficient
to protect their devices and networks. A recent report by IBM
Security on the cost of data breach 2023, underscores this
concern, revealing that the financial toll of a data breach has
soared to an astonishing average of $4.45 million per breach
[1]. The United States, in particular, bears the brunt with an
average cost reaching an alarming rate of $9.05 million. These
exorbitant figures encompass not only direct expenses related
to detection and response efforts but also the insidious
collateral damage inflicted on reputations and the erosion of
customer trust.
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To safeguard computer systems, networks, and sensitive data
from unauthorized access, exploitation, or damage,
cybersecurity measures play a crucial role. Among these
measures, packet analysis stands out as an integral part of the
process. Packet analysis involves inspecting individual data
units, known as packets, as they traverse a network. This
enables security analysts to gain valuable insights into network
activities and identify any suspicious behavior indicative of
cyberattacks. Cyberattacks manifest in a variety of forms, each
orchestrated by threat actors to compromise information
systems, disrupt operations, or steal sensitive data. These
attacks include malware infections, denial-of-service (DoS)
attacks, phishing attempts, and other exploitation techniques.
Effective detection mechanisms must be in place to identify and
thwart these threats successfully.

Intrusion detection plays a key role in cybersecurity by
identifying unauthorized access or malicious activities within a
network. Intrusion detection systems (IDS) monitor network
traffic, analyze packet payloads, and compare observed
behavior against known attack signatures or patterns.

To address the pressing need for real-time attack detection,
particularly in resource-limited environments. Real-time
detection of cyberattack has emerged as a critical necessity. By
facilitating the immediate analysis of network data, real-time
detection enables prompt identification and mitigation of
potential cyber threats. This timely response helps prevent
significant harm, minimizing the impact on organizational
operations and data integrity.

This study focuses on the development of a packet scripting
model. This model is an automated approach that leverages
scripting techniques, such as bash, and network utilities, such
as TCPdump and snort, to analyze network packets and detect
attacks in real-time. The primary objective is to provide a
lightweight and resource-efficient solution for real-time attack
detection.

The proposed packet scripting model builds upon the
integration of TCPdump and Snort. TCPdump, is a packet
capture and analysis tool [2] that ensures efficient processing
of network packets, while Snort, an open-source intrusion
detection and prevention system (IDPS)
(https://www.snort.org/)[3]that continuously monitors network
traffic for signs of malicious activity.

By seamlessly integrating TCPdump and Snort, the packet
scripting model was designed to analyze network traffic,
swiftly identify potential threats, and automatically respond to
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them in real-time. This significantly enhanced the efficacy of
real-time cyberattack detection, particularly in environments
with limited resources.

2. RELATED WORKS

With the increase in use of the internet and technological
advancement, cyber threats have become more prevalent.
Threat actors benefits from disrupting operations of businesses
and cause downtime of network services of companies making
security of enterprise networks a big challenge. According to
[4], security practitioners have become over-reliant on
traditional security measures like intrusion detection systems
(IDSs) built on machine learning models which are insufficient
because they rely more on already captured datasets which may
not contain zero day attacks due to the continuous growth in
sophistication and complexity of these attacks. As such, [5]
highlighted the importance of network monitoring as a way of
repelling attacks and suggested the use of tools for packet
capturing and detection of malicious traffic as a good measure
of detecting these attacks.

TCPdump, Windump, Honeypot, Snort, suricata, Netflow,
Wireshark among others have been identified to monitor
network and analyze network traffic [6]. They use predefined
rules and pattern matching to identify potential threats.
Intrusion Prevention systems (IPS) systems, like Zeek and
Sguil, take a step further by not only detecting but also actively
preventing intrusions. They employ techniques such as secure
mobile agents, virtual machines, and high-throughput string
matching for enhanced security [6].

Therefore, [7] presents a forensic tool with the integration of
Snort to detect intrusions. Snort was utilized as a packet sniffer
to monitor network traffic in real-time for any malicious
network behavior or traffic. Despite the Snort’s high accuracy
of detection its capability still depends on the nature of rules,
the activities being monitored and the context in which it is
deployed.

In order to preserve filtering integrity by ensuring that no
packet is by passed without being detected, [8], presents two
adaptive approaches that provides scalability at the node levels
by continuously updating and distributing signature rules and
traffic amongst nodes. The approach provides a flexible system
by having Snort pre-installed and running on all the nodes. The
research shows that the suggested algorithms can divide the
workload evenly, allowing the system to scale by altering the
number of virtual components that analyze network data.

[9] proposed a cloud-based system for detecting and preventing
DDOS/DOS attacks using a Hybrid Intrusion Detection and
Prevention System. This system combines signature-based
methods and Genetic Algorithms to safeguard the
confidentiality, integrity, and availability of cloud services. The
approach involves using Snort-IDS and the Splunk web
framework for visualization and the genetic algorithm to build
anomaly detection model for both benign and zero-day attacks.
To achieve a high detection rate, the study improved on the
existing Snort-IDS rules. To further enhance snort rules, [10]
introduced a heuristic based Snort. This was with the view to
help Snort detect specific cyberattacks more effectively. The
heuristic preprocessor algorithm was able to rate each packet
according to the source IP address and flag assigned.

For the purpose of early detection [11] introduced a detection
technique that employed Snort. The system involves feature
selection, outlier detection, and classification to enhance
intrusion detection accuracy. The novel contributions include
an intelligent feature selection method and an entropy-based
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weighted outlier detection approach. The system's
effectiveness lies in its ability to identify intruders early and
notify administrators using the Telegram application. The study
successfully detected various attacks such as Port scanning,
FTP brute force, SSH brute force, and DDoS attacks. Future
research suggests adding more rules to Snort for enhanced
network security.

Leveraging on the effective packet checking and filtering of
extended Berkeley Packet filter (eBPF) capability of the Linux
Kernel, [12] developed an IDS. The IDS comprises of two
components that runs both on the linux kernel and the user
space. Due to the restrictions in the eBPF, some of the default
snort rulesets were modified and used by the IDS. The eBPF
that runs on the kernel matches the pattern of the packets with
the rules and drops the portion that does not match any of the
rules. At the user space, the packets left by the eBPF are
examined to find matching rule. Experimental results show that
the maximum throughput of the IDS system outperformed that
of Snort by a factor of 3.

From the literature reviewed and the study in [13], open-source
Intrusion Detection Systems (IDSs) like Snort and Suricata are
diverse in their configuration of rules, IP address blacklisting
and the nature of alert reporting. For instance, these
frameworks and tools oftentimes require significant expertise
to configure and deploy effectively and their use can generate
a high number of false positives. After thorough investigation
by [13], the diversity depends on the context in which they are
deployed for in real life scenarios. While the study provides
valuable insights into IDS diversity, the authors emphasize the
need for further analysis in longer durations and real-world
deployments to evaluate the practical impact of this diversity.

Additionally, [14] explored the detection rate and precision of
Snort, ModSecurity and Nemesida using default rulesets.
Results show that the maximum detection rate achieved by
default rules and rules set according to operational environment
are not sufficient to protect a system effectively since it is lower
than expected for known attacks. Therefore, it was opined that
only those rules suitable for a particular operational
environment should be activated at a time for optimal
performance. Moreover, the choice of predefined settings
initiated strongly impacts its detection capability and false
alarm rate. Likewise, machine learning models require large
amounts of training data and can be computationally expensive
to run, making them less practical for smaller organizations or
those with limited resources [15]. Hence, this study developed
a resource-efficient real-time detection models that leverage
the capabilities of packet scripting tools like TCPdump and
Snort for IDS.

3. METHODOLOGY

The model leverages the functionalities of TCPdump and Snort
for real-time cyberattack detection. By combining TCPdump's
packet capture efficiency with Snort's intrusion detection
capabilities, a robust and responsive intrusion detection system
was established. Kali Linux was used as the penetration testing
and ethical hacking operating system on Ubuntu to simulates
the vulnerable target machine. VMware Workstation Pro was
used to create a virtual environment, while a custom rule file,
and a Bash script was defined by incorporating TCPdump and
Snort for packet analysis.

First a virtual environment was set up and configured. Then a
custom bash script was executed to monitor, analyse and
evaluate the output. It is as outlined below:
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Q) Virtual Environment Setup: Using VMware
Workstation Pro, Kali Linux, and Ubuntu, virtual machines
were configured to establish a controlled environment for the
experiment. The topology of the setup is as shown in Figure 1.

) Custom rules: A set of custom rules were defined in
a file known as “custom.conf” file. These rules were used by
Snort for detection of intrusions or raising an alarm of traffic
that traverses the network. Sample rules that were defined in
the file custom.conf are:

alert tcp any any -> 192.168.169.130 22 (msg:"Hydra SSH
Brute Force Attack Detected"; flags: S; threshold: type limit,
track by_src, count 1, seconds 10; sid:1000001;)

# Possible DoS Attack

DD
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alert tcp any any -> 192.168.169.130 3000 (msg: "DoS SYN
Flood Attack Detected"; flags: S; threshold: type both, track
by_src, count 10, seconds 10; sid: 1000002;)

# NMAP Scan

alert tcp any any ->192.168.169.130 80 (msg:"Nmap Port Scan
Detected"; threshold: type limit, track by src, count 10,
seconds 120; sid:1000003; rev:2;)

# Normal ICMP traffic

alert icmp any any -> any any (msg:"Normal ICMP Traffic";
threshold: type limit, track by_src, count 5, seconds 60;
sid:1000004; rev:1;)

They can be further seen in Figure 2.

Ubuntu (Target)

Web Server

Virtual SwitchT

VM

| e

— =L

Kali Linux (Attacker)

Figure 1: Proposed virtual environment network topology

el user@user-virtual-machine: ~/Desktop Q = -

alert tcp any any -> 192.168.169.133 22 (msg:"Hydra SSH Brute Force Attack Detected
"; flags: S; threshold: type limit, track by src, count 5, seconds 10; sid:1000001;

)

# Possible DoS Attack
alert tcp any any -> 192.168.169.133 3000 (msg: "Possible SYN Flood detected"; flag
s: S; threshold: type both, track by src, count 20, seconds 10; sid: 1000002;)

# NMAP Scan

alert tcp any any -> 192.168.169.133 80 (msg:"Nmap Scan Detected"; threshold: type
limit, track by src, count 10, seconds 120; sid:1000003; rev:2;)

# Normal ICMP traffic

alert icmp any any -> any any (msg:"ICMP Ping traffic"; threshold: type limit, trac
k by src, count 5, seconds 60; sid:1000004; rev:1;)

Figure 2: Defined custom rules in the “custom.conf” file
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?3) Rule Path Specification: The path to the custom.conf
file was included in snort.conf file which is the default
configuration file for Snort located in the /etc/snort/ directory
as follows:

# my custom rules

include /home/user/Desktop/custom.conf

This helps the snort to locate the rules and use them for
intrusion detection.

4 Development of the Packet Scripting Model: The
packet scripting model, named "SimpleNetAnalyzer.sh," was
written using Bash Scripting. The script was written to capture,
analyze network packets and detect intrusions or incidents.

(5) Script Execution and Packet Capture: The bash script
was executed on the target, Ubuntu VM, utilizing TCPdump to
capture incoming and outgoing network packets in real-time.
Different traffic scenes were initiated by the Kali Linux attack
machine unto the Ubuntu target machine. The model was able
to capture packets and detect the various attacks by the Kali
Linux attack machine.

6) Intrusion Detection with Snort: The captured packets
were parsed and analyzed by Snort, to detect potential threats
or malicious network traffic based on the rules written.

@) Real-Time Monitoring and Attack Logging: The
detected attacks were logged in real-time in the log file. This
provided insights on the various kinds of attacks the model was
able to detect. The log files help the user to review the packets
that came into the network when they are not available to watch
the network. The logs are as shown in Figure 3.

Analyzing the captured PCAP and Snort log files reveals
network anomalies or signs of compromise in Wireshark as
shown in Figure 4. For instance, dissecting a packet, its window
size was 1024 bytes which could be indicative of an nmap scan
or port scan. Another noteworthy instance involves noticing
numerous SYN packets accompanied by RST bits which could

5 Target || [ Attacker

Activities (] Terminal

user@ubuntu: ~/Desktop Q = o
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indicate a possible Denial of Service (DoS) attack. While ICMP
packets as defined in the rules indicate normal traffic. A bunch
of SSH traffic encrypts data. However, further investigation
from the conversations window shows multiple attempted
logins with success on port 22 which could signify a possible
SSH brute force attack.

A large no. of SYN packet was also sent from a potential attack
source IP address to the target destination IP address (Figure
5). To confirm this, filters were used to help with such results,
for example: tcp.flags.syn == 1 and tcp.flags.ack == 0.

Also, as seen from Figure 6 those packets from the source IP to
the destination IP with no replies from the target, which is also
a good indication that it received a large no. of traffic without
being able to respond back.

Furthermore, ICMP packets considered to be normal traffic,
where simply used to test if devices are up and running. As
shown in Figure 7

4. RESULTS AND DISCUSSIONS

The system was evaluated to ascertain the performance of the
system using accuracy, precision, recall and F1 score as
metrics. To test the effectiveness of the custom rules, the
evaluation was done using the captured logs in real time and an
existing dataset MQTT-IoT dataset by [16]. This was with the
view to determine how effective the defined custom rules
performed even with existing dataset.

The packets captured were logged in afile. they consists of both
attacks and benign traffic with information such as the
timestamp, source, and destination IP address and a count of
how many of the traffic captured were genuine referred to as
True Positives (TP), how many were correctly identified as
benign, True Negatives (TN), how many were not correctly
identified as attacks, False Positives (FP), and how many were
genuine but were not identified, False Negatives (FN). This was
used to evaluate the metrics.

o121 & O

‘B

[**] [1:1000001:0] Hydra SSH Brute Force Attack Detect

{TCP} 192.168.169.135:54740 -> 192.168.169.130:22
12/03-01:04:07.121841 [**] [1:1000001:0] Hydra SSH Brute Force Attack Detect
ed [**] [Priority: 0] {TCP} 192.168.169.135:54746 -> 192.168.169.130:22
12/03-01:04:07.212286 [**] [1:1000001:0] Hydra SSH Brute Force Attack Detect
ed [**] [Priority: 0] {TCP} 192.168.169.135:54760 -> 192.168.169.130:22
12/03-01:04:07.264030 [**] [1:1000001:0] Hydra SSH Brute Force Attack Detect|| ., I
ed [**] [Priority: 0] {TCP} 192.168.169.135:54768 -> 192.168.169.130:22 .
12/03-01:05:10.279819 [**] [1:1000003:2] Nmap Scan Attack Detected [**] [Pri e
ority: 0] {TCP} 192.168.169.135:55142 -> 192.168.169.130:80 tﬁf
12/03-01:05:10.280575 [**] [1:1000003:2] Nmap Scan Attack Detected [**] [Pri|g
ority: 0] {TCP} 192.168.169.135:55142 -> 192.168.169.130:80 AT
12/03-01:05:10.381565 [**] [1:1000003:2] Nmap Scan Attack Detected [**] [Pri :
ority: 0] {TCP} 192.168.169.135:55143 -> 192.168.169.130:80 .
12/03-01:05:10.382230 [**] [1:1000003:2] Nmap Scan Attack Detected [**] [Pri e
ority: 0] {TCP} 192.168.169.135:55143 -> 192.168.169.130:80 A
12/03-01:05:10.492200 [**] [1:1000003:2] Nmap Scan Attack Detected [**] [Pri|f8 .
ority: 0] {TCP} 192.168.169.135:55150 -> 192.168.169.130:80

tepdump.log

wne
custom.confs

Figure 3: Log file showing the different attacks detected
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(i) Home ([ Target [ Attacker

traffic.pcap
File Edit View Go Capture Analyze sStatistics Telephony Wireless Tools Help

I Q¢ >»I-~IEEQaa@E snort.log

1700875468

Destination Protocol Length Info

.168.169.2 192.168.169.1..DNS 88 Standard query response Oxba —
.168.169.135192.168.169.1..TCP 6061165 — 80 [SYN] Seq=0 Win=1
P .168.169.130 192.168.169.1.. TCP 58 80 - 61165 [SYN ACK] Se
.. VMware_1f:b6:e4 VMware_d3:82:..ARP 42 Who has 192 168.169.135? Tel
.. VMware_d3:82:8d VMware_1f:b6:..ARP 60192.168.169.135 is at 00:0c: EepdUmp:1og
.45.. VMware_d3:82:8d Broadcast ARP 60Who has 192.168.169.130? Tel—
11 25.45.. VMware_1f:b6:e4 VMware_d3:82:..ARP 42192.168.169.130 is at 00:0c: - m

.
=
o)
> |
A
?

l 00 Oc 29 =

024 00 2c af
[Calculated window size: 1024] a9 82 b9
Checksum: 0x96f8 [unverified] 04 00 96
[Checksum Status: Unverified] eapilyzs
Urgent Pointer: 0
»Options: (4 bytes), Maximum segment size .
» [Timestamps]

Figure 4: Analysis of the captured traffic in Wireshark

[ Target I3 Attacker

Wireshark
Eile Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Ams@PIRE Q< I>»I-~IEEFQa@E

[ tcp.fags.syn == 1 and tcp.flags.ack == 0

No. Time Source Destination Protocol Length Info

10.000.. 192.168.60.103 192.168.80.49 TCP 7450899 - 1883 [SYN] Seq=0 Win=6424

Ll v

»Frame 1: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)

»Ethernet II, Src: Cisco 6f:ad:70 (00:09:b7:6f:ad:70), Dst: Dell 6d:99:d1 (00:21..
=8 Internet Protocol Version 4, Src: 192.168.60.103, Dst: 192.168.80.49
. J] Transmission Control Protocol, Src Port: 50899, Dst Port: 1883, Seq: 0, Len: ©

0006 00 21 70 6d 99 d1 006 @9 b7 6f ad 70 08 00 45 00 ~!tpm---- -0:p:-E- B

Figure 5: DoS SYN Flood traffic in Wireshark

\ Wireshark - Conversations - snort.log.1700158183

N
Ethernet-1 | IPv4-12  IPv6 TCP.33058 UDP

QO AddressA ¥ Address B Packets Bytes PacketsA-B  BytesA=B  [PacketsB=A bytesB-»A RelStart  Duration  Bits/sA-+B

' 192.168.60.100  192.168.80.49 2,769 204k 2,769 204k 0 0 0595080 3528.7024 464
192.168.60.101  192.168.80.49 2925 216k 2,925 216k 0 0 0692101 3531.6312 490
192.168.60.103  192.168.80.49 2,460 182k 2,460 182k 0 0 0.000000 3483.5268 418

= 192.168.60.104  192.168.80.49 2,865 2k 2,865 212k 0 0 1008501 35309322 480

J 192.168.60.105  192.168.80.49 2,869 22k 2,869 212k 0 0 0490023 3469.5736 489
192.168.60.107  192.168.80.49 1,178 131k 1,778 131k 0 0 0.184089 3443.2800 305
192.168.70.100  192.168.80.49 2,863 Uk 2,863 11k 0 0 0814207 3531.0658 479
192.168.70.101  192.168.80.49 3,043 225k 3,043 225k 0 0 0117991 35324326 509

@ 192.168.70.103  192.168.80.49 2,784 206k 2,784 206k 0 0 0857971  3497.8835 mn
192.168.70.104  192.168.80.49 2,959 218k 2,959 218k 0 0 0283155 35323070 495
192.168.70.105  192.168.80.49 2,811 208k 2,811 208k 0 0 0572382 3531.4078 an

el 192.168.70.107  192.168.80.49 2932 216k 2932 216k 0 0 0300431 3531.9882 491

Figure 6: DoS attack with zero replies from the target
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£ Wireshark

** . . . - . traffic.pcap - o x ‘.
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Pl AEODPIREACHI»I-IZEQAQQAQE snort log.
- 1700875468
' [A]Apply a display filter ... <Ctrl/> L)
No. ~ Time Source Destination Protocol  Length Info N g e
48..661.. 192.168.169.130 192.168.169.135 ICMP 98 Echo (ping) reply id=ex1af3, seq=20/51z__
a 48.. 661.. 192.168.169.135 192.168.169.130 ICMP 98 Echo (ping) request id=exlaf3, SquZEJ/SlEi _
48.. 660.. 192.168.169.130 192.168.169.135 ICMP 98 Echo (ping) reply id=0x1af3, seq=19/48cmmm [UIFIFERIELE
@ 48.. 660.. 192.168.169.135 192.168.169.130 ICMP 98 Echo (ping) request 1id=0x1af3, seq=19/48Cgme §
48.. 659.. 192.168.169.130 192.168.169.135 ICMP 98 Echo (ping) reply id=0x1af3, seq=18/46Cmmm
48.. 659.. 192.168.169.135 192.168.169.130 ICMP 98 Echo (ping) request id=0x1af3, Seq=18/46Cgmm
@ 48.. 658.. 192.168.169.130 192.168.169.135 ICMP 98 Echo (ping) reply id=ex1afs, seq=17/43cm=
S 48.. 658.. 192.168.169.135 192.168.169.130 ICMP 98 Echo (ping) request 1id=0x1af3, seq=17/43Cmmm [lluEACH
— 48.. 657.. 192.168.169.130 192.168.169.135 ICMP 98 Echo (ping) reply id=ex1af3, seq=16/40%==
| 48... 657.. 192.168.169.135 192.168.169.130 ICMP 98 Echo (ping) request id=exlaf3, seq=16/40‘msm -
3 48.. 656.. 192.168.169.130 192.168.169.135 ICMP 98 Echo (ping) reply id=6x1af3, seq=15/38/g= ﬁ’
2 48.. 656.. 192.168.169.135 192.168.169.130 ICMP 98 Echo (ping) request id=ex1af3, seq=15/38/mmm
4 48..655.. 192.168.169.130 192.168.169.135 1CMP 98 Echo (ping) reply id=0x1af3, Seq=14/35¢mm MEHEI]
48.. 655.. 192.168.169.135 192.168.169.130 ICMP 98 Echo (ping) request id=exlaf3, seq=14/35cmsm ¥
= 48.. 654.. 192.168.169.130 192.168.169.135 1CMP 98 Echo (ping) reply id=ex1af3, Seq=13/337mm
, A4R_A54. 192.16R.1A9.135 192.168.169.130 TCMP 98 Feha (nina) renuest  id=Ax1afa. sen=13/33cm- .
Pl Frame 151: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) 00 @c 29 1f b6 -
(MW, Ethernet II, Src: VMware d3:82:8d (00:0c:29:d3:82:8d), Dst: VMware 1f:b6:e4 (00:0c:29:1f 00 3c 28 €0 40“““ﬁ?“““"
» Internet Protocol Vversion 4, Src: 192.168.169.135, Dst: 192.168.169.130 0020 a9 82 e6 9c
a » Transmission Control Protocol, Src Port: 59036, Dst Port: 22, Seq: 0, Len: © fa fo es 1d oo
26 3d 00 00 00

custom.conf ™

Figure 7: ICMP traffic

To evaluate the MQTT-IoT dataset, the following steps were
followed:

1. Feature Extraction: Tshark which is a terminal-based
tool for packet analysis was used in this case to read the pcap

The result obtained from the proposed real time packet
scripting model and the existing dataset using the custom rules
for accuracy, precision, recall and F1 score are as presented in
Figure 9.

files from the MQTT-loT dataset which gave an insight to
defining Snort rules to be used by snort in reading the files as
seen in Figure 8.

The results illustrates how well both systems performed under
similar scenarios. The packet scripting model achieved an
accuracy of 90.14% while the MQTT-IOT dataset achieved an
2. Rule definition: the rules were modified to conform accuracy of 95.65%.

to the features seen in both the normal and malicious pcap files.

3. Next, Snort was used to read the pcap files for
potential alerts for both the normal and SYN Flood pcap files.

user@ubuntu: ~/Downleads/MQTTIOT/SYN FLOOD

user@ubuntu:~/Downloads/MQTTIOTS 1s

NORMAL 'SYN FLOOD'

user@ubuntu:~/Downloads/MQTTIOTS <cd SYN\ FLOOD/
user@ubuntu:~/Downloads/MQTTIOT/SYN FLOODS tshark -r SYN-DDoS-AD_1.pcap I

25666 208.861642 192.168.80.49 —192.168.70.103 TCP 54 1883 — 58459 [ACK] Seq=6 Ack=
42 Win=131328 Len=0

25667 208.861929 192.168.60.104 — 192.168.80.49 TCP 60 48951 — 1883 [ACK] Seq=37 Ack
=5 Win=64256 Len=0

25668 208.862558 192.168.60.104 — 192.168.80.49 MQTT 134 Publish Message (1d=18858)
[Building4/Floorl/Temperature_Humidity]

25669 208.862642 192.168.80.49 — 192.168.60.104 MQTT 58 Publish Ack (1d=18858)

25670 208.862676 192.168.80.49 — 192.168.80.42 MQTT 134 Publish Message (1d=56507) [
Building4/Floorl/Temperature_Humidity]

25671 208.865587 192.168.60.104 — 192.168.80.49 MQTT 158 Publish Message (1d=18859)
[Building4/Floorl/Gas_Sensor], Publish Message (1d=18860) [Building4/Tank/Water_Leve
1]

25672 208.865664 192.168.80.49 — 192.168.60.104 MQTT 58 Publish Ack (id=18859)

25673 208.867674 192.168.80.42 — 192.168.80.49 MQTT 60 Publish Ack (1d=56507)

25674 208.867706 192.168.80.49 —192.168.80.42 MQTT 158 Publish Message (1d=56508) [
Building4/Floor1/Gas_Sensor], Publish Message (1d=56509) [Building4/Tank/Water_Level

Figure 8: Feature extraction from the MQTT-IoT dataset using Tshark
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Figure 9: Results for the proposed model versus MQTTIOT dataset

This is consistent with the result obtained using some machine
learning models in [16]. Therefore, the custom rules defined in
our proposed model are effective in detecting attacks. The
Precision, Recall and F1 scores for the packet scripting model
are 95.65%, 93.95% and 92.81% while that of the MQTT-IOT
dataset are 93.81%, 81.14% and 87.702% using the custom
rules defined.

S. CONCLUSIONS AND
RECOMMENDATIONS

This paper proposed a packet scripting model used to detect
attacks in real time. The model was developed using snort and
TCPdump. A virtual environment was set up using VMware
Workstation Pro, custom rules were defined using bash script
incorporating TCPdump and Snort for packet analysis. The
bash script was executed on the target Ubuntu VM, utilizing
TCPdump to capture incoming and outgoing network packets
in real-time.

(31

(4]

[5]

(6]

(7]

The captured packets were parsed and analyzed by Snort, to
detect potential threats or malicious network traffic based on
the rules written. The captured packets were analysed using
accuracy, precision, recall and F1 score as metrics.
Furthermore, the custom rules were tested on an existing
dataset, the MQTT-IOT by [16] to determine how effective the
rules perform in detecting attacks. Results showed that our
defined rules perform very well in detecting attacks in real time
and already captured data. The study recommends that the
custom rules be further tested on other datasets.
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