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ABSTRACT 

Protection of near shore area by means of artificial structure is 

an important issue for coastal engineering communityA 

solitary wave is a wave which propagates without any 

temporal evolution in shape or size when viewed in the 

reference frame moving with the group velocity of the wave. 

The envelope of the wave has one global peak and decays far 

away from the peak solution of Korteweg de Vries (KdV) 

equation provides this solitary wave and the numerical 

solution of this equation is developed using differential 

quadrature which is an innovative numerical technique. 

Differential quadrature basically approximates partial 

derivatives of any order. Time derivative of KdV equation is 

discredited using classic finite difference method and space 

derivates are discredited using differential quadrature 

technique. KdV equation which is third order non linear 

partial differential equations, describe behavior of travelling 

wave, known as solution. Stability of numerical analysis is 

evaluated by computing L2 norm and L. Application of 

solitonic solutions are highlighted in the paper. Differential 

quadrature based numerical scheme is explored in detail in 

this paper. 
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1. INTRODUCTION 
The theory of models of waves over shallow water presents a 

paradoxical feature: while it is easy to write down in closed 

form a solitary wave solution for the simplest standard model, 

namely the Korteweg–de Vries (KdV) equation, it has proved 

quite difficult to obtain the existence of such solutions for the 

problems from which the KdV equation was derived as a first 

approximation. A solution is a nonlinear solitary wave with 

the additional property that the wave retains its permanent 

structure, even after interacting with another solution. For 

example, two solutions propagating in opposite directions 

effectively pass through each other without breaking. 

Solutions form a special class of solutions of model equations, 

including the Kortewegde-Vries (KdV) and the Nonlinear 

Schrodinger (NLS) equation. Solitary waves were first 

observed, long time ago by Russel[1]. Russel’s observation of 

long wave propagation on shallow water has been explained 

by Korteweg and deVries by forming a third order non linear 

partial differential equation, known as KdV equation. Wave 

solutions of such a non-linear partial differential 

equation(KdV equation) is known as solitary waves that 

possess the following properties, viz. (1) they proceed with 

their shapes interact, and (2) they move with constant 

velocity. From a detailed numerical study Zabusky and 

Kruskal[2] found that stable pulse like waves could exist in a 

system described by the KdV equation. A remarkable quality 

of these solitary waves as mentioned before yields their 

particle-like nature and led Zabusky and Kruskal to name 

such waves as solitons. The discovery of the remarkable 

interaction properties of solitary wave solutions toKdV by 

Zabusky and Kruskal [2] and the invention by Gardner, 

Greene, Kruskal and Miura [3] of the Inverse Spectral 

Transform for the solution of the Cauchy problem for KdV 

stand as two of the most far-reaching breakthroughs in the 

development of modern nonlinear mathematical science.As 

the prototypical integrable nonlinear system, KdV has also 

had enormous indirect impact on many parts of theoretical 

physics, pure mathematics, and the areas in between. Vast 

areas of mathematics, including ordinary differential 

equations, algebraic geometry, Lie group theory, differential 

geometry and asymptotics have been opened up 'on the back', 

as it were, of the solving of KdV, and brought to bear on 

issues in quantum field theory, string and conformal field 

theory, quantum gravity and classical general relatively, to say 

nothing of the myriad applications in concrete settings of 

other famous integrable systems including nonlinear 

Schr6dinger (NLS) and sine-Gordon (SG).These latter 

applications range from condensed matter and semiconductor 

physics through nonlinear optics and laser physics, 

hydrodynamics, meteorology and plasma physics to protein 

systems and neurophysiology. The first success of the soliton 

conceptwas explaining the recurrence in the Fermi-Pasta-

Ulam system [4].Largely free of contention, however, are 

Russell's own experiments on solitary waves in water 

channels in which, as is now well known, he not only 

correctly extracted the propagation velocity from 

measurements, and convincingly showed that solitary waves 

of depression are impossible and that an arbitrary initial 

elevation would break up into a finite number of solitary 

waves, but also that the interaction between solitary waves 

had the particle-like property which was not picked up for 

more than a further century.KdV theory comes into play in 

several areas of geophysics. In conduit flows, buoyant fluid 

introduced below a layer of fluid of greater viscosity rises 

through a conduit which it creates, with buoyancy and viscous 

shear stress in balance for steady flow in a conduit of uniform 

area. If the supply rate varies, axisymmetric bulges propagate 

upward as conduit waves.The KdV equation represents the 

dynamic model of solitary waves. With a view to the large 

number of applications of the KdV equation in the field of 

engineering science, solving these equations numerically by 

non-traditional numerical technique (other than finite 
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difference, finite element and finite volume method) is a 

challenging task. Hence, fast innovative numerical method of 

solution of KdV equation is developed in this paper. The 

numerical solution of the KdV equation is developed using 

differential quadrature. Computations are carried out by 

developing a computer code using MATLAB 7.0 because of 

its simplicity in data computing and 3D visualization of data. 

The paper presents the detail of the differential quadrature. 

Methodology of solving KdV equation numerically using 

differential quadrature is presented in detail in this paper.   

2. MATHEMATICAL BACKGROUND 

OF DIFFERENTIAL QUADRATURE 
The differential quadrature is a numerical technique used to 

solve the initial and boundary value problems. This method 

was originally developed by Bellman and Casti[5] using a 

simple analogy with integral quadrature which is based on 

interpolation functions.  The basic philosophy behind 

differential quadrature method (DQM) is the concept that the 

partial derivative of a field variable at any discrete points in 

the computational domain can be approximated by a weighted 

linear sum of the values of field variable along the line that 

passes through that point, which is parallel with coordinate 

direction of the derivative. Mathematical formulation of this 

philosophy can be framed as 
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where    are the discrete points of the coordinate system, m is 

the order derivative of the function,       are the function 

values at those points and    
   

 are the weighting coefficients 

for the mothered derivative of the function with respect to x 

and N is the number of spatial grid points. Two points are 

worth to mention in the formulation of DQM which are (1) 

how the weighting coefficients are determined and (2) how 

the grid points are selected. There are many approaches to 

compute these weighting coefficients such as Bellman’s 

approaches [6], Quan and Chang’s approach [7,8] and Shu’s 

approach [8]. Most of the differential quadrature methods 

address various test functions such as Legendre polynomials, 

Lagrange interpolation polynomials, spline functions, to 

compute the weighting coefficients. However, the most 

frequently used methods are based on Lagrange interpolation 

polynomials. Weighting coefficients of first order spatial 

derivative using Lagrange polynomials as the test function are 

given by 
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and L is the length interval.  The weighting coefficients of the 

second order derivative can be computed using 
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Weighting coefficients of higher order derivatives can be 

computed using the generalized formula  
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It is worth to mention that weighting coefficients in DQM are 

Centro symmetric. A N x N matrix Q = [qij] is Centro 

symmetric if qij = -qN+1-I, N+1-j, i, j = 1, 2, .., N. 

 

Q can be characterized by J Q J = Q, where J denotes the 

Centra identity matrix with the properties JT = J and J2 = 1. A 

new, skew Centro symmetric matrix R = [rij]N x N can be 

defined as rij= -rN+1-I,N+1-j, I , j = 1, 2, …,N and R = -J R J. 

In a similar manner we can write the weighting coefficients 

matrix elements, Aij = -AN+1-I, N+1-j. 

3. SELECTION OF GRID POINTS AND 

STABILITY 
The proper selection of grid points provides the accuracy as 

well as the stability of any numerical method. Generally, grid 

points are based on the zeros of suitable orthogonal 

polynomials. Keeping in view of this, the non-uniform grid 

points are chosen using Chebyshev-Gauss-Lobatto (CGL) 

algorithm and the formulation of the grid points as per CGL is 

given by 
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where, L = length of the domain = (b – a) for a ≤ x ≤ b. 

 

Numerical Solution of KdV Equation  

 

Governing equation of KdV equation is given by 
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Initial condition of Eq. (6) is given by  
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Boundary conditions are given by  

 

                               , 

                             .  

 

Travelling wave solution (solitonic solution) of Eq. (6) can be 

obtained analytically by substitution of a new variable    
    , where V signifies the speed with which the wave 

travels. Analytical solution of Eq. (6) can be obviously written 

as 

                                 
 (7) 

The differential quadrature version of KdV equation (Eq. (6)) 

can be now written as  
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The discretization of initial and boundary conditions can be 

subsequently written as 

  
                         ,  where, i = 1, 2, …., N 

    
                               

 

    
                               

 

4. NUMERICAL RESULTS AND 

ANALYSIS 
Numerical results of KdV equation are obtained with a = -15 

cm, b = 15 cm, T = 0.5 s, V = 0.02 cm/s. Total number of 

temporal points, M = 60 and total number of spatial points, N 

= 20 are taken into account for computation. Numerical values 

of spatial points (x) within the complete domain of length (L 

= b – a = 30 cm) are calculated by Eq. (5) and hence these 

values are given as 

(0.0,0.20,0.81,1.81,3.16,4.84,5.79,8.97,11.31,13.75,16.23, 

18.67, 21.01, 23.19, 25.15, 26.83, 28.18, 29.18, 29.79, 

30.00).Numerical solution of KdV equation with its analytical 

solution at various spatial locations for a specific time (T = 

0.5 s) are shown in Fig. 1. X-axis of Fig. 1 is labeled with 

respect to spatial node number, say NN =1 (X1 = 0.0), NN = 2 

(X2 = 0.20), NN = 3 (X3 = 0.81), NN = 4 (X4 = 1.81), … , 

NN = 20 (X20 = 30.0) . It can be easily mentioned that 

numerical results are in good agreement with exact solution. 

Errors (L2 and L ) are computed as approximately zero. A 

3D profile of numerical solution of solitary wave is shown in 

Fig. 2 wherein labeling of X axis is based on temporal node 

number (TT = 1 to 60) and labeling of Y axis are based on the 

spatial nodal number (N = 1 to 20). 

 

Fig. 1: Numerical and analytical solution of KdV equation 

at T = 0.5 

 

5. APPLICATIONS TO WATER WAVES 
A relationship between the phase speed and the wave number 

k is obtained by linearizing the governing equations of a 

physical system of interest, which yields a linearized 

dispersion relation. 

For example, the linearized dispersion relation of surface 

water waves is given by 

      =                  

where g is the acceleration due to gravity, h the constant depth 

of the water when it is unperturbed and q = kh the 

dimensionless wave number. The dimensionless number 

          is the Bond number, which measures the relative 

importance of surface tension and gravity, where  the 

coefficient of surface is tension and  is the density of water. 

Solitary waves can exist provided that no real value of k 

satisfies the dispersion relation, meaning that khas a non-zero 

imaginary part. In the case of B= 0 (no surface 

tension),solitary waves can exist only when c2>gh. Solitary 

waves are found by reformulating the problem in the 

framework of a dynamical system.  

Fig. 1: Numerical and analytical solution of KdV equation 

at T = 0.5 
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6. CONCLUSIONS 
Differential quadratutre based efficient innovative numerical 

method is developed to simulate KdV equation numerically. 

A detail of differential quadratutre based methodology of 

solving non linear partial differential equations has been 

discussed. Centro-symmetry property of the weighting 

coefficient matrix is also pointed out. Numerical stability of 

solutions is achieved by selecting spatial points on the basis of 

Chebyshev-Gauss-Lobatto algorithm, which is also known as 

Type-II sampling of collocation points. Numerical solutions 

are compared with exact solutions of the same equations by 

computing errors such as L2 and L∞. Results show that 

numerical and analytical solutions are in very good 

agreement, justifying that DQM can be a very good alternate 

computational scheme and efficient compared to traditional 

finite difference, finite element and finite volume element for 

solving non linear partial differential equations. 
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