
International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 21, October 2018

32

Cohesion as Software Design Decisive Measure: A

Metric Approach

Poornima U. S.
Associate Professor

Department of Computer Science & Engineering
RR Institute of Technology

Bengaluru-India

Suma V.
Dean, Research and Industry Incubation Centre
Professor, Department of Information Science &

Engineering
Dayanada Sagar College of Engineering,

Bengaluru-India

ABSTRACT

 The requirements for developing software belongs to

different domains in the current scenario keep evolving due to

the instant changes and demand in the market. Hence,

software design flexibility is a big challenge for the design

architects to incorporate the changes as it occurs. The

requirements gathered according to changes are grouped and

implemented as modules which have their own

responsibilities. Designing a module with complete

functionality and integrating them is yet another challenge.

Measuring such modules during design is therefore essential

to make the final product qualitative. Further, it is worth to

recall that quality of design is influenced by external quality

attributes such as Cohesion, coupling, maintainability,

scalability and so on. Further, cohesion concept is a

qualitative indicator which decides the depth of design quality

in any project. Therefore, this paper highlights on the impact

of cohesion on design quality of a complex system and its

measures to quantify the overall quality of software.

General Terms

Software Engineering, OOMD, Design Quality Metrics,

Cohesion

Keywords

 Software Quality, Software Solution-domain, Design

Quality, Cohesion and Coupling

1. INTRODUCTION
Large-scale products developed under object oriented

methodology have become inflexible in terms of design to

accommodate the changes. The design quality of each module

contributes to the quality of overall design. Cohesion reflects

the binding of members within a module. Such binding are

expected to be simple and single–task oriented under the

control of the designer. Many cohesion types are identified

which contributes to the quality of the whole module.

As the project grows, the number of modules increases and

hence the integration and/or interdependency between them

increase. Tracing out of such dependency along with coupling

and keeping them under control is an area that needs to be

focused. There is a continuous improvement needed to assess

the quality of design to uphold the quality of final product.

Such assessment is estimated by metrics which are the

quantitative measures of different aspects of design. Thus, the

product can be of good quality when the development team

adapts simple, flexible and quality modules and respective

metrics to assess it during development of a product [1].

 The object oriented design methodology entitles bottom-up

approach for product development. The data set is a prime

requirement at the early stage of development process. Later

phase includes the functionalities which are built upon data

providing custom-specific services as a module. Software can

be made more durable when the architecture representing such

modules is flexible enough to accommodate the future

changes, thereby upholding the scalability and maintainability

of software.

Cohesion and Coupling (C&C) are generic concepts that

represents good architecture of software which is not bound to

any category of software. They are the measures of degree of

connectivity of members within and outside of a module.

A software space domain includes set of modules

interconnecting each other to provide service for the

customers. Each module is framed of a class or set of classes

which includes data and functions. Functions however operate

on data to execute user requirements as services. Cohesion

thus represents the relevance of existence of functions within

a class or class within a module. Highly cohesive elements

provide good services as well as increase the quality of

design.

Additionally, cohesion is either on data or functions which

represents the user services. Various cohesion types such as

coincidental, logical, temporal, reflect on code cohesiveness

rather than data. Such cohesion concentrates on grouping the

related functions on logical similarity. However,

communicational cohesion focuses on the binding of

functions which access common data. Thus, in object oriented

design, functional cohesion is grouping of classes in to

packages based on functional similarity whereas, data

cohesion is with respect to the wrapping of data with

functions within a class.

2. REVIEW OF OOD QUALITY

METRICS
Object-Oriented development methodology is a most popular

methodology for multi-user, distributed and data-centric

system. Class is a basic building block and vehicle for

decomposition with operational attribute, methods and data

attribute and data members. Therefore, success of the product

depends on design quality of the software. Beside traditional

metrics, many design quality metrics are proposed in the

literature among which CK and MOOD metrics are popular in

the literature.

2.1 CK (Chidamdert&Kemerer) Metrics
Object Model of the application domain has a class as basic

building block and principles like Abstraction, Encapsulation,

Inheritance and Polymorphism to make it complete.

Class: A basic unit of the solution framework with data and

methods as attributes. The behaviour of the system is

represented by methods coupling the classes through message

passing.

A. Weighted Methods per Class (WMC) measures the time

and effort required for developing and maintaining a class

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 21, October 2018

33

operational attribute; methods. A class Complexity is a

cumulative sum of complexity of all its methods. The

objective is to keep it low to uphold design quality.

WMC(C) =Σci(Mi) i=1….n

Where C is a class and M is a class method.

B. Coupling Between Object classes (CBO) measures the

degree of interdependency between the classes. An object of a

class can use the service or object of another class. The

objective is to reduce cross coupling to increase the clarity of

the solution

C. Response For a Class (RFC) measures response set of a

class. When an object of a class sends a message, the methods

executed inside and outside of a class are counted. The

amount of effort in debugging, testing and maintenance is

depending on response count.

|RS|= { M }U all i { Ri }

where { Ri } = set of methods called by method i and { M } =

set of all methods in the class.

Inheritance Metrics: Size and complexity of the system is

reduced by reusable components. Inheritance supports

generalization and specialization concepts making the solution

rich in terms of design.

A. Depth of Inheritance Tree (DIT) is a metric for measuring

vertical growth of a class. Inheritance supports reusability.

However, complexity is directly proportional to the distance

between leaf and parent class. Hence, deeper tree structure is

prone to higher complexity as it is difficult to access end class

behaviour.

B. Number Of Children (NOC) measures the horizontal

growth of a class. The immediate subclasses in a hierarchy

show the greater reusability. System functional quality is

highly dependable on abstractness of the parent class. Hence,

more effort is required in testing if tree grows in both

directions.

Abstraction and Encapsulation: Identifying the properties

for a problem has an impact on quality of the project.

Cohesive methods make the architecture more sound, flexible

and maintainable.

Lack of Cohesion in Methods (LCOM) measures the quality of

a class in a solution domain. Cohesion refers the degree of

interconnectivity between attributes of a class. A class is

cohesive if it cannot be further divided in to subclasses. It

measures the method behaviour and its relevance where it is

defined. Pair of methods using data object proves the

cohesiveness where as the methods not participating in data

access makes it less cohesive. Consider C is a class and M1,

M2,...Mn are its methods using set of class instances. Let

I1={a,b,c,d}, I2={a,b,c} and I3={x,y,z} be the set of instances

used by the methods M1,M2 and M3 respectively. If

intersection of object set is non-empty then the methods using

them is cohesive and their relevance in the class is proved. i.e.

I1 I2={{a,b,c} means M1 and M2 are cohesive. But

intersection of I1, I3 and I2, I3 is empty set. High count in

LCOM shows less cohesiveness and class needs to be divided

to subclasses. Several versions of the LCOM have been

defined in the literature survey

2.2 High Level Design Metrics
Bansiya et al proposed a design-based class cohesion metric

called Cohesion Among Methods in a Class (CAMC). The

method-method interactions are considered in CAMC. This

metric uses a parameter occurrence matrix with row for each

method and a column for each data type that appears at least

once as the type of a parameter in at least one method in the

class. The value in row i and column j in the matrix equals 1

when ith method has a parameter of jth data type and equals 0

otherwise. In the matrix, the type of the class is always

included in the parameter type list, and every method has an

interaction with this data type, because every method

implicitly has a self parameter. It indicates that columns is

filled entirely with 1s. The CAMC metric is defined as the

ratio of the total number of 1s in the matrix to the total size of

the matrix. Counsell et al. suggest omitting the type of the

class from the parameter occurrence matrix and calculating

CAMC.

Counsell et al. propose design-based class cohesion metric

namely, Normalized Hamming Distance (NHD) based on

hamming distanc. In this metric, only the method-method

interactions are considered. The metric uses the same

parameter occurrence matrix used by CAMC metric (the type

of the class is not considered). The metric calculates the

average of the parameter agreement between each pair of

methods. The parameter agreement between a pair of methods

is defined as the number of places in which the parameter

occurrence vectors of the two methods are equal. Formally,

the metric is defined as follows:

3. LITERATURE SURVEY
Authors of [2] proposed 6 metrics on classes to explore the

relationship between class attributes. The metrics are both

dynamic and static in nature to measure the cohesion.

Authors of [3] proposed flattening functions in the hierachy

among superclass and subclass. He considered both attributes

and methods with and without conflicting names to build

attribute and methods set in the subclass. He argued that

hierachy not only provides reusabilty but also increases the

complexity. He also argued that complexity rises from before

to after flatting the classes. The size, cohesion and coupling

metrics were measured to justify flattening impact on

complexity.

Author of [4] explain how and when class flattening happens

in Java. He further concludes that there is a need to study the

impact of flattening when using internal quality attributes to

indicate external quality attributes.

Authors of [5] proposed an inheritance metric based on UML

diagram at design phase. The metric is empirically validated

against Weyuker axioms and proved same as DIT of CK

metric.

Authors of [6] proposed an inheritance metric DITC based on

number of attributes and methods at each level of hierarchy.

The metric is theoretically validated and further indicates

effect on the development time (DEV).

Authors of [7] proposed two inheritance metrics, ICC

(Inheritance Complexity of a Class) and ICT (Inheritance

Complexity of a Tree). He further proved with many cases

that interaction increases the complexity(W9 property).

Authors of [8] discussed the difference between inheritance

and interface in C# programming. They calculated cohesion

and coupling values of different projects and concluded that

interface has less coupling value than inheritance and more

reusable.

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 21, October 2018

34

Authors of [9] proposed a metric NOPD (Number of

Polymorphic Dispatches) for inheritance hierarchy. He stated

that NOPD is useful in designing the test cases for inheritance

structure. The paper concludes that NOPD presents number of

test cases for the current hierarchical design of the project.

Authors of [10] had done the empirical study on evaluating

the depth of inheritance on maintainability of Object Oriented

Software. They designed and conducted experiments to prove

influence of inheritance on maintainability.

Authors of [11] measured the design complexity using all

inheritance metrics. They also measured the complexity with

class interfaces and proved that interface is better than

inheritance.

4. CLASS INHERITANCE METRICS
Class can be considered as set of attributes and methods. The

axiom of pairing is a basis for visualizing a class as a set at

static design level. The singleton axiom proposes a set as

collection of elements. However, pairing axiom exhibits the

property that a set can be a collection of exactly two

unordered pairs of sets.

S = {A, B}

where A ≠ B. However, a class at static design level can also

be visualized as a set since it contains collection of data and

functions which are logically interconnected.

C= {D, M}

where D={ d1,d2,d3,d4} and M={ f1,f2,f3} are logically

related subsets representing C as class, D as class data

attributes and M as class methods.

The strength of a class depends on the degree of relatedness

among its members, attributes and methods. Many cohesion

metrics such as Lack of Cohesion among Methods (LCOM,

LCOM1, LCOM2, LCOM3, LCOM4, LCOM5), Tight Class

Cohesion (TCC), Loose Class Cohesion (LCC), Degree of

Cohesion-Direct (DCD), Degree of Cohesion Indirect (DCI),

Sensitive Class Cohesion Metric (SCOM) etc, measures the

connectivity between members. Consider C as a class and M1,

M2,...Mn are its methods with set of class instances. Let

I1={a,b,c,d}, I2={a,b,c} and I3={x,y,z} are set of instances

initiated by the methods M1,M2 and M3 respectively. If

intersection of object set is non-empty then the methods using

them is cohesive and their relevance in the class is proved. i.e.

I1 ˄ I2={a,b,c} which infers that M1 and M2 are cohesive.

But intersection of I1, I3 and I2, I3 is empty set. High count in

LCOM hence shows less cohesiveness and class need to be

divided to subclasses. Similarly, other cohesive metrics

include variations of LCOM by considering the different

variations of methods and attributes. When applying set

relations to class, inheritance holds transitive property. In the

hierarchy of three classes, the super class c1 inherits to

subclass c2 and c2 to c3. Therefore,

(c1, c2) ∈ R and (c2, c3) ∈ R -> (c1, c3) ∈ R

Where, relation R stands for inheritance. Thus, transitive

relativity applies to inheritance where class c3 inherits

properties of c1 through c2.

In recent years, research is more focused on finding the

complexity of the inheritance tree since it directly impacts the

class cohesion. There are many inheritance metrics proposed

which measures the depth of reusability in an inheritance

ladder as shown in Table 1.

Table 1. Class Inheritance Metrics

Sl

No

Metric

Name

Description Proposed by

1 DIT Maximum length

from the node to

root node

C& K

1994

2 NOC Number of

immediate

subclasses of a

root

C & K

1994

3 DITC Sum of attributes,

methods at a class

level by

considering all

visibility modes

L

DITC(Ci)=ΣLEV

i*1

i=1

LEVi = Attribute

(Ci) + Method (Ci)

Kumar

rajnish

Vandana

Bhattacherjee

2006

4 NOPD Number of

Polymorphic

Dispatches

Naveen

Sharma,

Padmaja

Joshi, and

Rushikesh K.

Joshi

2006

5 DIC Degree of

Inheritance of a

Class

DIC=Number of

inherited

Attributes/Methods

x (4 - level) if level

<= 3

DlC =

Number of

inherited

Attributes/Methods

x (level - 3) if level

>= 4

Gagandeep

Makkar\

Jitender

Kumar

Chhabra2

and Rama

Krishna

Challa3

2012

5. DIFFERENT PROPERTIES FOR

VALIDATING METRICS

LIONEL BRIAND et al, Properties

Lionel Briand, et al had defined interesting strategies to define

the metrics at High level Design. They considered all possible

interactions of code segments and proposed several

corresponding metrics. They also proposed 9 properties using

which the metrics for cohesion and coupling are validated.

1 Normalization

Given a software part sp, the metric cohesion (sp) belongs to a

specified interval [0,Max], and cohesion(sp) = 0 if and only if

CI(sp) is empty, and cohesion(sp) = Max if and only if CI(sp)

includes all possible cohesive interactions.

International Journal of Computer Applications (0975 – 8887)

Volume 181 – No. 21, October 2018

35

Thus, class cohesiveness is expected either max or 0 to get the

design quality.

2. Monotonicity

Let sp1 be the software part and CI(sp1) is the set of cohesive

interactions. Let sp2 is modified sp1 with one more

interaction. Then cohesion(sp2)>=cohesion(sp1).

This property illustrates that adding interaction will not

decrease the cohesion.

3. Cohesive modules

Let sp1 be the software part and m1, m2 are two modules

belong to sp1. Let sp2 is a new software part with new

module m=m1+m2. If no cohesive interactions exist between

the declarations belonging to m1 and m2 when they are

grouped in m, then cohesion (sp1)>=cohesion(sp2).

Thus, the cohesion of the merged class is less than its

individual classes.

When defining metrics for cohesion, either during high level

or code level, the metrics are validated for the better design

quality.
6. PROPOSED WORK AND

CONCLUSION
Quality is an expected property of software. Different

activities of software development can imbibe the quality, one

of which phase is design during software development. everal

researchers had proposed the metrics for design which directly

influences both internal quality and external factors of

software such as maintainability, scalability, testability etc,.

Since cohesion is one of the major design quality decisive

factor, it must be measured. When the code is reused, the code

quality must be tested. The subclass inherits its specialized

features. Several inheritance metrics are defined, but its

relation with measuring the cohesion is yet the research

concept. This work may give insight to maximum length of

hierarchy or reusability encouraged during design phase itself.

Refactoring of classes can be done based on both inheritance

and cohesion values.

7. REFERENCES
[1] Jehad Al Dalal, “Measuring the Discriminative Power of

Object-Oriented Class Cohesion Metrics “,IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING,

VOL. 37, NO. 6, NOVEMBER/DECEMBER 2011.

[2] Shyam R. Chidamber and Chris F. Kemerer, “A Metrics

Suite for Object Oriented Design”, IEEE

TRANSACTION ON SOFTWARE ENGINEERING,

VOL 20,No 6, JUNE 1994.

[3] Dirk Beyer, Claus Lewerentz, and Frank Simon.

“Impact of Inheritance on Metrics for Size, Coupling,

and Cohesion in Object-Oriented Systems”, Software

Systems Engineering Research Group ,Technical

University Cottbus, Germany

(db|cl|simon)@informatik.tu-cottbus.de.

[4] Jehad Al Dallal, “how and when to flatten java classes?”,

International Journal of Computer Science, Engineering

and Information Technology (IJCSEIT), Vol. 4, No.2,

April 2014.

[5] Gagandeep Makkar\ Jitender Kumar Chhabra2 and Rama

Krishna Challa3. “Object Oriented Inheritance

MetricReusability perspective” . 20 1 2 International

Conference on Computing, Electronics and Electrical

Technologies [ICCEET].

[6] Kumar rajnish, vandana bhattacherjee, “Class Inheritance

Metrics-An Analytical and Empirical Approach”,

1Department of Computer Science & Engineering, Birla

Institute of Technology, Ranchi-01, India.

[7] Sandip mal, Rajnish Kumar, “Applicability of Weyuker’s

Property 9 to Inheritance Metric” International Journal

of Computer Applications (0975 – 8887) Volume 66–

No.12, March 2013.

[8] Maya Yadav, Jasvinder pal Singh, Pradeep Baniya, “

Complexity Identification of Inheritance and Interface

based on Cohesion and Coupling Metrics to Increase

Reusability “, International Journal of Computer

Applications (0975 – 8887) Volume 64– No.8, February

2013.

[9] Naveen Sharma, Padmaja Joshi, and Rushikesh K. Joshi,

“Applicability of Weyuker’s Property 9 to Object

Oriented Metrics”, IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 32, NO. 3,

MARCH 2006.

[10] John Dely, Andrew Brooks, et al, “ An Empirical Study

Evaluating Depth of Inheritance on the Maintainability

of Object-Oriented Software, Empirical Studies of

Programmers: Sixth Workshop. Intellect, pp. 39-58.

ISBN 9781567502626 .

[11] Varsha Mishra, Shweta Yadav, “ Quality evaluation of

factors affecting the reusability of object oriented class

inheritance and interface”, International Journal of

Research in Engineering Technology and Management

ISSN 2347 – 7539.

IJCATM : www.ijcaonline.org

