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ABSTRACT
SWf (Scientific Workflows) are vastly used in scientific domains
and typically include non-preemptive and preemptive tasks. Cloud
computing facilitates an appropriate ways to access cloud resources
as a “pay-as-you-go" model and several resources such as, re-
served, on-demand and spot instances are offered by the cloud ser-
vice providers. The spot instance renting price is less as compared
to on-demand instances. But, failures happen due to difference in
the instance bid price. Henceforth, it is a challenge to schedule
the preemptive and non-preemptive tasks of SWf onto appropriate
spot and on-demand spot instances. Therefore, in this paper a SWf
scheduling problem using both spot and on-demand instances are
considered and the main objective is to reduce the total execution
cost under deadline constraints. An efficient rule-based scheduling
algorithms are proposed to schedule non-preemptive and preemp-
tive tasks of SWf. The algorithm considers three different rules
such as, maximum number of successors, minimum processing
time, and minimum slack time to schedule SWf efficiently. Ex-
perimental results demonstrate the effectiveness of the proposed
rule-based task sequence initialization and virtual machine selec-
tion algorithms for different SWf sizes.
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1. INTRODUCTION

Cloud computing is a pay-as-you-go oriented resource provision-
ing paradigm that facilitates cloud users to access resources any-
where and at anytime. Resources such as, server, network, storage,
etc. in cloud are virtualized and cloud users do not need to manage
large resources, rather pay for the resources consumed from the
cloud service provider. SWf applications such as, astronomy appli-
cation (Montage), bio-informatics project (SIPHT) and astrophysi-
cal application (LIGO) [1] typically contains both preemptive and
non-preemptive tasks. The tasks that can be interrupted at any time
during the execution are termed as P (preemptive) tasks, for ex-
ample, web-crawler application and the tasks that cannot be inter-

rupted during execution are termed as NP (non-preemptive) tasks,
for example, batch processing. In Amazon EC2 [2] there are re-
served, on-demand and spot instances in which reserved instances
are used for a long period of time. However, the resource utilization
is low. The on-demand instance offers users to pay for resources on
hourly basis. The price of on-demand is much higher than the re-
served instances, but the resource utilization is high as compared
with reserved instances. The spot instance resources are subscribed
through bidding and the spot instance are allocated to the user only
when the user’s bid price is higher than the spot price during bid-
ding. Spot instances are available until new higher price bid oc-
curs. But, the price of spot instance is significantly lesser than the
on-demand and reserved instances.
The main objective in this paper is to address the scheduling prob-
lem of P and NP tasks of SWf in cloud environment and re-
duce the total execution cost of the SWf. Since the SWf are short
term compute-intensive applications and does not require reserved
and on-demand instances that make resource cost high. Out-of-
bid events when spot instances are considered impose improper
scheduling for NP tasks. Hence, in-order to overcome the above
mentioned problem, spot-block instances are considered which is
also an extension of spot instance. Spot-block instance will not get
terminated and run for the defined 1, 2, 3, 4, 5, or 6 hours. And the
price of spot-block instance is 30% to 45% less than on-demand
instances. The spot-block instance is ideal for NP tasks only when
the execution time of NP tasks are less than the spot-block instance
defined hours. Otherwise, the on-demand instance is selected to en-
sure non-preemptive tasks are not interrupted. P tasks can be sched-
uled in any of the instances, since these tasks can be interrupted.
This paper presents a scheduling heuristic, SWf architecture for
scheduling P and NP tasks of using hybrid instances such as, spot-
block and on-demand instances. It minimizes the execution cost
and also provides robust schedule to meet the deadline constraint
of SWf.

1.1 Contributions

—A new scheduling of P and NP tasks of SWf are considered.

—A scheduling heuristic that uses spot-block and on-demand re-
sources to schedule SWf in a cost efficient manner.
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—A rule-based task sequence initialization and VM selection algo-
rithm to schedule P and NP tasks of SWf.

The rest of the paper is organized as follows. Section 2 establishes
the related works. The problem definition and formulation are de-
scribed in Section 3. The proposed heuristics are presented in Sec-
tion 4. Computational results are shown in Section 5, followed by
conclusions in Section 6.

2. RELATED WORKS
Scheduling scientific applications in cloud is an emerging discus-
sion in the recent years. In the traditional grid computing, resources
were geographically dispersed and provided access to the end users.
Cost optimization under deadline constraints and execution time
optimization under budget constraints [3] are the two main rea-
sons to adopt cloud computing.Time optimization algorithms in-
clude scheduling algorithm cluster based algorithm [4], [5], dupli-
cation based algorithm [6], ant colony optimization approach [7]
and greedy randomized adaptive search [8]. Cost optimization al-
gorithm include, DET (Deadline Early Tree), deadline-MDP [9],
CPI (Critical Path-based Iterative) heuristic and PCP (Partial Crit-
ical Paths) [10]. Vinay et al. [11] proposed a cost-aware and fault-
tolerant aware resource management for SWf using block-spot and
on-demand instances. The SWf tasks considered in this work are
homogenous. There are limited works on SWf scheduling with spot
instances. A fault-tolerant algorithm was proposed by Poola et al.
[12] to schedule tasks onto spot and on-demand instances in or-
der to reduce execution cost of the deadline constrained SWf. Fur-
ther, Poola et al. [13], also proposed scheduling algorithm, named,
adaptive just-in-time for SWf. Both spot and on-demand instances
were considered to reduce the execution cost and fault-tolerant dur-
ing execution. Jung et al. [14] proposed a task balanced workflow
scheduling scheme to mitigate out-of-bid situation and the total task
completion time. Further, Jung et al. [15], also proposed a Genetic
Algorithm (GA)-based workflow scheduling scheme to find the op-
timal task size in a spot instance based cloud environment without
increasing users’ budgets.
There are limited or no works that considers scheduling P and NP
tasks of SWf and these tasks are commonly exists in SWf. The on-
demand instances are usually considered for SWf scheduling in the
existing literature. A few studies also considered the spot alterna-
tive. However, the high cost and out-of-bid failure make these two
instances more expensive. Therefore, scheduling SWf with both P
and NP tasks on spot-block and on-demand instances are consid-
ered in this paper.

3. PROBLEM DEFINITION AND FORMULATION
SWf are vastly used in scientific domains, which typically includes
P and NP tasks. The problem is to schedule the P and NP tasks of
SWf onto appropriate spot and on-demand spot instances of cloud
in order to reduce the execution cost under deadline constraint. Fig-
ure 1 depicts the SWf scheduling model with P and NP tasks. SWf
users send their requests to cloud service provider to run P and
NP tasks and it consists of SWf application layer, SWf scheduling
layer and cloud infrastructure. Initially, the different SWf are de-
composed into set of P and NP tasks before scheduling to cloud for
execution. The scheduler allocate these tasks to each of the avail-
able resources. The proposed model uses on-demand and block-
spot instances.

SWf Scheduling 
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Fig. 1: SWf Architecture

3.1 Mathematical model
The SWf application is denoted by Directed Acyclic Graph (DAG)
G(V,E), in which V = {v0, . . . , vn} are the tasks and E =
{(vi, vj)|vi ∈ V, vj ∈ V, i < j} are edges in G.

—Each edge E = {(vi, vj)} represents the dependency between
the task vi and vj .

—v0 and vn are used as dummy start and end nodes of tasks in
SWf.

—P and NP represents preemptive and non-preemptive tasks.

—The task vi can be executed on one or many homogeneous in-
stances.

—The processing time of vi on a single resource is represented by
PTi.

—The preemptive task vi ∈ P are separated and further allocated
on different available resources during scheduling process. But,
for non-preemptive tasks vi ∈ NP , it has to be executed on
either single on-demand or block-spot instance only.

—Co is the unit cost of on-demand instance and Cs is the unit cost
of spot block instance at time t.

—The SWf deadline is represented by D.

—si and ei are start and end times of task vi the total number of
resources considered for the execution be R.

Then, the overall execution cost of the SWf TCSWf is represented
by the Equation 1.Co×yr×Tr is the cost of on-demand instances.
Cs × yr × Tr estimates the cost of spot-block instances, in which
Tr is the task block time of P and NP tasks respectively.

TCSWf =

R∑
r=1

(Co × yr × Tr + Cs × yr × Tr) (1)
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Table 1. : The Notations used in the Mathematical Model

Parameters Definitions
PTi Processing time of task vi
P Preemptive tasks
NP Non-preemptive tasks
Co Cost of on-demand instance
Cs Cost of spot block instance
D SWf Deadline
si and ei start and end times of task vi
TCSWf Total execution cost of SWf
xi Binary variable
yr Binary variable
Tr Task block time of preemptive and

non-preemptive tasks
qi VMs instances required for task vi

xi =

{
1 vi is executed on VM r at time t, ∀i ∈ {0, n}, ∀r ∈ {1, R}, ∀t ∈ {0,D}
0 otherwise

(2)

yr =

{
1 r is on-demand VM, ∀r ∈ {1, R}
0 r is spot-block VM, ∀r ∈ {1, R}

(3)

The binary variable xi in Equation (2) takes 1 if the task vi is ex-
ecuted on VM r at time t. The binary variable yr in Equation (3)
takes 1 if the VM r is an on-demand VM, otherwise takes 0 if the
VM r is a spot-block VM.

Tr =

n∑
i=0

D∑
t=0

xi, ∀r ∈ {1, R} (4)

si = min
t∈{0,D}

(

R∑
r=1

t× xi), ∀i ∈ {0, n} (5)

ei = max
t∈{0,D}

(

R∑
r=1

t× xi), ∀i ∈ {0, n} (6)

qi =

{∑R

r=1

∑D

t=0
xi, ∀vi ∈ P

1, ∀vi ∈ NP
(7)

The cost of on-demand and spot-block instances incurred during
execution are calculated by Equation (4). (5) and (6) are used to
calculate start and end time of task vi. Equation (7) calculates the
instances required for a task vi.

4. PROPOSED MODEL
Rule-based SWf scheduling for SWf applications are the common
approaches. In this paper an efficient rule-based scheduling algo-
rithms are proposed to schedule non-preemptive and preemptive
tasks of SWf. The algorithm considers three different rules such
as, minimum processing time, maximum number of successors and
minimum slack time to schedule SWf efficiently and are defined as
follows:

(1) Minimum Processing Time: Minimum processing time of the
tasks are identified by the characteristics of the task and the
tasks priorities are estimated by the processing time and mini-
mal processing time has the highest priority.

(2) Maximum number of Successors: The structures of the SWf
are considered and the priorities of the tasks are estimated by
the number of successors.

(3) Minimum Slack Time: The structure of SWf and the charac-
teristics of the tasks are considered. The total slack time of a
task vi is determined by TS(vi) = LS(vi) − ES(vi). The
task which has least slack time are considered as the highest
priority.

In rule-based scheduling algorithm, the sequence of tasks are deter-
mined by the topological-order of the SWf. The task allocation to
different VMs be Tof the task and sequence initialization of tasks
are shown in Algorithm 1. The algorithm begins from dummy start
node v0, and the tasks that has no predecessors are included in the
qualified set QS. Further, the highest priority tasks are selected
from QS and included to T and the final sequence set FS.

Algorithm 1: Tasks Sequence Initialization (TSI))

1 V = {vo, v1, ...., vn};
2 E = {(vi, vj)|vi ∈ V, vj ∈ V }andvi < vj ;
3 begin
4 FS ← ∅, QS ← ∅ T ← ∅;
5 repeat
6 FS ← FS

⋃
{vi};

7 T ← T
⋃
{vi} ;

8 for each (vi, vj) ∈ E do
9 if ∀(vi, vj) ∈ E, vi ∈ FS then

10 QS ← FS
⋃
{vj};

11 Using rules to select a task vi from the qualified set QS;
12 until (vn ∈ FS);
13 return T ;

A VM selection strategy is proposed to schedule preemptive and
non-preemptive tasks of SWf. Only homogenous on-demand and
spot instances are considered. The preemptive tasks can be inter-
rupted during execution, while non-preemptive tasks cannot be in-
terrupted and the selection of different VMs are shown in Algo-
rithm 2. The selection of VM for scheduling of tasks are mainly
based on the topological-order obtained from Algorithm 1. The es-
timated execution time is calculated for the tasks in the FS. Sup-
pose, the task is a NP, then the estimated task execution time ETi

is equal to the processing time of task vi on a single VM, i.e.,
ETi = Pi. If the task is vi P, then the task is separated and sched-
uled onto the available VMs, i.e., ETi = Pi/|QS|.

5. EXPERIMENTAL EVALUATION
In this section we discuss the experiments conducted to evaluate
the heuristics. Only homogeneous VMs are considered and simu-
late the VM resources on real clouds, The CloudSim toolkit [16] is
extended to support on-demand and spot-block instances. The VM
instances considered is m4.large Amazon EC2 [2] and the cost of
the instances are tabulated in Table 2). The time required to start a
VM is assumed to be zero.
The two SWf such as LIGO and Montage [1] are considered to an-
alyze the performance of proposed algorithms. Montage SWf are
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Algorithm 2: VM Selection (VMS) Algorithm

1 Input: the task allocation sequence T .
2 Output: the estimated execution time of all the tasks in T .
3 begin
4 repeat
5 FS ← ∅, QS ← ∅;
6 vi ← the first task of T ;
7 FS ← FS

⋃
{vi};

8 for each (vi, vj) ∈ E do
9 if ∀(vi, vj) ∈ E, vi ∈ FS then

10 QS ← QS
⋃
{vj};

11 if vi ∈ P then
12 ETi = Pi/|QS|;
13 else
14 ETi = Pi;
15 T = T − {vi};
16 until (T = ∅);
17 return;

Table 2. : Unit cost of spot and on-demand instances

Instance Type vCPU On-demand Hourly
Spot Block Hourly

1 hour 6 hours

m4.large 2 $0.120 $0.069 $0.088

used by NASA/IPAC [1] and it merges multiple input images to-
gether to create custom mosaics of the sky. The Laser Interferom-
eter Gravitational Wave Observatory (LIGO) [1] generates gravita-
tional waveforms from data collected by compact binary star sys-
tems. Figure 2 and Figure 3 presents the structure of Montage and
LIGO SWf. The nodes mProjectPP, mDiffFit and mJpEG in Figure
2 are the preemptive tasks while other nodes are non-preemptive
tasks. The nodes TrigBank in Figure 3 are non-preemptive tasks
and other nodes are preemptive tasks.

Data Aggregation

Data Partitioning

Data Aggregation

Pipeline

mProjectPP mDiffFit mConcatFit mBgModel

mBackgroud mImgTbl mAdd mShrink

mJPEG

Fig. 2: An example of Montage SWf

TmpltBank Inspiral Thinca TrigBank

Fig. 3: An example of LIGO SWf

However, experiments were carried out with five different task sizes
(50, 100, 200, 300, 400) and the inter-arrival time of tasks are var-
ied to fully explore the performance of the proposed heuristics. The
observed output metrics are cost and deadline factor of SWf.
To analyze the efficiency of the algorithms, a a Relative Percentage
Deviation (RPD) is used. Suppose, if we consider an instance I ,
then the optimal schedule and the corresponding costC(πI) among
compared algorithms is measured by the Equation 8.

RPDI =
C(πI)− C(π∗I)

C(π∗I)
× 100% (8)

The proposed approach is compared with the just-in-time (JIT) al-
gorithm proposed by Poola et al. [13]. The VMS and JIT meth-
ods are also adopted to consider only on-demand instances. VMSo

and JITo are the adopted methods with only on-demand instances.
Therefore, VMS, JIT, VMSo and JITo are the different methods
compared to evaluate the proposed approaches.

5.1 Cost Evaluation
5.1.1 Montage. The Fig 5 shows VMS performs better than the
JIT, VMSo and JITo for different tasks sizes. VMS saves 10%
and 20% cost on average while compared with JIT and VMSo

respectively. However, with an increase in tasks, the cost of VMS
and JIT increases in similar manner.

5.1.2 LIGO. The Fig 5 shows, the VMS performs better than the
VMSo, JIT and JITo for different task sizes. When the SWf size
is less, the VMS and JIT behaves same. But, when the size of SWf
increases, VMS performs better than JIT. VMS saves 20% cost on
average

5.2 Deadline Evaluation
5.2.1 Montage. The deadline evaluation for Montage SWf are
depicted in Fig 6. JIT performs better than the proposed algorithm
when the deadline of SWf is small. But, when the deadline in-
creases, RPD of JIT also increases sharply while VMS increases
slowly. The deadline parameter has less influence on the proposed
algorithm, but has bigger influence on JIT method.

5.2.2 LIGO. The comparison between different algorithms with
different deadlines for LIGO SWf are shown in Fig 7. It is clearly
evident from the result that the VMS performs better than other
three algorithms for the all the deadlines with different values. The
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proposed VMS saves 10% of the total cost when compared to JIT
method and saves 15% of the total cost than the VMSo method.
However, the VMS, JIT and VMSo remains identical with an in-

creaase in the deadline. The deadline parameter has little influence
on the LIGO SWf.
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6. CONCLUSION AND FUTURE WORK
In this paper, scheduling of SWf using spot-block and on-demand
instances are proposed. Further, a mathematical model to classify
preemptive and non-preemptive tasks to schedule onto spot-block
and on-demand instances. Furthermore, a rule-based task sequence
initialization and VM selection algorithm heuristics proposed can
be easily adapted to other SWf scheduling algorithms. The experi-
mental result shows that the proposed VM selection algorithm has
better performance considering spot-block and on-demand instance
with different sizes. In future, this work can further be enhanced by
considering heterogenous resources and validate in real cloud envi-
ronments.
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