
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

7

An Evolving Neuro-PSO-based Software Maintainability

Prediction

N. Baskar
Research Scholar

Department of Computer Science
Government Arts College

Udumalpet, Tamilnadu, India

C. Chandrasekar, PhD
Assistant Professor

Department of Computer Science
Government Arts College

Udumalpet, Tamilnadu, India

ABSTRACT

There are several issues related to the software maintenance

but a more important critical one highlighted in this work is

tracking over the behavior of software maintenance. This is

because inferring the knowledge about the maintenance of

software products in advance is really a difficult process

which is pointed out by many researchers. Considering this

issue the main purpose of this work is inspired based on Bio-

Inspirational behavior-based optimization technique with an

objective to predict software maintainability. In this paper, an

attempt has been made to use subset of class-level object-

oriented metrics in order to predicting software

maintainability. Here, different subset of Object-Oriented

software metrics have been considered to provide requisite

input data to design the models for predicting maintainability

using Neuro-Particle Swarm Optimization algorithm (NPSO).

This technique is applied to estimate maintainability on

dataset collected from two different case studies such as

Quality Evaluation System (QUES) and User Interface

System (UIMS). The performance parameters used in this

technique has been evaluated based on the basis of Magnitude

of Relative Error (MRE), Mean Magnitude of Relative Error

(MMRE) and Prediction.

Keywords

PSO, NPSO, QUES, UIMS, MRE, MMRE

1. INTRODUCTION
Software Maintainability is a design quality attribute which

described as the ability of the system to undergo changes with

a degree of ease, these changes could impact components,

features and interfaces when changing the functionality or

fixing errors [1]. Software maintainability is a key quality

attributes of the software systems. Maintainability is one of

the important quality attributes which can result in decreasing

the cost of the software [2]. There is a belief that software

with high quality is easy to maintain, so that minimum time

and effort need to fix the faults and this will lead to decent

maintainability and easily maintainable software

[3].Developing software with no changes in future is really

not possible and it is very sensitive to cost. The significant

quality of developing software is it can be maintained easily

and it leads to less resource usage both in terms of monetary

and efforts .During the development phase, software metric

plays an important role in controlling the cost of software

maintenance. The earlier research work on software

maintenance agreed that the metrics can be used for predicting

the software maintainability and the reason for it is given

below:

 This will assist the project manager to evaluate the

cost and productivity between other projects.

 Usage of valuable resources can be well planned using

the information provided by this prediction system.

 Allocation of staff can also be efficiently handled by

the manager with the aid of it.

 The effort of further maintenance can be kept under

control to reach the least maintenance cost.

 It facilitates the software developers to recognize the

quality of software therefore they can get better design

and coding.

 It facilitates practitioners to progress the systems

software quality and thus minimize the maintenance

costs.

2. RELATED WORK
Various methods have been proposed in the past to reduce the

cost of software maintenance using object-oriented metrics.

Here, few of those studies have been discussed.

John et al [4] presented a set of metrics are proposed to

quantify and measure these attributes. The proposed

complexity metrics are used to determine the difficulty in

implementing changes through the measurement of method

complexity, method diversity, and complexity density.

The mostly employed approach for estimating software effort

is the multivariate linear regression technique which has

numerous shortcomings and motivates the exploration of

many machine learning techniques. Marico et al [5] proposed

a technique by employing an evolutionary algorithm to

generate a decision tree tailored to a software effort data set

provided by a large worldwide IT company. Their findings

show that evolutionarily induced decision trees statistically

outperform greedily induced ones, as well as traditional

logistic regression.

The software complexity metric is one of the measurements

that use some of the internal attributes or characteristics of

software to know how they affect on the software quality.

Yahya et al [6],covered some of more efficient software

complexity metrics such as Cyclomatic complexity, line of

code and Hallstead complexity metric. In their work they

presented their impacts on the software quality.

In 2005, Thwin and Quah [7] used neural networks to predict

software quality using object-oriented metrics. In 2005, Misra

[8] used linear regression to predict software maintenance

effort. In 2010, A. Kaur, K. Kaur and Malhotra [9] used

artificial neural network, fuzzy inference system (FIS), and

adaptive neuro fuzzy inference system (ANFIS) approaches to

predict software maintainability. In 2010, [10] MO Elish and

KO Elish used the TreeNet technique to predict software

maintainability.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

8

In the study performed by Ruchika and Anuradha [11] an

attempt has been made to evaluate and examine the

effectiveness of prediction models for the purpose of software

maintainability using real life web-based projects. Three

models using Feed Forward 3-Layer Back Propagation

Network (FF3LBPN), General Regression Neural Network

(GRNN) and Group Method of Data Handling (GMDH) are

developed and performance of GMDH is compared against

two others i.e. FF3LBPN and GRNN. With the aid of this

empirical analysis, they suggest safely that software

professionals can use OO metric suite to predict the

maintainability of software using GMDH technique with least

error and best precision in an object oriented paradigm.

Probabilistic Neural Networks (PNN) is a feed forward neural

network created by Ibrahim [12]. It is based on Bayesian

network and Kernel Fisher discriminate analysis. In a PNN,

the operations are organized into a multilayered feed forward

network. First layer is input layer where one neuron is present

for each independent variable. The next layer is the hidden

layer. This layer contains one neuron for each set of training

data. It not only stores the values of the each predictor

variables but also stores each neuron along with its target

value. Next is the Pattern layer. In PNN networks one pattern

neuron is present for each category of the output variable.

Last layer is output layer. At this layer weighted votes for

each target category is compared and selected.PNN are known

for their ability to train quickly on sparse datasets as it

separates data into a specified number of output categories.

The network produces activations in the output layer

corresponding to the probability density function estimate for

that category. The highest output represents the most probable

category.

GRNN is a modification of Probabilistic Neural Network

(PNN) for regression problems. It is a one-pass learning

algorithm with highly parallel structure and provides a smooth

transitions from one observed value to another even with

sparse data in a multidimensional measurement space [13]. If

the relationship between independent variables and dependent

variables is very complex and not linear in nature, this

modified form of regression is a perfect solution. It is very

fast in learning and converges to the optimal regression

surface as the number of samples becomes very large and

allows learning from previous outcomes.

In an attempt to address this issue quantitatively, the main

purpose of the work done in [14] is to propose use of few

machine learning algorithms with an objective to predict

software maintainability and evaluate them.

In the study done by Lov Kumara [15], empirically

investigates the relationship of existing class level object-

oriented metrics with a quality parameter i.e. maintainability.

Here, different subset of Object-Oriented software metrics

have been considered to provide requisite input data to design

the models for predicting maintainability using hybrid

approach of neural network and genetic algorithm.

3. PROBLEM DEFINITION
If the result in the output layer is not ideal, the network will

calculate the variation of errors and propagate errors back

along the former route while correcting the weight. This

process is repeated until it gets the satisfied result or it reaches

the maximum number of iterations. Therefore, BP algorithm

is also called as the back propagation of error. Although BP

network has been widely used, it has serious flaws of slow

convergence, prone to local minima, poor generalization and

etc.

3.1 Solution Overview
The Neural Network models act as efficient predictors of

dependent and independent variables due to its character in

modeling where they possess the ability to model complex

functions. In this approach, Particle Swarm Optimization

algorithm is used for updating the weight during learning

phase.

3.2 Proposed Methodology for

Maintainability Prediction using Neuro-

Particle Swarm Optimization
In this section the proposed Neuro-Particle Swarm

Optimization (NPSO) algorithm is discussed in detail for

predicting software maintainability. The PSO algorithm, when

introduced into a BP neural network to optimize its initial

weights and thresholds, is well suited for addressing some of

the deficiencies caused by the randomness of the initial

weights and thresholds of BP Neural Networks.

3.3 Back Propagation Neural Network

(BPNN)
During classification, a preprocessed data vector is first

copied into input unit activations. Based on these values, and

on the values of weights between input and hidden units,

hidden units then calculate their activations. Based on hidden

unit activations and hidden-to-output weights, output units

calculate their activations. The network‟s chosen

classification is then read from the output unit activations,

which usually represents each class into which the input data

can be mapped [16].

Fig.1 Back Propagation Neural Network (BPNN)

3.4 Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a population-based

stochastic optimization technique inspired by bird flocking

and fish schooling which was originally designed and

introduced by Kennedy and Eberhart (1995) [17] and is based

on iterations. The algorithmic following PSO starts with a

population of particles whose positions represent the potential

solutions for the studied problem and velocities are randomly

initialized in the search space. In each iteration, the search for

optimal position is performed by updating the particle

velocities and positions. Also in each iteration, the fitness

value of each particle‟s position is determined using a fitness

function. The velocity of each particle is updated using two

best positions, namely personal best position (pbest) and

global best position (gbest). The pbest is the best position the

particle has visited, and gbest is the best position the swarm

has visited since the first time step. A particle‟s velocity and

position are updated as follows.

𝑉 𝑡 + 1 = 𝑤. 𝑣 𝑡 + 𝑐1𝑟1 𝑝𝑏𝑒𝑠𝑡 𝑡 − 𝑋 𝑡 +

𝑐2𝑟2 𝑔𝑏𝑒𝑠𝑡 𝑡 − 𝑋 𝑡 ; 𝑡 = 2,3, . .𝑝 (1)

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

9

𝑋 𝑡 + 1 = 𝑋 𝑡0 + 𝑉 𝑡 + 1 (2)

Where, X and V are position and velocity of particle,

respectively. W is inertia weight, c1 and c2 are positive

constants, called acceleration coefficients which control the

influence of pbest and gbest on the search process, P is the

number of iterative generation, r1 and r2 are random values in

the range [0, 1].

3.5 Global Best PSO
The global best PSO (or gbest PSO) is a method where the

position of each particle is influenced by the best-fit particle

in the entire swarm. It uses a star social network topology

where the social information obtained from all particles in the

entire swarm. In this method each individual particle has a

current position in search space, a current velocity, and a

personal best position in search space. The personal best

position corresponds to the position in search space where

particle had the smallest value as determined by the objective

function, considering a minimization problem. In addition, the

position yielding the lowest value amongst all the personal

best is called the global best position which is denoted by

gbest.

3.6 Local Best PSO
The local best PSO (or lbestPSO) method only allows each

particle to be influenced by the best-fit particle chosen from

its neighborhood, and it reflects a ring social topology . Here

this social information exchanged within the neighborhood of

the particle, denoting local knowledge of the environment [17

18].

3.7 Algorithm of PSO
The basic algorithm of particle swarm optimization is

discussed in this subsection. The PSO is defined with

following parameters where TPS is the number of total

number of particles in the swarm and each of them have their

own position represented using xposi in a given search space.

Each particle has the capability to move with the velocity of

Veli. During each iteration the particles are moved randomly

to take their new position and they have their own best

position traversed so far and it is stored and represented using

pbest,i. The overall best known position from the whole

swarm is denoted as gbest,i. randp and randg are uniformly

distributed random numbers in the range [0,1], n is the

number of dimensions.

For each particle i = 1, ..., TPS do the following:

 Setup the initial position xposi of all particles within the

lower boulo and upper bouup boundry position of

search space.

 Assign initially the known best position of particles as

xposi

 pbest,i<= xpos

 If (fitness(pbest,i) < fitness(gbest,i.)) revise the swarm's

best known position: gbest,i. ← pbest,i

 Initialize the particle's velocity: Veli ~ U(-|bouup-

boulo|, |bouup-boulo|)

Until a termination criterion is met (number of iterations

performed, or a solution with adequate objective function

value is found), repeat:

 For each particle i = 1, ..., TPS do:

Pick random numbers: randp, randg ~ U(0,1)

For each dimension d = 1, ..., n do:

Update the particle's velocity:

veli,d ← ω veli,d + φp randp (pbest,i-xposi,d) +

φg randg (gbest,d-xposi,d)

Update the particle's position:

 xposi ← xposi + veli

 If (fitness(xposi) < fitness(pbest,i)) do:

Update the particle's best known

position: pbest,i ← xi

 If (fitness(pbest,i) < fitness(gbest,i)) update the swarm's

best known position: gbest,i ← pbest,i

 Now gbest,i holds the best found solution.

The coefficient ω controls the influence of the previous

velocity on movement and it is called as inertia weight. And

φp and φg are acceleration co-efficient‟s which lies between

0<= φp,φg<=2,the velocity vector may grow to infinity if the

value of ω, φp and φg is not set correctly. This can be

overcome by controlling the particle velocity to lie in [Velmin,

Velmax].

3.8 Neuro-PSO Software Maintenance-

based Prediction Model
To optimize the Neural Network the PSO algorithm is used to

initialize weight assignment between the network layers and

initializing thresholds between neural nodes to perform global

search within the solution space and to determine optimal

initial weights and threshold at a fast convergence rate. The

NPSO can utilize these initial weights and thresholds for both

training and testing samples.

The procedure of the Neuro-PSO can be described as follows:

1. Initialize PSO parameters (population size, speed

and position of particles and iterations).

2. Determine the topology of the BP neural network

and generate population particles. Each dimension

of the particle corresponds to a neural network

connection weight or threshold. So the dimension of

the particle can be expressed as follows

 Particles: Xi = (xi1,xi2,. . ..xiD)T, i = 1,2,. . .,n

D = (IH) +(HO) +H+O

where I, H and O represent the number of nodes in the input

layer, hidden layer and output layer of the BP neural network,

respectively and D is Dimension.

3. Selecting fitness function, the inertia factor and the

maximum iteration times. Randomly initializing the

velocity and position of each particle.

4. Calculating fitness value of each particle by the

following equation. The Pbest is selected as the

positions of the current particles and gbest selected as

the best position of all the particles. If current

fitness value is lesser than the Pbfitness value, the

current one replaces the Pb.

Particle fitness value =
2

1 1

)(
1

ij

Ni

i

Cj

j

d

ij yy
N

d

ijy Where,

is real output of the network.

yij is the predicted output of the network.

 N is the total number of training samples,

 C is the number of output neurons

5. The best particle of the current particles is stored.

The velocity and position of each particle is updated

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

10

as shown below, and then generate the new

particles. If velocity or position of particle is beyond

the boundary, the velocity or position should be

reset randomly.

 vel(t+1) = (ω* vel(t)) + (φp* randp * (pbest(t) –

 xpos(t)) + (φg * randg * (gbest(t) – xpos(t))

 xpos(t+1) = xpos(t) + vel(t+1)

6. Evaluate each new particle‟s fitness value. If the ith

particle‟s new position is better than Pbest, Pbest is

selected as the new position of the ith particle. If the

best position of all new particles is better than gbest,

then gbest is updated.

7. If the maximal iteration times or the fitness values

are met, stop the iteration, and the positions of

particles represented by gbest are the optimal best

solution. Otherwise, the process is repeated from

step3.

8. Taking the weights and threshold values which is

optimized by PSO as the initial parameters, the BP

network makes autonomous learning.

The training phases of the NPSO are as follows:

9. Initialize the network. The network structure,

expected output and learning rate are determined

according to the sample characteristics. The PSO

algorithm optimization is used to derive the optimal

individual solution for the initial weight value and

threshold of the network.

10. Input the training sample and calculate the output of

the network layers.

11. Calculate the learning error of the network.

12. Correct the connection weight values and thresholds

of the layers.

13. Judge whether the error satisfies the expectation

requirements and whether the number of iterations

has reached the set training limit. If either condition

is met, then the training ends. Otherwise, the

iterative learning process continues.

 Fig.2 Work Flow of Neuro-PSO based Software Maintenance Prediction

3.9 Maintenance Dataset Description
In this paper, the maintenance effort data is obtained from

Object-Oriented software data sets published by Li and Henry

[19]. The Software Systems are User Interface System

(UIMS) and Quality Evaluation System (QUES) are chosen

for computing the maintenance effort. The softwares system,

UIMS have 39 and QUES have 69 classes. The data was

collected by the author over the past three years. The

maintainability of software is measured by the number of

lines changed per class.

Table 1 Dataset Attribute Description

Depth of Inheritance

Tree (DIT)

It is defined as the longest path

from root to leaf node. The deeper

the hierarchy the higher is the

complexity of the predecessor

Weighted Method

Complexity (WMC)

It is the number of local methods in

a class

Number of Children

(NOC)

It is the number of subclasses a

class contains

Coupling between

Objects (CBO)

It is the number of classes to which

a class is interdependent on

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

11

Lack of Cohesion of

Methods (LCOM)

It is based on the numbers of pairs

of methods that shared references

to instance variables

Messaging Passing

Coupling (MPC)

This metric measures the numbers

of messages passing among objects

of the class

Response for Class

(RFC)

Number of Distinct Methods and

Constructors invoked by a Class

Data Abstraction

Coupling (DAC)

This metric measures the number of

instantiations of other classes

within the given class

Number of Methods

(NOM)

This metric is used to calculate the

average count of all class

operations per class

Size 1 Number of Semicolons per class

Size 2
Number of Methods plus number of

attributes

CHANGE

Change is used as the dependent

variable in this study and is defined

as the number of lines modified,

added or deleted from version 1 to

version 2 of the software

3.10 Worked Out Example
Step 1: Initialize the input and network architecture as

shown in figure 3.

Fig.3 Initialization of Input in ANN

Step 2: Assigning weights to all of the synapses. These

weights are selected randomly (based on Gaussian

distribution) since it is the first time forward propagating. The

initial weights will be between 0 and 1. It is depicted in figure

4.

Fig.4: Initial weights assign to each synapses

Step 3: Sum the product of the inputs with their corresponding

set of weights to arrive at the first values for the hidden layer.

The weights are considered as measures of influence the input

nodes have on the output.

1 * 0.4 + 1 * 0.9 = 1.3

1 * 0.8 + 1 * 0.2 = 1.0

1 * 0.5 + 1 * 0.3 = 0.8

Put these sums smaller in the circle, because they‟re not the

final value as shown in the figure 5.

Fig.5 Calculating weights for each hidden nodes

Step 4: To get the final value, and apply the activation

function to the hidden layer sums. The purpose of the

activation function is to transform the input signal into an

output signal and is necessary for neural networks to model

complex non-linear patterns that simpler models might miss.

In this work sigmoid function is used for activation.

 S(1.3) = 0.78583498304

 S(1.0) = 0.73105857863

 S(0.8) = 0.68997448112

Add that to neural network as hidden layer results as shown in

the figure 6.

Fig.6 Finding hidden layer results and final output

Step 5: Then, sum the product of the hidden layer results with

the second set of weights (also determined at random the first

time around) to determine the output sum.

 0.79 * 0.5 + 0.73 * 0.3 + 0.69 * 0.9 = 1.235

Finally apply the activation function to get the final output

result.

S(1.235) = 0.7746924929149283

4. EXPERIMENTAL RESULT AND

DISCUSSION

4.1 The network topology of neuron

networks
In this study, the BP neuron network has three layers

including one hidden-layer. The neural networks models are

trained with 11 neurons as input data, while 6 neurons for the

hidden layer, and 1 neuron for output layer. The neuron

transferring function in hidden-layer is sigmoid function in

matlab represented as tansig, and that in output-layer is purely

1

1

0

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

12

linear is represented as purelin. And the training function is

traingdm. The training error precision is 0.0001.

4.2 Parameters of PSO
The parameters of PSO were selected as follows. The

initial location and velocity of search point is randomly

generated between [-1, 1]; the maximum velocity of particles

is 0.5; the population size is 40; the maximum times of

iteration is 30000; the accelerated coefficients c1 =2.3,

c2=1.8; the inertia weight is gradually decreased from 0.90 to

0.40 in order to reduce the influence of past velocity, and the

particle dimension is 19.

Table 2 Statistics of class UIMS

Dit noc mpc Rfc Lcom Dac Wmc Nom size2 size1 Change

Min 0 0 1 2 1 0 0 1 1 4 2

Max 4 8 12 101 31 21 69 40 61 439 289

Mean 2.15 0.95 4.31 23.21 7.49 2.67 11.38 11.38 13.97 105.31 46.82

Median 2 0 3 17 6 1 5 7 9 74 18

Standard

Deviation
0.90 2.01 3.41 20.19 6.11 4.22 15.90 10.21 13.47 115.34 71.89

Table 3 Statistics of class QUES

dit Noc Mpc Rfc Lcom dac wmc nom size 2 size 1 Change

Min 0 0 2 17 3 0 1 4 4 115 6

Max 4 0 42 156 33 25 83 57 82 1009 217

Mean 1.91 0.00 17.87 54.65 9.20 3.45 15.09 13.45 18.07 277.61 64.507246

Median 2 0 17 40 5 2 9 6 10 216 52

Standard

Deviation
0.54 0.00 8.36 33.05 7.35 3.97 17.29 12.12 15.37 173.67 43.410362

Table 2 and 3 shows the calculated value of Min, Max,

Median and Standard deviation values of the two software

systems (UIMS and QUES). In this analysis, the derivative of

inheritance metric „NOC‟ in UIMS has all its 39 classes and

QUES software product has all its 69 classes with NOC

values zero.

This indicates that there are no immediate sub-classes of a

class in the class hierarchy and hence NOC is not considered

in computing maintainability in this analysis.

4.3 Measures used to analyze software

maintainability
Various measures have been suggested to analyse the

accuracy of prediction of a model. All these measures are

based on the predicted value and the actual value. The actual

and predicted values of the proposed model is implemented

using matlab code.

The Evaluation metric used in this work are described below:

Magnitude of Relative Error (MRE): It is measured by taking

the absolute value of the difference between the actual value

and the predicted value as given by Kitchenham [20]. The

formula for this measure is:

MRE =
eActualvalu

aluepredictedveActualvalu

 Mean Magnitude of Relative Error (MMRE): MMRE is the

mean of MRE as proposed by Conte, Dunsmore and Shen

[21]. The formula for this measure is:

MMRE =

N

I

IMRE
1

Pred: Pred is measured by the predicted values whose MRE is

less than or equal to a specified value. This was proposed by

Fentom [22]. The formula for this measure is given in the

Pred() equation, where k is the number of predicted values

which are lesser than or equal to the specified value, q is the

specified value and N is the total number of cases.

Pred(q) =
N

K

Table 4 Performance comparison of proposed NPSO with

the other existing methods

 Measures

Models

Used

Max

MRE
MMRE Pred(0.25) Pred(0.75)

GMDH 3.42656 0.3341 0.2894 0.5263

GRNN 2.40739 0.3094 0.2987 0.5526

PNN 3.05611 0.3353 0.2631 0.5526

NPSO 2.02547 0.2931 0.2998 0.5612

The table 4 shows the performance comparison of GMDH,

GRNN, PNN and proposed NPSO. The four different types of

evaluation metrics are used in this simulation performance

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

13

result. From the table it is observed that the Max MRE is

obtained by GMDH whereas the NPSO has the least error

value. The least error value obtained by this proposed work

shows that its performance is higher in prediction of accurate

outcomes.

Fig.7 Performance comparison based on MAX MRE

In this work the class used for prediction is change. The MRE

value is computed based on computing the difference between

actual values of class attribute change for each record which is

compared with the predicted outcome of the NPSO for each

instances and dividing with the actual value. The maximum

MRE value of each technique is compared and shown in the

figure above. The proposed NPSO shows better performance

by producing minimum error value next to that GRNN holds

the place and the worst case is produced by GMDH.

Fig.8 Performance comparison based on MMRE

In this work each instance of maintenance dataset MRE

values obtained from the above-mentioned formula is

summed together for whole dataset and produces mean

magnitude of relative error. The optimal search quality of the

particle swarm optimization with neural network optimized

the prediction of software maintenance cost.

Fig.9 Performance comparison on the Prediction value

0.25

Fig.10 Performance Comparison based on predicted value

0.75.

The output of the result predicted by NPSO is compared with

the actual output of the class attribute change for the given

prediction value 0.25 and 0.75. The whole prediction values

cannot be listed in this paper, so running example for two

prediction values are taken. The number of times the

prediction value 0.25 and 0.75 produced by the proposed

model is taken into the count and total number of instances is

divided with that count. The proposed model produces more

number of correct prediction values than the other existing

approaches because of its heuristic learning‟s and correcting

technique.

5. CONCLUSION
In this work four different machine learning algorithms are

used for the purpose of prediction of software maintainability.

The goal of this study is to construct suitable model using

machine learning algorithm for the prediction of object-

oriented software maintainability which is not only easy to

apply but also could reduce the prediction errors to minimum.

This study quantitatively evaluates the prediction capability of

three neural network- based algorithms. It compares the three

existing models namely GMDH, GRNN PNN with proposed

Neuro-PSO (NPSO) on the basis of four measures: MRE,

MMRE, Pred (0.25) and Pred (0.75) from which it is

concluded that out of the four models, Neuro-PSO gives the

best results and the least value for MMRE and maximum

values for Pred (0.25) and Pred (0.75). This technique

concludes that Neuro-PSO is the best model for prediction of

software maintainability. Future work may contain additional

quantitative studies on different datasets so as to ensure the

full potential of Neuro-PSO. Another direction of study may

suggest combining of Neuro-PSO model with other data

mining models to develop a prediction model which would

more accurately predict software maintainability.

6. REFERENCES
[1] Kan, S.H., Metrics and models in software quality

engineering. 2002: Addison-Wesley Longman

Publishing Co., Inc.

[2] Coleman, D., et al., Using metrics to evaluate software

system maintainability. Computer, 1994. 27(8): p. 44-49.

[3] Singh, B. and S.P. Kannojia, A Model for Software

Product Quality Prediction. 2012

[4] John Michura, Miriam A. M. Capretz, and Shuying

Wang, Extension of Object-Oriented Metrics Suite for

Software Maintenance, Software Engineering, Volume

2013 (2013)

0

2

4

Max MRE

Max MRE

0.25

0.3

0.35

GMDH GRNN PNN NPSO

MMRE

MMRE

0.24
0.26
0.28

0.3
0.32

Pred(0.25)

Pred(0.25)

0.5

0.52

0.54

0.56

0.58

GMDH GRNN PNN NPSO

Pred(0.75)

Pred(0.75)

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

14

[5] Marcio P. Basgalupp , Rodrigo C. Barros , Duncan D.

Ruiz, Predicting software maintenance effort through

evolutionary-based decision trees, SAC '12 Proceedings

of the 27th Annual ACM Symposium on Applied

Computing pp 1209-1214, March 2012

[6] Yahya Tashtoush, Mohammed Al Maolegi, Bassam

Arkok, The Correlation among Software Complexity

Metrics with Case Study, International Journal of

Advanced Computer Research (ISSN (print): 2249-7277

ISSN (online): 2277-7970) Volume-4 Number-2 Issue-

15 June-2014 414

[7] M. Thwin and T. Quah, "Application of neural networks

for software quality prediction using object oriented

metrics," Journal of Systems and Software, vol. 76, no. 2,

pp. 147-156, 2005.

[8] S. Misra, "Modeling design/coding factors that drive

maintainability of software systems,”Software Quality

Journal, vol. 13, no. 3, pp. 297-320, 2005.

[9] A Kaur, K Kaur, R Malhotra, “Soft Computing

Approaches for Prediction of Software Maintenance

Effort”, International Journal of Computer Applications),

vol 1, no. 16, pp : 0975 – 8887, 2010.

[10] MO. Elish and KO. Elish “Application of TreeNet in

predicting object-oriented software maintainability: A

comparative study,” European Conference on Software

Maintenance and Reengineering, pp 1534-5351, DOI

10.1109/CSMR

[11] Ruchika Malhotra, Anuradha Chug, Application of

Group Method of Data Handling model for software

maintainability prediction using object oriented systems,

International Journal of System Assurance Engineering

and Management, ISSN 0975-6809Volume 5Number 2,

2014

[12] M.M. Ibrahiem, E.l. Emary and S. Ramakrishnan, “On

the Application of Various Probabilistic Neural

Networks in Solving Different Pattern Classification

Problems”, World Applied Sciences Journal , vol. 4, no.

6, pp. 772-780, 2008, ISSN 1818- 4952.

[13] Martin CL , Applying a general regression neural

network for predicting development effort of short-scale

programs. Neural Comput Appl, 20:389–401, 2011

[14] Ruchika Malhotra and Anuradha Chug, Software

Maintainability Prediction using Machine Learning

Algorithms, Software engineering : an international

Journal (SeiJ), Vol. 2, no. 2, September 2012

[15] Lov Kumara, Debendra Kumar Naikb, Santanu Ku.

Rathc, Validating the Effectiveness of Object-Oriented

Metrics for Predicting Maintainability, Third

International Conference on Recent Trends in Computing

(ICRTC‟ 2015)

[16] Eberhart, R. C. and R. W Dobbins (1990). Neural

Network PC Tools: A Practical Guide. Academic Press,

San Diego, CA.

[17] Eberhart, R. C. and Kennedy, J. A new optimizer using

particle swarm theory., Proceedings of the Sixth

International Symposium on Micromachine and Human

Science, Nagoya, Japan. pp. 39-43, 1995

[18] Kennedy, J. and Eberhart, R. C. Particle swarm

optimization. Proceedings of IEEE International

Conference on Neural Networks, Piscataway, NJ. pp.

1942-1948, 1995

[19] Li, W. and S. Henry, Object-oriented metrics that predict

maintainability. Journal of systems and software, 1993.

23(2): p. 111-122.

[20] . B.A. Kitchenham, L.M. Pickard, S.G. MacDonell, M.J.

Shepperd,” What accuracy statistics really measure,”

IEEE ProceedingsSoftware vol. 148, no. 3, pp 81–85,

2001.

[21] S. Conte, H. Dunsmore, and V. Shen,” Software

engineering metrics and models”. Book, Menlo Park,

CA: Publisher: Benjamin-Cummings publishing co.,

ISBN: 0-8053-2162-4, 1986.

[22] N.E. Fentom, S.L. Pfleeger, “Software metrics: A

Rigorous and practical approach, second edition,” PSW

publishing Company, 1997.

IJCATM : www.ijcaonline.org

https://dl.acm.org/author_page.cfm?id=81418600222&coll=DL&dl=ACM&trk=0&cfid=815808625&cftoken=18021921
https://dl.acm.org/author_page.cfm?id=81418598418&coll=DL&dl=ACM&trk=0&cfid=815808625&cftoken=18021921
https://dl.acm.org/author_page.cfm?id=81100630905&coll=DL&dl=ACM&trk=0&cfid=815808625&cftoken=18021921
https://dl.acm.org/author_page.cfm?id=81100630905&coll=DL&dl=ACM&trk=0&cfid=815808625&cftoken=18021921
https://dl.acm.org/author_page.cfm?id=81100630905&coll=DL&dl=ACM&trk=0&cfid=815808625&cftoken=18021921
http://www.acm.org/conferences/sac/sac2012/
https://www.researchgate.net/profile/Ruchika_Malhotra
https://www.researchgate.net/profile/Anuradha_Chug2

