
International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.18, February 2018 

7 

 

An Evolving Neuro-PSO-based Software Maintainability 

Prediction 

N. Baskar 
Research Scholar 

Department of Computer Science 
Government Arts College 

Udumalpet, Tamilnadu, India 
  

C. Chandrasekar, PhD 
Assistant Professor 

Department of Computer Science 
Government Arts College 

Udumalpet, Tamilnadu, India 
 

 
ABSTRACT 

There are several issues related to the software maintenance 

but a more important critical one highlighted in this work is 

tracking over the behavior of software maintenance. This is 

because inferring the knowledge about the maintenance of 

software products in advance is really a difficult process 

which is pointed out by many researchers. Considering this 

issue the main purpose of this work is inspired based on Bio-

Inspirational behavior-based optimization technique with an 

objective to predict software maintainability. In this paper, an 

attempt has been made to use subset of class-level object-

oriented metrics in order to predicting software 

maintainability. Here, different subset of Object-Oriented 

software metrics have been considered to provide requisite 

input data to design the models for predicting maintainability 

using Neuro-Particle Swarm Optimization algorithm (NPSO). 

This technique is applied to estimate maintainability on 

dataset collected from two different case studies such as 

Quality Evaluation System (QUES) and User Interface 

System (UIMS). The performance parameters used in this 

technique has been evaluated based on the basis of Magnitude 

of Relative Error (MRE), Mean Magnitude of Relative Error 

(MMRE) and Prediction. 

Keywords 
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1. INTRODUCTION 
Software Maintainability is a design quality attribute which 

described as the ability of the system to undergo changes with 

a degree of ease, these changes could impact components, 

features and interfaces when changing the functionality or 

fixing errors [1]. Software maintainability is a key quality 

attributes of the software systems. Maintainability is one of 

the important quality attributes which can result in decreasing 

the cost of the software [2]. There is a belief that software 

with high quality is easy to maintain, so that minimum time 

and effort need to fix the faults and this will lead to decent 

maintainability and easily maintainable software 

[3].Developing software with no changes in future is really 

not possible and it is very sensitive to cost. The significant 

quality of developing software is it can be maintained easily 

and it leads to less resource usage both in terms of monetary 

and efforts .During the development phase, software metric 

plays an important role in controlling the cost of software 

maintenance. The earlier research work on software 

maintenance agreed that the metrics can be used for predicting 

the software maintainability and the reason for it is given 

below: 

 This will assist the project manager to evaluate the 

cost and productivity between other projects. 

 Usage of valuable resources can be well planned using 

the information provided by this prediction system.  

  Allocation of staff can also be efficiently handled by 

the manager with the aid of it. 

 The effort of further maintenance can be kept under 

control to reach the least maintenance cost. 

 It facilitates the software developers to recognize the 

quality of software therefore they can get better design 

and coding. 

 It facilitates practitioners to progress the systems 

software quality and thus minimize the maintenance 

costs. 

2. RELATED WORK 
Various methods have been proposed in the past to reduce the 

cost of software maintenance using object-oriented metrics. 

Here, few of those studies have been discussed.  

John et al [4] presented a set of metrics are proposed to 

quantify and measure these attributes. The proposed 

complexity metrics are used to determine the difficulty in 

implementing changes through the measurement of method 

complexity, method diversity, and complexity density. 

The mostly employed approach for estimating software effort 

is the multivariate linear regression technique which has 

numerous shortcomings and motivates the exploration of 

many machine learning techniques. Marico et al [5] proposed 

a technique by employing an evolutionary algorithm to 

generate a decision tree tailored to a software effort data set 

provided by a large worldwide IT company. Their findings 

show that evolutionarily induced decision trees statistically 

outperform greedily induced ones, as well as traditional 

logistic regression. 

The software complexity metric is one of the measurements 

that use some of the internal attributes or characteristics of 

software to know how they affect on the software quality. 

Yahya et al [6],covered some of more efficient software 

complexity metrics such as Cyclomatic complexity, line of 

code and Hallstead complexity metric. In their work they 

presented their impacts on the software quality. 

In 2005, Thwin and Quah [7] used neural networks to predict 

software quality using object-oriented metrics. In 2005, Misra 

[8] used linear regression to predict software maintenance 

effort. In 2010, A. Kaur, K. Kaur and Malhotra [9] used 

artificial neural network, fuzzy inference system (FIS), and 

adaptive neuro fuzzy inference system (ANFIS) approaches to 

predict software maintainability. In 2010, [10] MO Elish and 

KO Elish used the TreeNet technique to predict software 

maintainability. 
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In the study performed by Ruchika and Anuradha [11] an 

attempt has been made to evaluate and examine the 

effectiveness of prediction models for the purpose of software 

maintainability using real life web-based projects. Three 

models using Feed Forward 3-Layer Back Propagation 

Network (FF3LBPN), General Regression Neural Network 

(GRNN) and Group Method of Data Handling (GMDH) are 

developed and performance of GMDH is compared against 

two others i.e. FF3LBPN and GRNN. With the aid of this 

empirical analysis, they suggest safely that software 

professionals can use OO metric suite to predict the 

maintainability of software using GMDH technique with least 

error and best precision in an object oriented paradigm. 

Probabilistic Neural Networks (PNN) is a feed forward neural 

network created by Ibrahim [12]. It is based on Bayesian 

network and Kernel Fisher discriminate analysis. In a PNN, 

the operations are organized into a multilayered feed forward 

network. First layer is input layer where one neuron is present 

for each independent variable. The next layer is the hidden 

layer. This layer contains one neuron for each set of training 

data. It not only stores the values of the each predictor 

variables but also stores each neuron along with its target 

value. Next is the Pattern layer. In PNN networks one pattern 

neuron is present for each category of the output variable. 

Last layer is output layer. At this layer weighted votes for 

each target category is compared and selected.PNN are known 

for their ability to train quickly on sparse datasets as it 

separates data into a specified number of output categories. 

The network produces activations in the output layer 

corresponding to the probability density function estimate for 

that category. The highest output represents the most probable 

category. 

GRNN is a modification of Probabilistic Neural Network 

(PNN) for regression problems. It is a one-pass learning 

algorithm with highly parallel structure and provides a smooth 

transitions from one observed value to another even with 

sparse data in a multidimensional measurement space [13]. If 

the relationship between independent variables and dependent 

variables is very complex and not linear in nature, this 

modified form of regression is a perfect solution. It is very 

fast in learning and converges to the optimal regression 

surface as the number of samples becomes very large and 

allows learning from previous outcomes. 

In an attempt to address this issue quantitatively, the main 

purpose of the work done in [14] is to propose use of few 

machine learning algorithms with an objective to predict 

software maintainability and evaluate them.  

In the study done by Lov Kumara [15], empirically 

investigates the relationship of existing class level object-

oriented metrics with a quality parameter i.e. maintainability. 

Here, different subset of Object-Oriented software metrics 

have been considered to provide requisite input data to design 

the models for predicting maintainability using hybrid 

approach of neural network and genetic algorithm. 

3. PROBLEM DEFINITION 
If the result in the output layer is not ideal, the network will 

calculate the variation of errors and propagate errors back 

along the former route while correcting the weight. This 

process is repeated until it gets the satisfied result or it reaches 

the maximum number of iterations. Therefore, BP algorithm 

is also called as the back propagation of error. Although BP 

network has been widely used, it has serious flaws of slow 

convergence, prone to local minima, poor generalization and 

etc.  

3.1 Solution Overview 
The Neural Network models act as efficient predictors of 

dependent and independent variables due to its character in 

modeling where they possess the ability to model complex 

functions. In this approach, Particle Swarm Optimization 

algorithm is used for updating the weight during learning 

phase. 

3.2 Proposed Methodology for 

Maintainability Prediction using Neuro-

Particle Swarm Optimization 
In this section the proposed Neuro-Particle Swarm 

Optimization (NPSO) algorithm is discussed in detail for 

predicting software maintainability. The PSO algorithm, when 

introduced into a BP neural network to optimize its initial 

weights and thresholds, is well suited for addressing some of 

the deficiencies caused by the randomness of the initial 

weights and thresholds of BP Neural Networks.  

3.3 Back Propagation Neural Network 

(BPNN) 
During classification, a preprocessed data vector is first 

copied into input unit activations. Based on these values, and 

on the values of weights between input and hidden units, 

hidden units then calculate their activations. Based on hidden 

unit activations and hidden-to-output weights, output units 

calculate their activations. The network‟s chosen 

classification is then read from the output unit activations, 

which usually represents each class into which the input data 

can be mapped [16]. 

 

Fig.1 Back Propagation Neural Network (BPNN) 

3.4 Particle Swarm Optimization 
Particle Swarm Optimization (PSO) is a population-based 

stochastic optimization technique inspired by bird flocking 

and fish schooling which was originally designed and 

introduced by Kennedy and Eberhart (1995)  [17] and is based 

on iterations. The algorithmic following PSO starts with a 

population of particles whose positions represent the potential 

solutions for the studied problem and velocities are randomly 

initialized in the search space. In each iteration, the search for 

optimal position is performed by updating the particle 

velocities and positions. Also in each iteration, the fitness 

value of each particle‟s position is determined using a fitness 

function. The velocity of each particle is updated using two 

best positions, namely personal best position (pbest ) and 

global best position (gbest). The pbest is the best position the 

particle has visited, and gbest is the best position the swarm 

has visited since the first time step. A particle‟s velocity and 

position are updated as follows. 

𝑉 𝑡 + 1 = 𝑤. 𝑣 𝑡 + 𝑐1𝑟1 𝑝𝑏𝑒𝑠𝑡 𝑡 − 𝑋 𝑡  +

𝑐2𝑟2 𝑔𝑏𝑒𝑠𝑡 𝑡 − 𝑋 𝑡  ;   𝑡 = 2,3, . .𝑝     (1) 
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𝑋 𝑡 + 1 = 𝑋 𝑡0 + 𝑉 𝑡 + 1           (2)   

Where, X and V are position and velocity of particle, 

respectively. W is inertia weight, c1 and c2 are positive 

constants, called acceleration coefficients which control the 

influence of pbest and gbest on the search process, P is the 

number of iterative generation, r1 and r2 are random values in 

the range [0, 1]. 

3.5 Global Best PSO  
The global best PSO (or gbest PSO) is a method where the 

position of each particle is influenced by the best-fit particle 

in the entire swarm. It uses a star social network topology 

where the social information obtained from all particles in the 

entire swarm. In this method each individual particle has a 

current position in search space, a current velocity, and a 

personal best position in search space. The personal best 

position corresponds to the position in search space where 

particle had the smallest value as determined by the objective 

function, considering a minimization problem. In addition, the 

position yielding the lowest value amongst all the personal 

best is called the global best position which is denoted by 

gbest. 

3.6 Local Best PSO  
The local best PSO (or lbestPSO) method only allows each 

particle to be influenced by the best-fit particle chosen from 

its neighborhood, and it reflects a ring social topology . Here 

this social information exchanged within the neighborhood of 

the particle, denoting local knowledge of the environment [17 

18]. 

3.7 Algorithm of PSO 
The basic algorithm of particle swarm optimization is 

discussed in this subsection. The PSO is defined with 

following parameters where TPS is the number of total 

number of particles in the swarm and each of them have their 

own position represented using xposi in a given search space. 

Each particle has the capability to move with the velocity of 

Veli. During each iteration the particles are moved randomly 

to take their new position and they have their own best 

position traversed so far and it is stored and represented using 

pbest,i. The overall best known position from the whole 

swarm is denoted as gbest,i. randp and randg are uniformly 

distributed random numbers in the range [0,1], n is the 

number of dimensions. 

For each particle i = 1, ..., TPS do the following: 

 Setup the initial position xposi of all particles within the 

lower boulo and upper bouup boundry position of 

search space. 

 Assign initially the known best position of particles as 

xposi 

 pbest,i<= xpos 

 If (fitness(pbest,i) < fitness(gbest,i.)) revise the swarm's 

best known position: gbest,i. ← pbest,i 

 Initialize the particle's velocity: Veli ~ U(-|bouup-

boulo|, |bouup-boulo|) 

Until a termination criterion is met ( number of iterations 

performed, or a solution with adequate objective function 

value is found), repeat: 

 For each particle i = 1, ..., TPS do: 

Pick random numbers: randp, randg ~ U(0,1) 

For each dimension d = 1, ..., n do: 

Update the particle's velocity:  

veli,d ← ω veli,d + φp randp (pbest,i-xposi,d) + 

φg randg (gbest,d-xposi,d) 

Update the particle's position: 

 xposi ← xposi + veli 

 If (fitness(xposi) < fitness(pbest,i)) do: 

Update the particle's best known 

position: pbest,i ← xi 

 If (fitness(pbest,i) < fitness(gbest,i)) update the swarm's 

best known position: gbest,i ← pbest,i 

 Now gbest,i holds the best found solution. 

The coefficient ω controls the influence of the previous 

velocity on movement and it is called as inertia weight. And 

φp and φg are acceleration co-efficient‟s which lies between 

0<= φp,φg<=2,the velocity vector may grow to infinity if the 

value of ω, φp and φg is not set correctly. This can be 

overcome by controlling the particle velocity to lie in [Velmin, 

Velmax].  

3.8 Neuro-PSO Software Maintenance-

based Prediction Model 
To optimize the Neural Network the PSO algorithm is used to 

initialize weight assignment between the network layers and 

initializing thresholds between neural nodes to perform global 

search within the solution space and to determine optimal 

initial weights and threshold at a fast convergence rate. The 

NPSO can utilize these initial weights and thresholds for both 

training and testing samples. 

The procedure of the Neuro-PSO can be described as follows: 

1. Initialize PSO parameters (population size, speed 

and position of particles and iterations). 

2. Determine the topology of the BP neural network 

and generate population particles. Each dimension 

of the particle corresponds to a neural network 

connection weight or threshold. So the dimension of 

the particle can be expressed as follows 

                Particles: Xi = (xi1,xi2,. . ..xiD)T, i = 1,2,. . .,n 

D = (IH) +(HO) +H+O 

where I, H and O represent the number of nodes in the input 

layer, hidden layer and output layer of the BP neural network, 

respectively and D is Dimension. 

3. Selecting fitness function, the inertia factor and the 

maximum iteration times. Randomly initializing the 

velocity and position of each particle. 

4. Calculating fitness value of each particle by the 

following equation. The Pbest is selected as the 

positions of the current particles and gbest selected as 

the best position of all the particles. If current 

fitness value is lesser than the Pbfitness value, the 

current one replaces the Pb. 

Particle fitness value = 
2

1 1

)(
1

ij

Ni

i

Cj

j

d

ij yy
N










 

d

ijy         Where, 

is real output of the network. 

yij is the predicted output of the network.  

         N is the total number of training samples, 

        C is the number of output neurons 

5. The best particle of the current particles is stored. 

The velocity and position of each particle is updated 
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as shown below, and then generate the new 

particles. If velocity or position of particle is beyond 

the boundary, the velocity or position should be 

reset randomly. 

                 vel(t+1) = (ω* vel(t)) + (φp* randp * (pbest(t) –     

             xpos(t)) + (φg * randg * (gbest(t) – xpos(t)) 

              xpos(t+1) = xpos(t) + vel(t+1) 

6. Evaluate each new particle‟s fitness value. If the ith 

particle‟s new position is better than Pbest, Pbest is 

selected as the new position of the ith particle. If the 

best position of all new particles is better than gbest, 

then gbest is updated. 

7. If the maximal iteration times or the fitness values 

are met, stop the iteration, and the positions of 

particles represented by gbest are the optimal best 

solution. Otherwise, the process is repeated from 

step3. 

8. Taking the weights and threshold values which is 

optimized by PSO as the initial parameters, the BP 

network makes autonomous learning. 

The training phases of the NPSO are as follows: 

9. Initialize the network. The network structure, 

expected output and learning rate are determined 

according to the sample characteristics. The PSO 

algorithm optimization is used to derive the optimal 

individual solution for the initial weight value and 

threshold of the network. 

10. Input the training sample and calculate the output of 

the network layers. 

11. Calculate the learning error of the network. 

12. Correct the connection weight values and thresholds 

of the layers. 

13. Judge whether the error satisfies the expectation 

requirements and whether the number of iterations 

has reached the set training limit. If either condition 

is met, then the training ends. Otherwise, the 

iterative learning process continues. 

 

                   Fig.2 Work Flow of Neuro-PSO based Software Maintenance Prediction 

3.9 Maintenance Dataset Description 
In this paper, the maintenance effort data is obtained from 

Object-Oriented software data sets published by Li and Henry 

[19]. The Software Systems are User Interface System 

(UIMS) and Quality Evaluation System (QUES) are chosen 

for computing the maintenance effort. The softwares system, 

UIMS have 39 and QUES have 69 classes. The data was 

collected by the author over the past three years. The 

maintainability of software is measured by the number of 

lines changed per class. 

Table 1 Dataset Attribute Description 

Depth of Inheritance 

Tree (DIT) 

It is defined as the longest path 

from root to leaf node. The deeper 

the hierarchy the higher is the 

complexity of the predecessor 

Weighted Method 

Complexity (WMC) 

It  is the number of local methods in 

a class 

Number of Children 

(NOC) 

It is the number of subclasses a 

class contains 

Coupling between 

Objects (CBO) 

It is the number of classes to which 

a class is interdependent on 
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Lack of Cohesion of 

Methods (LCOM) 

It is based on the numbers of  pairs 

of  methods that shared references 

to instance variables 

Messaging Passing 

Coupling (MPC) 

This metric measures the numbers 

of messages passing among objects 

of the class 

Response for Class 

(RFC) 

Number of Distinct Methods and 

Constructors invoked by a Class 

Data Abstraction 

Coupling (DAC) 

This metric measures the number of 

instantiations of other classes 

within the given class 

Number of Methods 

(NOM) 

This metric is used to calculate the 

average count of all class 

operations per class 

Size 1 Number of Semicolons per class 

Size 2 
Number of Methods plus number of 

attributes 

CHANGE 

 

 

Change is used as the dependent 

variable in this study and is defined 

as the number of lines modified, 

added or deleted from version 1 to 

version 2 of the software 

3.10 Worked Out Example 
Step 1: Initialize the input and network architecture as 

shown in figure 3. 

 

 

 

 

Fig.3 Initialization of Input in ANN 

Step 2: Assigning weights to all of the synapses. These 

weights are selected randomly (based on Gaussian 

distribution) since it is the first time forward propagating. The 

initial weights will be between 0 and 1. It is depicted in figure 

4. 

 

Fig.4: Initial weights assign to each synapses 

Step 3: Sum the product of the inputs with their corresponding 

set of weights to arrive at the first values for the hidden layer. 

The weights are considered as measures of influence the input 

nodes have on the output. 

1 * 0.4 + 1 * 0.9 = 1.3 

1 * 0.8 + 1 * 0.2 = 1.0 

1 * 0.5 + 1 * 0.3 = 0.8 

Put these sums smaller in the circle, because they‟re not the 

final value as shown in the figure 5. 

 

Fig.5 Calculating weights for each hidden nodes 

Step 4: To get the final value, and apply the activation 

function to the hidden layer sums. The purpose of the 

activation function is to transform the input signal into an 

output signal and is necessary for neural networks to model 

complex non-linear patterns that simpler models might miss. 

In this work sigmoid function is used for activation. 

 S(1.3) = 0.78583498304 

 S(1.0) = 0.73105857863 

 S(0.8) = 0.68997448112 

Add that to neural network as hidden layer results as shown in 

the figure 6. 

 
Fig.6 Finding hidden layer results and final output 

Step 5: Then, sum the product of the hidden layer results with 

the second set of weights (also determined at random the first 

time around) to determine the output sum. 

 0.79 * 0.5 + 0.73 * 0.3 + 0.69 * 0.9 = 1.235 

Finally apply the activation function to get the final output 

result. 

S(1.235) = 0.7746924929149283 

4. EXPERIMENTAL RESULT AND 

DISCUSSION 

4.1 The network topology of neuron    

networks 
In this study, the BP neuron network has three layers 

including one hidden-layer. The neural networks models are 

trained with 11 neurons as input data, while 6 neurons for the 

hidden layer, and 1 neuron for output layer. The neuron 

transferring function in hidden-layer is sigmoid function in 

matlab represented as tansig, and that in output-layer is purely 

1 

1 

0 

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
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linear is represented as purelin. And the training function is 

traingdm. The training error precision is 0.0001. 

4.2 Parameters of PSO 
The parameters of PSO were selected as follows. The 

initial location and velocity of search point is randomly 

generated between [-1, 1]; the maximum velocity of particles 

is 0.5; the population size is 40; the maximum times of 

iteration is 30000; the accelerated coefficients c1 =2.3, 

c2=1.8; the inertia weight is gradually decreased from 0.90 to 

0.40 in order to reduce the influence of past velocity, and the 

particle dimension is 19.  

 

Table 2 Statistics of class UIMS 

 

Dit noc mpc Rfc Lcom Dac Wmc Nom size2 size1 Change 

Min 0 0 1 2 1 0 0 1 1 4 2 

Max 4 8 12 101 31 21 69 40 61 439 289 

Mean 2.15 0.95 4.31 23.21 7.49 2.67 11.38 11.38 13.97 105.31 46.82 

Median 2 0 3 17 6 1 5 7 9 74 18 

Standard 

Deviation 
0.90 2.01 3.41 20.19 6.11 4.22 15.90 10.21 13.47 115.34 71.89 

 

 

Table 3 Statistics of class QUES 

 

dit Noc Mpc Rfc Lcom dac wmc nom size 2 size 1 Change 

Min 0 0 2 17 3 0 1 4 4 115 6 

Max 4 0 42 156 33 25 83 57 82 1009 217 

Mean 1.91 0.00 17.87 54.65 9.20 3.45 15.09 13.45 18.07 277.61 64.507246 

Median 2 0 17 40 5 2 9 6 10 216 52 

Standard 

Deviation 
0.54 0.00 8.36 33.05 7.35 3.97 17.29 12.12 15.37 173.67 43.410362 

 
 

Table 2 and 3 shows the calculated value of Min, Max, 

Median and Standard deviation values of the two software 

systems (UIMS and QUES). In this analysis, the derivative of 

inheritance metric „NOC‟ in UIMS has all its 39 classes and 

QUES software product has all its 69 classes with NOC 

values zero.  

This indicates that there are no immediate sub-classes of a 

class in the class hierarchy and hence NOC is not considered 

in computing maintainability in this analysis. 

4.3 Measures used to analyze software  

maintainability  
Various measures have been suggested to analyse the 

accuracy of prediction of a model. All these measures are 

based on the predicted value and the actual value. The actual 

and predicted values of the proposed model is implemented 

using matlab code. 

The Evaluation metric used in this work are described below:  

Magnitude of Relative Error (MRE): It is measured by taking 

the absolute value of the difference between the actual value 

and the predicted value as given by Kitchenham [20]. The 

formula for this measure is:  

MRE = 
eActualvalu

aluepredictedveActualvalu 

 

 Mean Magnitude of Relative Error (MMRE): MMRE is the 

mean of MRE as proposed by Conte, Dunsmore and Shen 

[21]. The formula for this measure is:  

MMRE =


N

I

IMRE
1  

Pred: Pred is measured by the predicted values whose MRE is 

less than or equal to a specified value. This was proposed by 

Fentom [22]. The formula for this measure is given in the 

Pred() equation, where k is the number of predicted values 

which are lesser than or equal to the specified value, q is the 

specified value and N is the total number of cases.  

Pred(q) = 
N

K

 

Table 4 Performance comparison of proposed NPSO with 

the other existing methods 

  Measures 

Models 

Used 

Max 

MRE 
MMRE Pred(0.25) Pred(0.75) 

GMDH 3.42656 0.3341 0.2894 0.5263 

GRNN 2.40739 0.3094 0.2987 0.5526 

PNN 3.05611 0.3353 0.2631 0.5526 

NPSO 2.02547 0.2931 0.2998 0.5612 

 

The table 4 shows the performance comparison of GMDH, 

GRNN, PNN and proposed NPSO. The four different types of 

evaluation metrics are used in this simulation performance 
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result. From the table it is observed that the Max MRE is 

obtained by GMDH whereas the NPSO has the least error 

value. The least error value obtained by this proposed work 

shows that its performance is higher in prediction of accurate 

outcomes. 

 

Fig.7 Performance comparison based on MAX MRE 

In this work the class used for prediction is change. The MRE 

value is computed based on computing the difference between 

actual values of class attribute change for each record which is 

compared with the predicted outcome of the NPSO for each 

instances and dividing with the actual value.  The maximum 

MRE value of each technique is compared and shown in the 

figure above. The proposed NPSO shows better performance 

by producing minimum error value next to that GRNN holds 

the place and the worst case is produced by GMDH. 

 

 

Fig.8 Performance comparison based on MMRE 

In this work each instance of maintenance dataset MRE 

values obtained from the above-mentioned formula is 

summed together for whole dataset and produces mean 

magnitude of relative error. The optimal search quality of the 

particle swarm optimization with neural network optimized 

the prediction of software maintenance cost. 

 

Fig.9 Performance comparison on the Prediction value 

0.25 

 

Fig.10 Performance Comparison based on predicted value 

0.75. 

The output of the result predicted by NPSO is compared with 

the actual output of the class attribute change for the given 

prediction value 0.25 and 0.75. The whole prediction values 

cannot be listed in this paper, so running example for two 

prediction values are taken. The number of times the 

prediction value 0.25 and 0.75 produced by the proposed 

model is taken into the count and total number of instances is 

divided with that count. The proposed model produces more 

number of correct prediction values than the other existing 

approaches because of its heuristic learning‟s and correcting 

technique.  

5. CONCLUSION 
In this work four different machine learning algorithms are 

used for the purpose of prediction of software maintainability. 

The goal of this study is to construct suitable model using 

machine learning algorithm for the prediction of object-

oriented software maintainability which is not only easy to 

apply but also could reduce the prediction errors to minimum. 

This study quantitatively evaluates the prediction capability of 

three neural network- based algorithms. It compares the three 

existing models namely GMDH, GRNN  PNN with proposed 

Neuro-PSO (NPSO) on the basis of four measures: MRE, 

MMRE, Pred (0.25) and Pred (0.75) from which it is 

concluded that out of the four models, Neuro-PSO gives the 

best results and  the least value for MMRE and maximum 

values for Pred (0.25) and Pred (0.75). This technique 

concludes that Neuro-PSO is the best model for prediction of 

software maintainability. Future work may contain additional 

quantitative studies on different datasets so as to ensure the 

full potential of Neuro-PSO. Another direction of study may 

suggest combining of Neuro-PSO model with other data 

mining models to develop a prediction model which would 

more accurately predict software maintainability. 
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