
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

107

An Image Compression Algorithm for Discontinuous
Series of Similar Pixels

 Kshitiz Agarwal Karm Veer Arya

Jaypee Inst. of Info. Tech.

 AVB-Indian Inst. of Info. Tech.& Management

 804, Sai Kirpa Appartment, sector-11, Vasundhara, Morena Link road, Gwalior, India

 Ghaziabad, India

ABSTRACT
This paper represents lossy compression technique which can be
effectively used for correlated pixels in both continuous and

discontinuous series. Generally, compression is achieved by
reducing redundancy through removal of similar pixels. Here,
dependency of effective compression over their continuity has
been removed. The efficiency of the proposed method has been
described mathematically, proving it suitable for higher bit
images.

Keywords
Compression Ratio, Run length encoding.

1. INTRODUCTION
In computers now days, use of graphics has become common and
is used almost everywhere. Thus, images are of important aspects.
But due to their increased sizes, importance of compression
techniques also stands with them. They need to be compressed so

as they will occupy less space and can be sent to other locations
through mail, etc easily. An image is nothing but a group of pixels
with each pixel carrying a value which shows color, brightness
and other information of that position. Depending upon the pixel
values, images can be of various types like 1 bit image or binary
image, 8 bit image or grayscale image, 24 bit image or RGB
image, etc. Nature of image depends upon pixel values in a series.
If pixel values vary gradually in a row of pixels, then it is a

continuous tone image and if there is a sharp or zero difference of
values between two consecutive pixels at many positions, then it
is discrete tone image like in case of a chart or a cartoon, etc [7].
This approach involves pairing of image pixels which is done to
shift the pixels into new positions effectively. This would help in
putting up the similar pixels in series. Various techniques can be
developed to place pixels in various positions so as to get
maximum number of correlated pixels series. Thereby, efficient
compression can be achieved for their discontinuous row.

Rest of the paper is organized as follows. Section II shows various
works related to the prescribed problem. Section III explains the
complete methodology which is then followed by conclusion in
the last section.

2. RELATED WORK
Run length encoding (RLE) is a common and simple compression
technique. Here, a series of correlated pixels is replaced with a
similar pixel followed by their number, done by encoder [9]. The
reverse of this process is done by decoder. RLE technique is
useful in simple graphic images like icons, line drawings,
animations.

RLE has many applications. Like its use can be visualized in

object recognition and edge detection [1]. Various approaches
have been developed so far. Parallel algorithms have been
implemented over RLE [2] where the input stream is divided into
a number of equal parts, each sent to encoder for RLE
compression. Another approach given by J. Trein is to send an
image into blocks of pixels in parallel [3] whose output is a
sequence of runs describing start and end position of similar
pixels. A method has been developed to optimize code of this

technique [4] where compression factor is inversely proportional
to the average length of each run. Efficient RLE schemes have
been derived by Hatsukazu which involves mapping fixed-length
blocks of source output into variable length codewords [5].
Chengjjie Tu represented adaptive RLE technique where the
coded output is encoded further using context based adaptive
binary arithmetic coding [6] to maximize compression efficiency.

The main problem that RLE carries is its dependency over an
image to be continuous in nature. It mainly relies over the

situation for pixels to be similar in a run for better compression. If
the length is small, efficiency would definitely decrease. This
algorithm has been developed to deal with this problem. It does
not rely over the described situation for better compression. It
tends to reduce the gap between similar pixels by shifting those
pixels using various techniques, making it capable of providing
efficient compression for discontinuous series as well.

3. THE PROPOSED METHOD
In this paper, pixels are grouped into pairs, each pair carrying 2
consecutive pixels. Original pairs have been recognized as base
pairs which form other pairs by swapping their pixels. Let S be

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

108

the set of any 2 base pairs or a pair along with a pixel (depending
upon the number of pixels N) such that intersection of any 2 sets

 results no pair. Selection of pairs in S involves fixed number of
other pairs between them (varying from 0 to N/2 -2) which may
leave few pairs incapable of forming S. In S, first pixel of second

pair or the pixel itself can be swapped either with first pixel of the
first pair (E) or with its second pixel (I). Thus, formation of S
along with I or E denote a particular swapping technique, marked
by a unique character or small string. All these techniques are
noted in a notepad.

Now, all the base pairs are read in row-major fashion, starting
from top-left. Count the number of pairs with similar pixels.
Apply all the noted techniques in base pairs and do the same

thing. The situation with maximum number of pairs carrying
similar pixels is observed and applied. Now, from every pair
while raster scanning, one of the 2 pixels is stored in an array, say
R1, and 1 bit in another array R2 if they are similar. If they are not,
both of them are stored in the same sequence in R1 and 0 bit is
stored in R2. The last unpaired pixel (if N is odd) is also stored in
R1 along with 0 bit in R2. When scanning completes, the string, if
any, corresponding to the applied technique is stored in R2 which

is pushed in a stack and R1 is shifted to new array R3.

The procedure is repeated for all pixels in R3 by taking new R2
and the cycle is then continued until and unless very less number
of pairs with similar pixels are observed. So, output would be R3
along with a stack of R2.

For decompression, pixels of R3 and R2 (pulled from the stack) are
scanned simultaneously. Every pixel in R3 is doubled if its
corresponding bit in R2 is 1. Otherwise the pixel next to its
following pixel and the next bit are observed. This would expand

R3. When R3 completes, the swapping technique signified by the
string stored in R2 is applied in it. This cycle is continued for the
whole stack. Thus, the original image (R3) is retrieved efficiently.

Theorem 1. The compression ratio (CR) decreases with increase
in number of pairs with similar pixels.

Proof: Consider a B bit image N number of pixels. Then for every
cycle,

S1 = Size of input file = BN.

Now, number of base pairs n = (N/2 + N%2).

Let n1 and M be the number of pairs with similar pixels and length
of the string respectively. For large value of N, N/2 >> N%2.
Hence, n = N/2. Then size of output stream would be

Size of R2 = n + 8M.

Size of R3 = n1*B + (n- n1)2B.

S2 = Output stream size = n (1+2B) - n1*B + 8M.

Compression ratio = (n (1+2B) + 8M – n1*B)/ (BN), where N >

M. N, n, M and B are constants. So, CR decreases as n1 increases.

Theorem 2. To apply compression over a given series of pixels,
n1 > (N/2 + 8M)/ B.

Proof: From theorem 1,

(1+2B) N/2 + 8M – n1*B < BN

Hence, n1 > (N/2 + 8M)/ B, where N/2 > 8M.

As, the maximum value of n1 can be N/2 only, N/2 >= n1 > (N/2 +
8M)/B

This theorem is not valid for binary images. The efficiency of this

algorithm can be realized but is not suitable for binary images.

 Theorem 3. Higher the bit depth of an image better would be the
compression obtained.

Proof: From theorem 1 and 2, for every cycle, CR would lie
between

1 > CR >= (1/2B + 0.5 + 8M/BN)

For binary images, B = 1. So, minimum value of CR is 1 + 8M/N.
As CR is greater than 1, the technique is not suitable for binary

images. It is also a bit time consuming process, though time
consumed is for better efficiency only.

1. 4. CONCLUSION
Compression algorithm for images has been shown which can
provide good compression for correlated pixels in any series.

Various theorems have been then discussed to derive out the range
of CR, showing its dependency over bit depth. Thus it has been
concluded that the proposed method can be effectively used for
higher bit images.

5. REFERENCES
[1] Christopher H. Messom, Gourab Sen Gupta and Serge N.
Demidenko “Hough Transform Run Length Encoding for Real
Time Image Processing” IEEE transactions on instrumentation
and measurement, vol. 56, no. 3, June 2007.

[2] Nikolay Manchev “Parallel algorithm for Run Length
Encoding”, Proceedings of third international conference on
information theory, 2006.

[3] J. Trein, A.Th.Schwarzbacher, B. Hoppe and K.-H. Noffz “A
Hardware Implementation of a Run Length Encoding
Compression Algorithm with Parallel Inputs”, ISSC 2008,
Galway, June 18-19.

[4] C.E Shannon and D.A Huffman “Optimizing a Scheme for
Run-Length Encoding”, Proceedings of IEEE, January 1969.

[5] Hatsukazu Tanaka and Alberto leon- Garcia “Efficient Run-
Length Encodings”, IEEE Transactions on Information Theory,
vol. it-28, no. 6, November 1982.

[6] Chengjie Tu, Jie Liang and Trac D. Tran “Adaptive Runlength
Coding”, IEEE ICIP 2002.

[7] Salomon.(2004). Data compression Complete Reference, 3ed.
New York: Springer.

[8] Bell, T. C., I. H. Witten, and J. G. Cleary (1990) Text
Compression, Englewood Cliffs, NJ, Prentice-Hall.

[9] Golomb, Solomon W. (1966) “Run-Length Encodings,” IEEE
Transactions on Information Theory IT-12(3):399–401.

