CFP last date
20 May 2024
Reseach Article

Secure transmission for nanomemories using EG-LDPC

Published on None 2011 by Siva Sreeramdas, S.Aisf Hussain, Dr.M.N.Giri Prasad
International Conference on VLSI, Communication & Instrumentation
Foundation of Computer Science USA
ICVCI - Number 8
None 2011
Authors: Siva Sreeramdas, S.Aisf Hussain, Dr.M.N.Giri Prasad
a053080a-400f-4158-88c1-81e0e98423cf

Siva Sreeramdas, S.Aisf Hussain, Dr.M.N.Giri Prasad . Secure transmission for nanomemories using EG-LDPC. International Conference on VLSI, Communication & Instrumentation. ICVCI, 8 (None 2011), 13-17.

@article{
author = { Siva Sreeramdas, S.Aisf Hussain, Dr.M.N.Giri Prasad },
title = { Secure transmission for nanomemories using EG-LDPC },
journal = { International Conference on VLSI, Communication & Instrumentation },
issue_date = { None 2011 },
volume = { ICVCI },
number = { 8 },
month = { None },
year = { 2011 },
issn = 0975-8887,
pages = { 13-17 },
numpages = 5,
url = { /proceedings/icvci/number8/2685-1357/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference on VLSI, Communication & Instrumentation
%A Siva Sreeramdas
%A S.Aisf Hussain
%A Dr.M.N.Giri Prasad
%T Secure transmission for nanomemories using EG-LDPC
%J International Conference on VLSI, Communication & Instrumentation
%@ 0975-8887
%V ICVCI
%N 8
%P 13-17
%D 2011
%I International Journal of Computer Applications
Abstract

Memory cells have been protected from soft errors for more than a decade; due to the increase in soft error rate in logic circuits, the encoder and decoder circuitry around the memory blocks have become susceptible to soft errors as well and must also be protected. Here introducing a new approach to design fault-secure encoder and decoder circuitry for memory designs. The key novel contribution of this paper is identifying and defining a new class of error-correcting codes whose redundancy makes the design of fault-secure detectors (FSD) particularly simple and further quantify the importance of protecting encoder and decoder circuitry against transient errors. By using that Euclidean Geometry Low-Density Parity-Check (EG-LDPC) codes have the fault-secure detector capability. Using some of the smaller EG-LDPC codes, can tolerate bit or nanowire defect rates of 10% and fault rates of 10-18 upsets/device/cycle, achieving a FIT rate at or below one for the entire memory system and a memory density of 1011 bit/cm2 with nanowire pitch of 10 nm for memory blocks of 10 Mb or larger. Larger EG-LDPC codes can achieve even higher reliability and lower area overhead.

References
  1. M. Forshaw, R. Stadler, D. Crawley, and K. Nikolic´, ―Ashort review of nanoelectronic architectures,‖ Nanotechnology, vol. 15, pp.S220–S223, 2004.
  2. J. Kim and L. Kish, ―Error rate in current-controlled logic processors with shot noise,‖ Fluctuation Noise Lett., vol. 4, no. 1, pp. 83–86, 2004.
  3. S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta, and C. Dai, ―Impact of CMOS process scaling and SOI on the soft error rates of logic processes,‖ in Proc. Symp. VLSI, 2001, pp. 73–74.
  4. A. DeHon, S. C. Goldstein, P. J. Kuekes, and P. Lincoln, ―Non-photolithographic nanoscale memory density prospects, IEEE Trans.Nanotechnol., vol. 4, no. 2, pp. 215–228, Feb. 2005.
  5. F. Sun and T. Zhang, ―Defect and transient fault-tolerant system design for hybrid CMOS/nao device digital memories, IEEE Trans. Nanotechnol.,vol. 6, no. 3, pp. 341–351, Jun. 2007.
  6. A. Saleh, J. Serrano, and J. Patel, ―Reliability of scrubbing recoverytechniques for memory systems, IEEE Trans. Reliab., vol. 39, no. 1,pp. 114–122, Jan. 1990.
  7. A. DeHon, ―Deterministic addressing of nanoscale devices assembled at sublithographic pitches, IEEE Trans. Nanotechnol., vol. 4, no. 6,pp. 681–687, 2005.
  8. A. DeHon, ―Nanowire-based programmable architectures, ACM J. Emerging Technol. Comput. Syst., vol. 1, no. 2, pp. 109– 162, 2005.
  9. Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart,J.O. Jeppesen, K. A. Nielsen, J. F. Stoddart, and R. S. Williams, ―Nanoscale molecular-switch crossbar circuits, Nanotechnology, vol. 14, pp. 462–468, 2003.
  10. J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston- Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y.S. Shin,H.-R. Tseng, J. F. Stoddart, and J. R. Heath, ―A 160- kilobit molecular electronic memory patterned at 10 11 bits per square centimeter, Nature, vol. 445, pp. 414–417, Jan. 25, 2007
  11. Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, R. S. Williams,J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, D. L. Olynick, and E.Anderson, ―Nanoscale molecular-switch devices fabricated by imprint lithography, Appl. Phys. Lett., vol. 82, no. 10, pp. 1610–1612, 2003.
  12. D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen, R.S.Williams, J.O. Jeppesen, K. A. Nielsen, and J. F. Stoddart, Molecule-independent electrical switching in pt/organic monolayer/ti devices, Nanoletters,vol. 4, no. 1, pp. 133–136, 2004.
  13. S. Lin and D. J. Costello, Error Control Coding, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 2004.
  14. M. Sipser and D. Spielman, ―Expander codes, IEEE Trans. Inf.Theory, vol. 42, no. 6, pp. 1710–1722, Nov. 1996
  15. D. E. Knuth, The Art of Computer Programming, 2nd ed. Reading,MA: Addison Wesley, 2000.
Index Terms

Computer Science
Information Sciences

Keywords

nanomemories Euclidean Geometry Low-Density Parity-Check (EG-LDPC)