A Novel Disk Scheduling Algorithm in Real-
time Database Systems

S.Y.Amdani
B.N. College of Engg.,

G.R.Bamnote
PRM Institute of Technology &
Pusad. Maharashtra, India Research, Badnera-Amravati,

H.R.Deshmukh
B.N.College of Engg.,
Pusad, Maharashtra,

Mabharashtra, India India

S.A.Bhura

B.N.College of Engg.,
Pusad, Maharashtra, India

ABSTRACT

Conventional databases are mainly characterized
by their strict data consistency requirements.
Database systems for real-time applications must
satisfy timing constraints associated with
transactions. In this paper a novel disk scheduling
algorithm for real-time database system is
proposed. The main objective of this paper is to
initiate an enquiry in Disk scheduling for real
time database systems. The proposed work aims
at the investigation of efficient disk scheduling
techniques in real time databases. After
investigation it was found that our proposed
approach gives better performance than the
existing algorithms.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems, Real-
time,[.6.6 [Simulation output Analysis]

General Terms
Algorithms, Performance, Experimentation

Keywords
Real-time Database Systems, Disk Scheduling
Algorithms.

1. INTRODUCTION

In the information age, information spreading
worldwide through Internet, and other medium, is
bulk and changing constantly and dynamic in
nature. As our society becomes more integrated
with computer technology, information processed
for human activities necessitates computing that
responds to requests in real-time rather than just
with best effort. Real time data base systems
combine the concepts from real time systems and
conventional database systems. Real time

systems are mainly characterized by their strict
timing constraints. Conventional databases are

mainly characterized by their strict data
consistency requirements. Thus, real time
database systems should satisfy both the timing
constraints with data integrity and consistency
constraints. Real-time Database
Systems(RTDBS) have immerged as an
alternative to manage the data with a structured
and systematic approach. RTDBS have different
performance goals, correctness criteria, and
assumptions about the applications. The
conventional database system’s main objective is
to provide fast response time, whereas a RTDBS
may be evaluated based on how often

transactions miss their deadlines, the average
“tardiness” of late transactions, the cost incurred
in transactions missing their deadlines, data
external consistency and data temporal
consistency. The main criteria in assessing the
success of any scheduling policy is the success
ratio i.e the number of transactions completed
successfully before their deadline. In this paper
we have discussed the disk scheduling
algorithms. We have simulated over some of the
real time disk scheduling algorithms and
compared their performance. The organization of
this paper is as follows: section 2 gives an
overview of disk scheduling problem. In section
3 conventional and real time disk scheduling
algorithms are discussed. In section 4
experimental results and performance evaluation
of real time disk scheduling algorithms is
presented. Finally section 6 concludes with a
summery.

2.DISK SCHEDULING PROBLEM

In a disk-based database system, disk I/O
occupies a major portion of transaction execution
time. As with CPU scheduling, disk scheduling
algorithms that take into account timing
constraints can significantly improve the real-
time performance. CPU scheduling algorithms,
like Earliest Deadline First and Highest Priority
First, are attractive candidates but have to be
modified before they can be applied to I/O
scheduling. The main reason is that disk seek
time, which accounts for a very significant
fraction of disk access latency, depends on the
disk head movement. The order in which I/O
requests are serviced, therefore, has an immense
impact on the response time and throughput of
the I/O subsystem.

o A @

Track #: 0 1 2 3 4 R i

enrrent disk 85, 3 [
tlus divection
—_—

L
B I N I N N
;

head position

Figure 1 Disk Scheduling Example

The Elevator Algorithm, for example, moves the
head from one end of the disk to the other and
then back, servicing whatever requests are on its
way, and changing direction whenever there are
no more requests ahead in its direction. Referring
to the example in Figure 1, the Elevator
Algorithm will produce the following servicing
schedule:

Elevator: D; B; C; A
The problem with the Elevator Algorithm, as
applied to real-time systems, is that the priority of
requests is not considered[19].

To service a disk request, several
operations take place. First, the disk head must be
moved to the appropriate cylinder (seek time).
Then, the portion of the disk on which the disk
page is stored must be rotated until it is
immediately under the disk head (latency time).
Then, the disk page must be made to spin by the
disk head (transmission time). The above
components needed to service a disk request are
illustrated in Figure 2

e ™
s
s .
rd *
;" . \\‘
/ Y y
! " Y
{ \': l}'lia-‘ 1zadd
k i !
' i/ !
| i
n !
| /
S s
, /
s s
.‘\\ /
- -~
- S -

Figure 2 Components of a disk access

Queues build up for each disk because the inter-
arrival time of the disk requests can be smaller
than the time required by the disk to service
a disk request. Disk scheduling involves a
careful examination of the pending disk requests
to determine the most efficient way to service the
disk requests. The disk scheduling problem

involves reordering the disk requests in the disk
queue so that the disk requests will be serviced
with the minimum mechanical motion by
employing seek optimization and latency
optimization.

The following goal should be considered in
scheduling a real-time system[11].

1. Meeting the timing constraints of the
system

2. Preventing simultaneous access to
shared resources and devices.

3. Attaining a high degree of utilization
while satisfying the timing constraints
of the system.

4. Reducing the communication cost in
real-time systems.

Basically, the scheduling problem is to determine
a schedule for the execution of the jobs so that
they all completed before the overall deadline.

3. DISK SCHEDULING ALGORITHMS
3.1 Classical Disk Scheduling
Algorithms

The following classical scheduling algorithms
described below are well known[4].

FCFS: This is the simplest strategy in which
each request is served in first-come-first-serve
basis[4].

SCAN: This is also known as the elevator
algorithm in which the arm moves in one
direction and serves all the request in that
direction until there are no further request in that
direction[4].

C-SCAN: The circular SCAN algorithm works in
the same way as SCAN except that it always
scans in one direction. After serving the last
request in the scan direction, the arm return to the
start position[4].

SSTF: The SSTF, for shortest seek time first,
algorithm simply selects the request closest to the
current arm position for service[4].

A common feature of all these classical
scheduling algorithms is that none of them takes
the time constraint of request into account. This
results in poor performance of classical
algorithms in real-time systems.

3.2 EXISTING REAL-TIME
DISK SCHEDULING
ALGORITHMS

The real-time disk scheduling algorithms like
Earliest Deadline First (EDF), Priority Scan (P-
Scan), Feasible Deadline Scan (FD-Scan),
Shortest Seek and Earliest Deadline by Ordering
(SSEDO) and Shortest Seck and Earliest
Deadline by Value (SSEDV) are discussed in this
seminar.

EDF (Earliest Deadline First): Requests are
ordered according to deadline and the request
with the earliest deadline is serviced first.
Assigning priorities to transactions an Earliest
Deadline policy minimizes the number of late
transactions in systems operating under low or
moderate levels of resource and data contention.
This is due to Earliest Deadline giving the highest
priority to transactions that have the least
remaining time in which to complete. However,
the performance of Earliest Deadline steeply
degrades in an overloaded system[14]. This is
because, under heavy loading, transactions gain
high priority only when they are close to their
deadlines. Gaining high priority at this late stage
may not leave sufficient time for transactions to
complete before their deadlines. Under heavy
loads, then, a fundamental weakness of the
Earliest Deadline priority policy is that it assigns
the highest priority to transactions that are close
to missing their deadlines, thus delaying other
transactions that might still be able to meet their
deadlines[1].

P-SCAN: In Priority Scan (P-Scan) all request in
the I/O queue are divided into multiple priority
levels. The Scan algorithm is used within each
level, which means that the disk serves any
requests that is passes in the current served
priority level until there are no more requests in
that direction. On the completion of each disk
service, the scheduler checks to see whether a
disk request of a higher priority is waiting for
service[15]. If found, the scheduler switches to
that higher level. In this case, the request with
shortest seek distance from the current arm
position is used to determine the scan direction.

All the I/O requests are mapped into three
priority levels according to their deadline
information. Specially, transactions relative
deadlines are uniformly distributed between
LOW_DL and UP_DL, where LOW_DL and
UP DL are lower and wupper bounds for
transaction deadline settings. If a transactions
relative deadline is greater than (LOW DL +
UP_DL)/2, then it is assigned the lowest priority.
If the relative deadline is less than (LOW_DL +
UP_DL)/4, then the transaction receives the
highest priority. Otherwise the transaction is
assigned a middle priority[4].

FD-SCAN (Feasible Deadline Scan) : In FD-
Scan, the track location of the request with
earliest feasible deadline is used to determine the
scan direction. A deadline is feasible if we
estimate that it can be met. More specifically, a
request that is ‘n’ tracks away from the current
head position has a feasible deadline ‘d” if d >=t
+ Access(n) where ‘t’ is the current time and
Access(n) is a function that yields the expected
time needed to service a request ‘n’ tracks away.
Each time that a scheduling decision is made, the
read requests are examined to determine which
have feasible deadlines given the current head
position. The request with the earliest feasible
deadline is the target and determines the scanning
direction. The head scans toward the target
servicing read requests along the way. These
requests either have deadlines later than the target
request or have unfeasible deadlines, ones that
cannot be met. If there is no read request with a
feasible deadline, then FD-SCAN simply services
the closest read request. Since all request
deadlines have been (or will be) missed, the order
of service is no longer important for meeting
deadlines[15].

SSEDO (Shortest Seek and Earliest Deadline
by Ordering): The idea behind the above
algorithm is that we want to give requests with
smaller deadlines higher priorities so that they
can receive service earlier. This can be
accomplished by assigning smaller values to their
weights. On the other hand, when a request with
large deadline is “very” close to the current arm
position (which means less service time), it
should get higher priority. This is especially true

when a request is to access the cylinder where the
arm is currently positioned. Since there is no seek
time in this case and we are assuming the seek
time dominates the service time, the service time
can be ignored. Therefore these requests should
be given the highest priority.

SSEDV (Shortest Seek and Earliest Deadline
by Value): In SSEDO algorithm, the scheduler
uses only the ordering information of request
deadlines. The SSEDV wuses the differences
between deadlines of successive requests in the
window i.e. choose the request with minimum
value for service (remaining lifetime of request
i.e. length of time between current time and
request deadline). A common characteristic of
SSEDV and SSEDO algorithm is that both
consider time constraints and disk service times.
Which part play the greater role in decision
making can be adjusted by tuning the scheduling

parameters, depending on the algorithm[4][20].

4. THE PROPOSED ALGORITHM

In our proposed algorithm all the request in the
I/O queue are divided into multiple priority
levels. Transactions are assigned the priority
depending on the deadlines. All the I/O requests
are mapped into three priority levels according to
their deadline information. Specially, transactions
relative deadlines are uniformly distributed
between LOW DL and UP DL, where
LOW DL and UP DL are lower and upper
bounds for transaction deadline settings. If a
transactions relative deadline is greater than
(LOW_DL + UP_DL)/2, then it is assigned the
lowest priority. If the relative deadline is less
than (LOW DL + UP _DL)/4, then the
transaction receives the Thighest priority.
Otherwise the transaction is assigned a middle
priority.

The transaction selects the transaction with
minimum deadline from the high level and also
serves the transactions that are close to the
current head position and then serve the
transaction with next minimum deadline. Thus,
the requests with smaller deadlines can receive
service earlier and also when a requests with
large deadline is very close to the current arm
position are also served which will reduce the
arm moment. Same procedure is repeated for all

the transactions in the three priority levels. The
important steps in scheduling algorithm are:

e Construct three queues to store the
transaction with minimum, middle or
maximum priorities.

e Set start time, end time, seek time,
current_head position,
total_transaction_time,
turn_around_time for the transactions
with minimum deadline in the three

queues.

e Find transactions with seek time within
threshold.

e Check transaction is miss or hit in all
the queues.

5. EXPERIMENTAL RESULTS

We have investigated and implemented all the
above real-time disk scheduling algorithms
namely EDF, P-SCAN, FD-SCAN, SSEDO,
SSEDV. In these algorithms, preferential
treatment is given to transactions, which are very
critical, and with stringent timing constraints.
Hence deadline is calculated on the basis of
transaction execution time and slack time. We
have also compared the performance of these
algorithms under same workload condition. For
the implementation of above-mentioned
algorithms first we have formulated the disk-
scheduling problem for real-time database
systems and then implemented the mathematical
model for all the algorithms. To get the
evaluation parameters values, he have simulated
the mathematical model for the number of times.
The experimental results show that the
performance of SSEDO and SSEDV is better
than EDF, FD-SCAN and P-SCAN in heavy
workload.

5.1 Performance of Various Disk
Scheduling Algorithms

We have experimented the transaction loss
probability of all the existing algorithms plus the
proposed algorithm under different workloads.
With random arrival fashion of the transaction,

with arrival rate 0.15, number of transactions 100
and disk size in block 100, the comparison given
here is based on the properties like total
transactions, successful transaction, time spend
an all transaction, time spend on successful
transaction, utilization of system and success
ratio.

Table 1. Performance of Algorithms for Random
Arrial.

FD P SSE | SSE | Prop
Properties EDF | Scan | Scan | DO | DV | osed
Total 100 | 100 | 100 | 100 | 100 | 100
Transaction
Successful 31 | 46 | 46 | 3| 74 | 76
Transaction
Time Spend
on all 2073 795 799 756 | 781 790
Transactions
Time Spend
on
Successful 574 389 407 357 | 626 610
Transactions
Utlization of | 56 | 49 | 0.51 | 0.66 | 08 | 0.7
System
Success 0.31 | 046 | 046 | 0.73 | 0.74 | 0.76
Ratio

Table 2. Performance of Algorithms for 10 Runs

FD_ P_ SSE | SSE | Propo

Run# | EDF | SCAN | SCAN | DO | DV sed
100 100 100 | 100 | 100 100
1 34 47 47 73 76 79
2 28 45 45 71 74 77
3 21 40 40 68 69 70
4 35 48 48 75 77 79
5 38 50 50 77 77 78
6 34 47 47 74 73 74
7 29 47 47 73 74 76
8 25 43 43 71 72 72
9 32 46 46 76 76 77
10 30 45 45 74 74 76

As shown in table 1, performance of SSEDV is
better than SSEDO, since SSEDV uses more
timing information than the SSEDO for decision
making. P-SCAN and FD-SCAN perform
essentially at the same level. The EDF algorithm
is good when the system is lightly loaded, but it
degenerates as soon as load increases, as shown
in Table 2. Table 2 shows the performance of
algorithms for 10 runs. Figure 2 shows the
performance of algorithms with 10 runs with 100
transactions.

Conrparision

g EDF10

m FD SCAN20
0 P SCAN30
o SSED0100
m SSEDV 100
& Froposed 100

Transaction HT

c3RB8588388

12 3 456 7 8 91
Runs

Figure 3. Performance of Algorithms at same
load.

As shown in the Figure 3 the performance of our
proposed algorithm is better than other real-time
scheduling algorithms.

6. CONCLUSION

we investigated various real-time disk
scheduling algorithms like EDF, P-SCAN, FD-
SCAN, SSEDO and SSEDV. In EDF transactions
are ordered according to deadline and the request
with earliest deadline is serviced first. Priority-
Scan divides all the request in the I/O queue the
scan algorithm then serves any request that is
passes in the current served priority level until
there are no more request in that direction. In FD-
SCAN, the track location of the request with
earliest feasible deadline is used to determine the
scan direction. In the SSEDO algorithm, the

scheduler uses the ordering information of
request deadlines, whereas SSEDV use the
difference between deadlines of successive
requests in the window.

The results of the comparison shows that,
performance of SSEDV is better than SSEDO,
since the SSEDV uses more timing information
than the SSEDO for decision making. P-SCAN
and FD-SCAN perform essentially at the same
level, with one better at high load cases, but
worse for low load cases. The EDF algorithm is
good when the system is lightly loaded, but it
degenerates as soon as load increases. When we
implemented our proposed algorithm, which
divides the transaction into three classes, then
schedules the transactions considering the
priority and the head position, it gave better
results. As different algorithm show different
results at various transaction load the further
modification to this disk scheduling problem is
real-time database system can be monitoring the
I/O load dynamically, focusing on using analyses
of disk accesses to determine the best disk
scheduling algorithm for the current workload,
and switching algorithms as necessary to improve
performance.

7. ACKNOWLEGEMENTS

The authors would like to thank the Principal,
BNCOE, Pusad (India) for encouragement and
support.

8. REFERENCES

[1] R. Abbott and H. Garcia-Molina,
“SchedulingReal-Time Transactions: A
Performance Evaluation”, Proceedings of
the 14th VLDB Conference, Los Angeles,
California, March 1988.

[2] N. Audsley, A. Burns, “Real Time System
Scheduling”, Technical Report No. YCS
134, Department of Computer Science,
The University of York, UK, 1990.

[3] H. Chetto, M. Silly, and T. Bouchentouf,
“Dynamic Scheduling of Real-Time Tasks
under Precedence Constraints”, The
Journal of Real-Time Systems, Vol. 2, pp.
181-194, 1990.

[10]

[11]

[12]

[13]

[14]

[15]

Shenze Chen, John A. Stankovic, James
Kurose and Don Towsley “Performance
Evaluation of Two New Disk Scheduling
Algorithms”, The Journal of Real-Time
Systems, 1990
S. Chen, J.A. Stankovic, J. F. Kurose, and
D. Towsley, “Performance Evaluation of
Two New Disk Scheduling algorithm for
Real-Time Systems”, The Journal of Real-
Time Systems, Vol. 3, pp. 307-336, 1991.
J. R. Haritsa, M. Livny, and M. J. Carey,
“Earliest Deadline Scheduling for Real-
Time Database Systems”, Proceedings of
the IEEE Real-Time Systems Symposium,
pp. 232-242, 1991.

S. Iyer. The Effect of Deceptive Idleness
on Disk Schedulers. Master’s Thesis,
Computer Science Department, Rice
University. April 2001.

D. Martens. Disk Access Analysis for
Optimal Performance. Department of
Computer Science, The University of
Western Ontario. September 2005.

P. S. Yu, K. Wy, K. Lin, and S. H. Son,
“On Real-Time Databases: Concurrency
Control and Scheduling”, Proceedings of
the IEEE, Vol. 82, No. 1, pp. 140-156,
January 1994.

Systems Support for Preemptive Disk
Scheduling - [IEEE TRANSACTIONS ON

COMPUTERS, VOL. 54, NO. 10,
OCTOBER 2005

Z. Dimitrijevic, R. Rangaswami, and E.
Chang. Design, analysis, and

implementation of Virtual I0. September
2002.

A Real-Time Disk Scheduling Algorithm
For Multimedia Storage Servers - A thesis
submitted in partial fulfillment for the
degree of Master of Science By Sameh
Mohamed Ibrahim Elnikety, 1999
Technical Report No. 2005-499 Scheduling
Algorithms for Real-Time Systems
Arezou Mohammadi and Selim G. Akl

Lisa Cingiser DiPippo and Victor Fay
Wolfe, "Real-Time Databases", Book
chapter, September 23, 1995.

Scheduling I/O Requests with Deadlines: a
Performance Evaluation CH2933-

[18]

[19]

[20]

0/90/0000/0113 1990 IEEE Robert K.
Abbott Hector Garcia-Molina

An Efficient Non-Preemptive Real-Time
Scheduling - Wenming Li, Krishna Kavi
and Robert Akl

Sang H. Son , A Priority-Based Scheduling
Algorithm for Real-Time Databases -
Department of Computer Science
University of Virginia Charlottesville,
Virginia 22903, USA Seog Park
Department of Computer Science Sogang
University Seoul, Korea

Audsley N. and Burns A." Real-Time
System Scheduling", Technical Report
No. YCS 134, Department of Computer
Science, The University of York, UK,
1990.

Haritsa, J., Carey, M., Livny, M., "Earliest
Deadline Scheduling for Real-Time
Database Systems", Proceeding of the
IEEE Real-Time Systems Syposium, pp.
232-242.1991.

Value-Based Scheduling in Real-Time
Database. Systems. Jayant R. Haritsa,
Michael J. Carey, and Miron Livny.
Received May 15, 1991

